Microsoft SQL Syntax

Data Manipulation Language

2SELECT Statement

3ALL, DISTINCT, DISTINCTROW, TOP Predicates

6FROM Clause

6GROUP BY Clause

8HAVING Clause

9IN Clause

10INNER JOIN Operation

12LEFT JOIN, RIGHT JOIN Operations

14ORDER BY Clause

15SELECT...INTO Statement

17UNION Operation

18WHERE Clause

20WITH OWNERACCESS OPTION Declaration

20SQL Aggregate Functions

21Count Function

22First, Last Functions

23Calculating Fields in SQL Functions

23Min, Max Functions

24StDev, StDevP Functions

25Sum Function

26Var, VarP Functions

26INSERT INTO Statement

28DROP Statement

29DELETE Statement

29UPDATE Statement

	
	SELECT Statement
	

	Instructs the Microsoft Jet database engine to return information from the database as a set of records.

Syntax

SELECT [predicate] { * | table.* | [table.]field1 [AS alias1] [, [table.]field2 [AS alias2] [, ...]]}
FROM tableexpression [, ...] [IN externaldatabase]
[WHERE...]
[GROUP BY...]
[HAVING...]
[ORDER BY...]
[WITH OWNERACCESS OPTION]

The SELECT statement has these parts:

Part

Description

predicate
One of the following predicates: ALL, DISTINCT, DISTINCTROW, or TOP. You use the predicate to restrict the number of records returned. If none is specified, the default is ALL.

*
Specifies that all fields from the specified table or tables are selected.

table
The name of the table containing the fields from which records are selected.

field1, field2
The names of the fields containing the data you want to retrieve. If you include more than one field, they are retrieved in the order listed.

alias1, alias2
The names to use as column headers instead of the original column names in table.

tableexpression
The name of the table or tables containing the data you want to retrieve.

externaldatabase
The name of the database containing the tables in tableexpression if they are not in the current database.

Remarks

To perform this operation, the Microsoft® Jet database engine searches the specified table or tables, extracts the chosen columns, selects rows that meet the criterion, and sorts or groups the resulting rows into the order specified.

SELECT statements do not change data in the database.

SELECT is usually the first word in an SQL statement . Most SQL statements are either SELECT or SELECT...INTO statements.

The minimum syntax for a SELECT statement is:

SELECT fields FROM table
You can use an asterisk (*) to select all fields in a table. The following example selects all of the fields in the Employees table:

SELECT * FROM Employees;
If a field name is included in more than one table in the FROM clause, precede it with the table name and the . (dot) operator. In the following example, the Department field is in both the Employees table and the Supervisors table. The SQL statement selects departments from the Employees table and supervisor names from the Supervisors table:

SELECT Employees.Department, Supervisors.SupvName
FROM Employees INNER JOIN Supervisors
WHERE Employees.Department = Supervisors.Department;
When a Recordset object is created, the Microsoft Jet database engine uses the table's field name as the Field object name in the Recordset object. If you want a different field name or a name is not implied by the expression used to generate the field, use the AS reserved word . The following example uses the title Birth to name the returned Field object in the resulting Recordset object:

SELECT BirthDate
AS Birth FROM Employees;
Whenever you use aggregate functions or queries that return ambiguous or duplicate Field object names, you must use the AS clause to provide an alternate name for the Field object. The following example uses the title HeadCount to name the returned Field object in the resulting Recordset object:

SELECT COUNT(EmployeeID)
AS HeadCount FROM Employees;
You can use the other clauses in a SELECT statement to further restrict and organize your returned data. For more information, see the Help topic for the clause you are using.

ALL, DISTINCT, DISTINCTROW, TOP Predicates

Specifies records selected with SQL queries.

Syntax

SELECT [ALL | DISTINCT | DISTINCTROW | [TOP n [PERCENT]]]
FROM table
A SELECT statement containing these predicates has the following parts:

Part

Description

ALL

Assumed if you do not include one of the predicates. The Microsoft Jet database engine selects all of the records that meet the conditions in the SQL statement . The following two examples are equivalent and return all records from the Employees table:

SELECT ALL *
FROM Employees
ORDER BY EmployeeID;
SELECT *
FROM Employees
ORDER BY EmployeeID;
DISTINCT

Omits records that contain duplicate data in the selected fields. To be included in the results of the query, the values for each field listed in the SELECT statement must be unique. For example, several employees listed in an Employees table may have the same last name. If two records contain Smith in the LastName field, the following SQL statement returns only one record that contains Smith:

SELECT DISTINCT
LastName
FROM Employees;
If you omit DISTINCT, this query returns both Smith records.

