Skip To Navigation Skip To Content

Faculty and Research

Faculty Member

David Durica

David S. Durica

Professor, Biology Richards Hall 300A & 216 405-325-1528 Ph.D., Cell Biology - University of Connecticut, 1977


In crustaceans, steroid hormones termed ecdysteroids are tied to numerous physiological programs that must be integrated in the life history of these animals: among these are adult growth and molting, reproduction, and a specialized form of growth that is superimposed on the growth cycle, limb regeneration. Ecdysteroids differ in types and concentrations during the molt cycle, and it is presently unclear how distinct circulating ecdysteroids can differentially modulate different physiological actions in time and space. We have determined that unique structural variants (isoforms) for the ecdysteroid hormone receptor complex exist. We hypothesize that different distributions of receptor isoforms, in concert with differences in receptor isoform affinities for circulating hormones, transduce specific hormonal signals and implement distinct genetic programs. To explore this hypothesis, we are characterizing components of the ecdysteroid signaling pathway with regard to their physical properties and distribution, and identifying primary response gene networks subject to hormonal control.

Selected Publications:

Das, S., Shyamal, S. and Durica, D. S. (2016) Analysis of annotation and differential expression methods used in RNA-seq studies in crustacean systems. Integr. Comp. Biol. 56:1067-1079. doi: 10.1093/icb/icw117

Mykles, D. L., Burnett, K. G., Durica, D. S., Joyce, B. L., McCarthy, F. M., Schmidt, C. J. and Stillman, J. H. (2016) Resources and recommendations for using transcriptomics to address grand challenges in comparative biology. Integr. Comp. Biol. 56:1183-1191. doi: 10.1093/icb/icw083

Das S., Pitts N. L., Mudron M. R., Durica, D. S., and Mykles, D. L. (2016) Transcriptome analysis of the molting gland (Y-organ) from the blackback land crab, Gecarcinus lateralis. Comp. Biochem. Physiol. Part D Genomics Proteomics. 17:26-40. doi: 10.1016/j.cbd.2015.11.003.

Shyamal, S., Anilkumar, G., Baskaran, R., Dos, G. P. and Durica, D. S. (2015) Significant fluctuations in ecdysteroid receptor gene (EcR) expression in relation to seasons of molt and reproduction in the grapsid crab, Metopograpsus messor (Brachyura: Decapoda). Gen. Comp. Endocrinol. 211:39-51 doi: 10.1016/j.ygcen.2014.11.006

Durica, D. S., Das, S., Najar, F., Roe, B., Phillips, B., Kappalli, S. and Anikumar, G. (2014) Alternative splicing in the fiddler crab cognate ecdysteroid receptor: Variation in receptor isoform expression and DNA binding properties in response to hormone. Gen Comp Endocrinol. 206:80-95. doi: 10.1016/j.ygcen.2014.05.034./p>

Das, S. and Durica, D. S. (2013) Ecdysteroid receptor signaling disruption obstructs blastemal cell proliferation during limb regeneration in the fiddler crab, Uca pugilator. Mol. Cell. Endocrinol. 365: 249–259.