Introduction to SAS

Module 1

Dr. Al Schwarzkopf

Exercise 1:

Running a program with an internal dataset

Step 1. Start the SAS program.

Step 2. Copy the program below into the Edit window.

Step 3. Run the program using the “Run” icon.

DATA FITDATA;

 INPUT NAME $ WEIGHT WAIST PULSE CHINS SITUPS JUMPS;

 CARDS;

HODGES S

191
36
50
 5
162
60

KERR

189
37
52
 2
110
60

PUTNAM

193
38
58
12
101
101

ROBERTS

162
35
62
12
105
37

BLAKE

189
35
46
13
155
58

ALLEN

182
36
56
 4
101
42

HOWARD

211
38
56
 8
101
38

VINCENT

167
34
60
 6
125
40

STEWART

176
31
74
15
200
40

PERRY

154
33
56
17
251
250

 ;

PROC SORT DATA=FITDATA;

 BY NAME;

PROC PRINT DATA=FITDATA;

TITLE3 'FITNESS DATA FOR HODGES TO PERRY';

PROC SORT DATA= FITDATA;

 BY NAME;

PROC PLOT DATA=FITDATA;

 PLOT WEIGHT*WAIST;

TITLE3 'PLOT OF WEIGHT OF INDIVIDUAL BY WAIST MEASUREMENT';

PROC CHART DATA= FITDATA;

 VBAR SITUPS;

TITLE3 'COMPARISON OF SITUPS PER INDIVIDUAL';

PROC MEANS DATA= FITDATA;

 VAR JUMPS;

TITLE3 'STATISTICS FOR NUMBER OF JUMPS';

RUN;

Simple List Input

Simple list input places several restrictions on the type of data that the INPUT statement can read:

· By default, at least one blank must separate the input values. Use the DELIMITER= option or the DSD option in the INFILE statement to specify a delimiter other than a blank.

· Represent each missing value with a period, not a blank, or two adjacent delimiters.

· Character input values cannot be longer than 8 bytes unless the variable is given a longer length in an earlier LENGTH, ATTRIB, or INFORMAT statement.

· Character values cannot contain embedded blanks unless you change the delimiter.

· Data must be in standard numeric or character format.
PROC SORT• sorts data according to the variable in the BY statement.

PROC PRINT• prints data in the DATA= dataset in the order it has been sorted.

· There are semi-colons (;) after all the statements, with the exception of the data. You place a semi-colon at the end of the data only.

· The CARDS statement indicates that the lines that follow are data. This statement is used only for data typed into the code.

· The dollar sign in the INPUT statement shows that NAME is a character variable. The rest of the variables are numeric.

· Comment statements can be added to your program by using an asterisk (*) at the beginning of the statement. Comment statements end with a semi-colon. Comment statements should be used to properly document your program so that anyone reading your program can understand what your program is doing.

· Indention and blank lines can be used to make your program easy to read and follow.

Some valuable display options are PROC PLOT, PROC CHART, and PROC MEANS.

PROC PLOT - The PLOT procedure graphs one variable against another, producing a printer plot. The coordinates of each point on the plot correspond to the two variables' values in one or more observations of the input data set.

You can use PLOT to:

· plot character as well as numeric variables

· specify the length and width of the plot

· reverse the order of the values on the vertical axis

· Draw contour plots with shading intensity determined by a third variable in the data set.

PROC CHART - The CHART procedure produces vertical and horizontal bar charts, block charts, pie charts, and star charts. These charts are useful for showing pictorially a variable's values or the relationships between two or more variables.

PROC MEANS - The MEANS procedure produces simple univariate descriptive statistics for numeric variables.

SAVING DATA IN A SAS LIBRARY

**Reading through the entire Module first will help understand what tasks are being done.

SAS works with data in its own special format called a SAS dataset. You can save data in this format and avoid the overhead of converting it every time you want to run a program.

Step 1: Create a Windows folder to contain the data. You can use any folder, but it is a good idea to create one especially for the data you are going to use.

Step 2: Start SAS and go to the Explorer tab to view the “Contents of the SAS Environment”. (You may have to use the “Up one level” icon to get to this level.)

Step 3: On the menu bar go to

· File

· New

You will see the following screen:

[image: image1.png]Bl Vew Took solutions Window telp

2 =l

W3 BE-|XE

IR

Conterts

5 Envionment Library-

E— o

R

Ubraries Fil Shortcuts

Engine:

oot T Eateataane

Libraty Informaton

Pan |

o

Options: |

R Results Output - (Untitled)

e

|) Log - untled) processi.| [dtor - untiled

[New Library

|55 Ciibocuments and settings|schwoaga

Step 4: On the New Library window enter Name (for example FITNESS) up to 8 characters (this will be the working name for the SAS library in your code.) Enter the path to the Windows folder you have created in Step 1. Press OK.

Step 5: Add the following SAS code to the program above and run it:

DATA FITNESS.FITDATA2;

 SET FITDATA;

RUN;

· The SET statement calls the working data set FITDATA that you created in the Data Step in Exercise 1.

· The DATA statement stores that data in the library FITNESS that you just created with SAS table name of FITDATA2. The Windows name of the new dataset will be Fitdata1.SAS7BDAT.

Note: A simpler alternative might be to include the code below before you run the data step above.

LIBNAME FITNESS ‘path to the folder you want to store into’;
Step 6: To retrieve the data again you can use the code:

DATA FITNESS3;

 SET FITNESS.FITDATA2;

You may need to repeat steps 1-4 to connect a new SAS session to the stored library.