If the SELECT clause contains more than one field, the combination of values from all fields must be unique for a given record to be included in the results.

The output of a query that uses DISTINCT is not updatable and does not reflect subsequent changes made by other users.

DISTINCTROW

Omits data based on entire duplicate records, not just duplicate fields. For example, you could create a query that joins the Customers and Orders tables on the CustomerID field. The Customers table contains no duplicate CustomerID fields, but the Orders table does because each customer can have many orders. The following SQL statement shows how you can use DISTINCTROW to produce a list of companies that have at least one order but without any details about those orders:

SELECT DISTINCTROW CompanyName
FROM Customers INNER JOIN Orders
ON Customers.CustomerID = Orders.CustomerID
ORDER BY CompanyName;
If you omit DISTINCTROW, this query produces multiple rows for each company that has more than one order.

DISTINCTROW has an effect only when you select fields from some, but not all, of the tables used in the query. DISTINCTROW is ignored if your query includes only one table, or if you output fields from all tables.

TOP n [PERCENT]

Returns a certain number of records that fall at the top or the bottom of a range specified by an ORDER BY clause. Suppose you want the names of the top 25 students from the class of 1994:

SELECT TOP 25
FirstName, LastName
FROM Students
WHERE GraduationYear = 1994
ORDER BY GradePointAverage DESC;
If you do not include the ORDER BY clause, the query will return an arbitrary set of 25 records from the Students table that satisfy the WHERE clause.

The TOP predicate does not choose between equal values. In the preceding example, if the twenty-fifth and twenty-sixth highest grade point averages are the same, the query will return 26 records.

You can also use the PERCENT reserved word to return a certain percentage of records that fall at the top or the bottom of a range specified by an ORDER BY clause. Suppose that, instead of the top 25 students, you want the bottom 10 percent of the class:

SELECT TOP 10 PERCENT
FirstName, LastName
FROM Students
WHERE GraduationYear = 1994
ORDER BY GradePointAverage ASC;
The ASC predicate specifies a return of bottom values. The value that follows TOP must be an unsigned Integer .

TOP does not affect whether or not the query is updatable.

FROM Clause

Specifies the tables or queries that contain the fields listed in the SELECT statement.

Syntax

SELECT fieldlist
FROM tableexpression [IN externaldatabase]

A SELECT statement containing a FROM clause has these parts:

Part

Description

fieldlist
The name of the field or fields to be retrieved along with any field-name aliases , SQL aggregate functions , selection predicates (ALL, DISTINCT, DISTINCTROW, or TOP), or other SELECT statement options.

tableexpression
An expression that identifies one or more tables from which data is retrieved. The expression can be a single table name, a saved query name, or a compound resulting from an INNER JOIN, LEFT JOIN, or RIGHT JOIN.

externaldatabase
The full path of an external database containing all the tables in tableexpression.
Remarks

FROM is required and follows any SELECT statement.

The order of the table names in tableexpression is not important.

For improved performance and ease of use, it is recommended that you use a linked table instead of an IN clause to retrieve data from an external database.

The following example shows how you can retrieve data from the Employees table:

SELECT LastName, FirstName
FROM Employees;
See Also

GROUP BY Clause

Combines records with identical values in the specified field list into a single record. A summary value is created for each record if you include an SQL aggregate function , such as Sum or Count, in the SELECT statement.

Syntax

SELECT fieldlist
FROM table
WHERE criteria
[GROUP BY groupfieldlist]

A SELECT statement containing a GROUP BY clause has these parts:

Part

Description

fieldlist
The name of the field or fields to be retrieved along with any field-name aliases, SQL aggregate functions, selection predicates (ALL, DISTINCT, DISTINCTROW, or TOP), or other SELECT statement options.

table
The name of the table from which records are retrieved.

criteria
Selection criteria. If the statement includes a WHERE clause, the Microsoft Jet database engine groups values after applying the WHERE conditions to the records.

groupfieldlist
The names of up to 10 fields used to group records. The order of the field names in groupfieldlist determines the grouping levels from the highest to the lowest level of grouping.

Remarks

GROUP BY is optional.

Summary values are omitted if there is no SQL aggregate function in the SELECT statement.

Null values in GROUP BY fields are grouped and are not omitted. However, Null values are not evaluated in any SQL aggregate function.

Use the WHERE clause to exclude rows you do not want grouped, and use the HAVING clause to filter records after they have been grouped.

Unless it contains Memo or OLE Object data, a field in the GROUP BY field list can refer to any field in any table listed in the FROM clause, even if the field is not included in the SELECT statement, provided the SELECT statement includes at least one SQL aggregate function. The Microsoft® Jet database engine cannot group on Memo or OLE Object fields.

All fields in the SELECT field list must either be included in the GROUP BY clause or be included as arguments to an SQL aggregate function.

See Also

ALL DISTINCT, DISTINCTROW, TOP Predicates

SELECT

FROM Clause

SELECT...INTO Statement
HAVING Clause

SQL Aggregate Functions
ORDER BY Clause

WHERE Clause

HAVING Clause

Specifies which grouped records are displayed in a SELECT statement with a GROUP BY clause. After GROUP BY combines records, HAVING displays any records grouped by the GROUP BY clause that satisfy the conditions of the HAVING clause.

Syntax

SELECT fieldlist
FROM table
WHERE selectcriteria
GROUP BY groupfieldlist
[HAVING groupcriteria]

A SELECT statement containing a HAVING clause has these parts:

Part

Description

fieldlist
The name of the field or fields to be retrieved along with any field-name aliases, SQL aggregate functions, selection predicates (ALL, DISTINCT, DISTINCTROW, or TOP), or other SELECT statement options.

table
The name of the table from which records are retrieved.

selectcriteria
Selection criteria. If the statement includes a WHERE clause, the Microsoft Jet database engine groups values after applying the WHERE conditions to the records.

groupfieldlist
The names of up to 10 fields used to group records. The order of the field names in groupfieldlist determines the grouping levels from the highest to the lowest level of grouping.

groupcriteria
An expression that determines which grouped records to display.

Remarks

HAVING is optional.

HAVING is similar to WHERE, which determines which records are selected. After records are grouped with GROUP BY, HAVING determines which records are displayed:

SELECT CategoryID,
Sum(UnitsInStock)
FROM Products
GROUP BY CategoryID
HAVING Sum(UnitsInStock) > 100 And Like "BOS*";
A HAVING clause can contain up to 40 expressions linked by logical operators, such as And and Or.

See Also

IN Clause

Identifies tables in any external database to which the Microsoft Jet database engine can connect, such as a dBASE or Paradox database or an external Microsoft® Jet database.

Syntax

To identify a destination table:

[SELECT | INSERT] INTO destination IN
{path | ["path" "type"] | ["" [type; DATABASE = path]]}

To identify a source table:

FROM tableexpression IN
{path | ["path" "type"] | ["" [type; DATABASE = path]]}

A SELECT statement containing an IN clause has these parts:

Part

Description

destination
The name of the external table into which data is inserted.

tableexpression
The name of the table or tables from which data is retrieved. This argument can be a single table name, a saved query, or a compound resulting from an INNER JOIN, LEFT JOIN, or RIGHT JOIN.

path
The full path for the directory or file containing table.
type
The name of the database type used to create table if a database is not a Microsoft Jet database (for example, dBASE III, dBASE IV, Paradox 3.x, or Paradox 4.x).

Remarks

You can use IN to connect to only one external database at a time.

In some cases, the path argument refers to the directory containing the database files. For example, when working with dBASE, Microsoft FoxPro®, or Paradox database tables, the path argument specifies the directory containing .dbf or .db files. The table file name is derived from the destination or tableexpression argument.

To specify a non-Microsoft Jet database, append a semicolon (;) to the name, and enclose it in single (' ') or double (" ") quotation marks. For example, either 'dBASE IV;' or "dBASE IV;" is acceptable.

You can also use the DATABASE reserved word to specify the external database. For example, the following lines specify the same table:

... FROM Table IN "" [dBASE IV; DATABASE=C:\DBASE\DATA\SALES;];
... FROM Table IN "C:\DBASE\DATA\SALES" "dBASE IV;"
Notes
For improved performance and ease of use, use a linked table instead of IN.

You can also use the IN reserved word as a comparison operator in an expression.

See Also

INNER JOIN Operation

Combines records from two tables whenever there are matching values in a common field.

Syntax

FROM table1 INNER JOIN table2 ON table1.field1 compopr table2.field2
The INNER JOIN operation has these parts:

Part

Description

table1, table2
The names of the tables from which records are combined.

field1, field2
The names of the fields that are joined. If they are not numeric, the fields must be of the same data type and contain the same kind of data, but they do not have to have the same name.

compopr
Any relational comparison operator: "=," "<," ">," "<=," ">=," or "<>."

Remarks

You can use an INNER JOIN operation in any FROM clause. This is the most common type of join. Inner joins combine records from two tables whenever there are matching values in a field common to both tables.

You can use INNER JOIN with the Departments and Employees tables to select all the employees in each department. In contrast, to select all departments (even if some have no employees assigned to them) or all employees (even if some are not assigned to a department), you can use a LEFT JOIN or RIGHT JOIN operation to create an outer join .

If you try to join fields containing Memo or OLE Object data, an error occurs.

You can join any two numeric fields of like types. For example, you can join on AutoNumber and Long fields because they are like types. However, you cannot join Single and Double types of fields.

The following example shows how you could join the Categories and Products tables on the CategoryID field:

SELECT CategoryName, ProductName
FROM Categories INNER JOIN Products
ON Categories.CategoryID = Products.CategoryID;
In the preceding example, CategoryID is the joined field, but it is not included in the query output because it is not included in the SELECT statement. To include the joined field, include the field name in the SELECT statement— in this case, Categories.CategoryID.

You can also link several ON clauses in a JOIN statement, using the following syntax:

SELECT fields
FROM table1 INNER JOIN table2
ON table1.field1 compopr table2.field1 AND
ON table1.field2 compopr table2.field2) OR
ON table1.field3 compopr table2.field3)];

You can also nest JOIN statements using the following syntax:

SELECT fields
FROM table1 INNER JOIN
(table2 INNER JOIN [(]table3
[INNER JOIN [(]tablex [INNER JOIN ...)]
ON table3.field3 compopr tablex.fieldx)]
ON table2.field2 compopr table3.field3)
ON table1.field1 compopr table2.field2;

A LEFT JOIN or a RIGHT JOIN may be nested inside an INNER JOIN, but an INNER JOIN may not be nested inside a LEFT JOIN or a RIGHT JOIN.

See Also

LEFT JOIN, RIGHT JOIN Operations

Combines source-table records when used in any FROM clause.

Syntax

FROM table1 [LEFT | RIGHT] JOIN table2
ON table1.field1 compopr table2.field2
The LEFT JOIN and RIGHT JOIN operations have these parts:

Part

Description

table1, table2
The names of the tables from which records are combined.

field1, field2
The names of the fields that are joined. The fields must be of the same data type and contain the same kind of data, but they do not need to have the same name.

compopr
Any relational comparison operator: "=," "<," ">," "<=," ">=," or "<>."

Remarks

Use a LEFT JOIN operation to create a left outer join . Left outer joins include all of the records from the first (left) of two tables, even if there are no matching values for records in the second (right) table.

Use a RIGHT JOIN operation to create a right outer join . Right outer joins include all of the records from the second (right) of two tables, even if there are no matching values for records in the first (left) table.

For example, you could use LEFT JOIN with the Departments (left) and Employees (right) tables to select all departments, including those that have no employees assigned to them. To select all employees, including those who are not assigned to a department, you would use RIGHT JOIN.

The following example shows how you could join the Categories and Products tables on the CategoryID field. The query produces a list of all categories, including those that contain no products:

SELECT CategoryName,
ProductName
FROM Categories LEFT JOIN Products
ON Categories.CategoryID = Products.CategoryID;
In this example, CategoryID is the joined field, but it is not included in the query results because it is not included in the SELECT statement. To include the joined field, enter the field name in the SELECT statement— in this case, Categories.CategoryID.

Notes
To create a query that includes only records in which the data in the joined fields is the same, use an INNER JOIN operation.

· A LEFT JOIN or a RIGHT JOIN can be nested inside an INNER JOIN, but an INNER JOIN cannot be nested inside a LEFT JOIN or a RIGHT JOIN. See the discussion of nesting in the INNER JOIN topic to see how to nest joins within other joins.

· You can link multiple ON clauses. See the discussion of clause linking in the INNER JOIN topic to see how this is done.

If you try to join fields containing Memo or OLE Object data, an error occurs.

See Also

ORDER BY Clause

Sorts a query's resulting records on a specified field or fields in ascending or descending order.

Syntax

SELECT fieldlist
FROM table
WHERE selectcriteria
[ORDER BY field1 [ASC | DESC][, field2 [ASC | DESC]][, ...]]]

A SELECT statement containing an ORDER BY clause has these parts:

Part

Description

fieldlist
The name of the field or fields to be retrieved along with any field-name aliases , SQL aggregate functions , selection predicates (ALL, DISTINCT, DISTINCTROW, or TOP), or other SELECT statement options.

table
The name of the table from which records are retrieved.

selectcriteria
Selection criteria. If the statement includes a WHERE clause, the Microsoft Jet database engine orders values after applying the WHERE conditions to the records.

field1, field2
The names of the fields on which to sort records.

Remarks

ORDER BY is optional. However, if you want your data displayed in sorted order, then you must use ORDER BY.

The default sort order is ascending (A to Z, 0 to 9). Both of the following examples sort employee names in last name order:

SELECT LastName, FirstName
FROM Employees
ORDER BY LastName;
SELECT LastName, FirstName
FROM Employees
ORDER BY LastName ASC;
To sort in descending order (Z to A, 9 to 0), add the DESC reserved word to the end of each field you want to sort in descending order. The following example selects salaries and sorts them in descending order:

SELECT LastName, Salary
FROM Employees
ORDER BY Salary DESC, LastName;
If you specify a field containing Memo or OLE Object data in the ORDER BY clause, an error occurs. The Microsoft Jet database engine does not sort on fields of these types.

ORDER BY is usually the last item in an SQL statement .

You can include additional fields in the ORDER BY clause. Records are sorted first by the first field listed after ORDER BY. Records that have equal values in that field are then sorted by the value in the second field listed, and so on.

See Also

SELECT...INTO Statement

Creates a make-table query .

Syntax

SELECT field1[, field2[, ...]] INTO newtable [IN externaldatabase]
FROM source
The SELECT...INTO statement has these parts:

Part

Description

field1, field2
The name of the fields to be copied into the new table.

newtable
The name of the table to be created. It must conform to standard naming conventions . If newtable is the same as the name of an existing table, a trappable error occurs.

externaldatabase
The path to an external database . For a description of the path, see the IN clause.

source
The name of the existing table from which records are selected. This can be single or multiple tables or a query.

Remarks

You can use make-table queries to archive records, make backup copies of your tables, or make copies to export to another database or to use as a basis for reports that display data for a particular time period. For example, you could produce a Monthly Sales by Region report by running the same make-table query each month.

Notes
· You may want to define a primary key for the new table. When you create the table, the fields in the new table inherit the data type and field size of each field in the query's underlying tables, but no other field or table properties are transferred.

· To add data to an existing table, use the INSERT INTO statement instead to create an append query .

· To find out which records will be selected before you run the make-table query, first examine the results of a SELECT statement that uses the same selection criteria.

See Also

UNION Operation

Creates a union query , which combines the results of two or more independent queries or tables.

Syntax

[TABLE] query1 UNION [ALL] [TABLE] query2 [UNION [ALL] [TABLE] queryn [...]]

The UNION operation has these parts:

Part

Description

query1-n
A SELECT statement , the name of a stored query, or the name of a stored table preceded by the TABLE keyword.

Remarks

You can merge the results of two or more queries, tables, and SELECT statements, in any combination, in a single UNION operation. The following example merges an existing table named New Accounts and a SELECT statement:

TABLE [New Accounts] UNION ALL
SELECT *
FROM Customers
WHERE OrderAmount > 1000;
By default, no duplicate records are returned when you use a UNION operation; however, you can include the ALL predicate to ensure that all records are returned. This also makes the query run faster.

All queries in a UNION operation must request the same number of fields; however, the fields do not have to be of the same size or data type .

Use aliases only in the first SELECT statement because they are ignored in any others. In the ORDER BY clause, refer to fields by what they are called in the first SELECT statement.

Notes
· You can use a GROUP BY or HAVING clause in each query argument to group the returned data.

· You can use an ORDER BY clause at the end of the last query argument to display the returned data in a specified order.

See Also

WHERE Clause

Specifies which records from the tables listed in the FROM clause are affected by a SELECT , UPDATE , or DELETE statement.

Syntax

SELECT fieldlist
FROM tableexpression
WHERE criteria
A SELECT statement containing a WHERE clause has these parts:

Part

Description

fieldlist
The name of the field or fields to be retrieved along with any field-name aliases , selection predicates (ALL, DISTINCT, DISTINCTROW, or TOP), or other SELECT statement options.

tableexpression
The name of the table or tables from which data is retrieved.

criteria
An expression that records must satisfy to be included in the query results.

Remarks

The Microsoft Jet database engine selects the records that meet the conditions listed in the WHERE clause. If you do not specify a WHERE clause, your query returns all rows from the table. If you specify more than one table in your query and you have not included a WHERE clause or a JOIN clause, your query generates a Cartesian product of the tables.

WHERE is optional, but when included, follows FROM. For example, you can select all employees in the sales department (WHERE Dept = 'Sales') or all customers between the ages of 18 and 30 (WHERE Age Between 18 And 30).

If you do not use a JOIN clause to perform SQL join operations on multiple tables, the resulting Recordset object will not be updatable.

WHERE is similar to HAVING. WHERE determines which records are selected. Similarly, once records are grouped with GROUP BY, HAVING determines which records are displayed.

Use the WHERE clause to eliminate records you do not want grouped by a GROUP BY clause.

Use various expressions to determine which records the SQL statement returns. For example, the following SQL statement selects all employees whose salaries are more than $21,000:

SELECT LastName, Salary
FROM Employees
WHERE Salary > 21000;
A WHERE clause can contain up to 40 expressions linked by logical operators, such as And and Or.

When you enter a field name that contains a space or punctuation, surround the name with brackets ([]). For example, a customer information table might include information about specific customers :

SELECT [Customer’s Favorite Restarant]
When you specify the criteria argument, date literals must be in U.S. format, even if you are not using the U.S. version of the Microsoft® Jet database engine. For example, May 10, 1996, is written 10/5/96 in the United Kingdom and 5/10/96 in the United States. Be sure to enclose your date literals with the number sign (#) as shown in the following examples.

To find records dated May 10, 1996 in a United Kingdom database, you must use the following SQL statement:

SELECT *
FROM Orders
WHERE ShippedDate = #5/10/96#;
You can also use the DateValue function which is aware of the international settings established by Microsoft Windows®. For example, use this code for the United States:

SELECT *
FROM Orders
WHERE ShippedDate = DateValue('5/10/96');
And use this code for the United Kingdom:

SELECT *
FROM Orders
WHERE ShippedDate = DateValue('10/5/96');
Note If the column referenced in the criteria string is of type GUID , the criteria expression uses a slightly different syntax:

WHERE ReplicaID = {GUID {12345678-90AB-CDEF-1234-567890ABCDEF}}
Be sure to include the nested braces and hyphens as shown.

See Also

WITH OWNERACCESS OPTION Declaration

SQL Aggregate Functions

Using the SQL aggregate functions , you can determine various statistics on sets of values. You can use these functions in a query and aggregate expressions in the SQL property of a QueryDef object or when creating a Recordset object based on an SQL query.

Avg Function

Count Function

First, Last Functions

Min, Max Functions

StDev, StDevP Functions

Sum Function

Var, VarP Functions

Calculates the arithmetic mean of a set of values contained in a specified field on a query.

Syntax

Avg(expr)
The expr placeholder represents a string expression identifying the field that contains the numeric data you want to average or an expression that performs a calculation using the data in that field. Operands in expr can include the name of a table field, a constant, or a function (which can be either intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks

The average calculated by Avg is the arithmetic mean (the sum of the values divided by the number of values). You could use Avg, for example, to calculate average freight cost.

The Avg function does not include any Null fields in the calculation.

You can use Avg in a query expression and in the SQL property of a QueryDef object or when creating a Recordset object based on an SQL query.

See Also

Count Function

Calculates the number of records returned by a query.

Syntax

Count(expr)
The expr placeholder represents a string expression identifying the field that contains the data you want to count or an expression that performs a calculation using the data in the field. Operands in expr can include the name of a table field or function (which can be either intrinsic or user-defined but not other SQL aggregate functions). You can count any kind of data, including text.

Remarks

You can use Count to count the number of records in an underlying query. For example, you could use Count to count the number of orders shipped to a particular country.

Although expr can perform a calculation on a field, Count simply tallies the number of records. It does not matter what values are stored in the records.

The Count function does not count records that have Null fields unless expr is the asterisk (*) wildcard character . If you use an asterisk, Count calculates the total number of records, including those that contain Null fields. Count(*) is considerably faster than Count([Column Name]). Do not enclose the asterisk in quotation marks (' '). The following example calculates the number of records in the Orders table:

SELECT Count(*)
AS TotalOrders FROM Orders;
If expr identifies multiple fields, the Count function counts a record only if at least one of the fields is not Null. If all of the specified fields are Null, the record is not counted. Separate the field names with an ampersand (&). The following example shows how you can limit the count to records in which either ShippedDate or Freight is not Null:

SELECT
Count('ShippedDate & Freight')
AS [Not Null] FROM Orders;
You can use Count in a query expression. You can also use this expression in the SQL property of a QueryDef object or when creating a Recordset object based on an SQL query.

See Also

First, Last Functions

Return a field value from the first or last record in the result set returned by a query.

Syntax

First(expr)
Last(expr)
The expr placeholder represents a string expression identifying the field that contains the data you want to use or an expression that performs a calculation using the data in that field. Operands in expr can include the name of a table field, a constant, or a function (which can be either intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks

The First and LastMoveFirst and MoveLast methods of a DAO Recordset object. They simply return the value of a specified field in the first or last record, respectively, of the result set returned by a query. Because records are usually returned in no particular order (unless the query includes an ORDER BY clause), the records returned by these functions will be arbitrary.

See Also

Calculating Fields in SQL Functions

You can use the string expression argument in an SQL aggregate function to perform a calculation on values in a field. For example, you could calculate a percentage (such as a surcharge or sales tax) by multiplying a field value by a fraction.

The following table provides examples of calculations on fields from the Orders and Order Details tables in the Northwind.mdb database.

Calculation

Example

Add a number to a field

Freight + 5
Subtract a number from a field

Freight - 5
Multiply a field by a number

UnitPrice * 2
Divide a field by a number

Freight / 2
Add one field to another

UnitsInStock + UnitsOnOrder
Subtract one field from another

ReorderLevel - UnitsInStock
The following example calculates the average discount amount of all orders in the Northwind.mdb database. It multiplies the values in the UnitPrice and Discount fields to determine the discount amount of each order and then calculates the average. You can use this expression in an SQL statement in Visual Basic code:

SELECT Avg(UnitPrice * Discount) AS [Average Discount] FROM [Order Details];
See Also

Min, Max Functions

Return the minimum or maximum of a set of values contained in a specified field on a query.

Syntax

Min(expr)
Max(expr)
The expr placeholder represents a string expression identifying the field that contains the data you want to evaluate or an expression that performs a calculation using the data in that field. Operands in expr can include the name of a table field, a constant, or a function (which can be either intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks

You can use Min and Max to determine the smallest and largest values in a field based on the specified aggregation, or grouping. For example, you could use these functions to return the lowest and highest freight cost. If there is no aggregation specified, then the entire table is used.

You can use Min and Max in a query expression and in the SQL property of a QueryDef object or when creating a Recordset object based on an SQL query.

See Also

StDev, StDevP Functions

Return estimates of the standard deviation for a population or a population sample represented as a set of values contained in a specified field on a query.

Syntax

StDev(expr)
StDevP(expr)
The expr placeholder represents a string expression identifying the field that contains the numeric data you want to evaluate or an expression that performs a calculation using the data in that field. Operands in expr can include the name of a table field, a constant, or a function (which can be either intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks

The StDevP function evaluates a population, and the StDev function evaluates a population sample.

If the underlying query contains fewer than two records (or no records, for the StDevP function), these functions return a Null value (which indicates that a standard deviation cannot be calculated).

You can use the StDev and StDevP functions in a query expression. You can also use this expression in the SQL property of a QueryDef object or when creating a Recordset object based on an SQL query.

See Also

Sum Function

Returns the sum of a set of values contained in a specified field on a query.

Syntax

Sum(expr)
The expr placeholder represents a string expression identifying the field that contains the numeric data you want to add or an expression that performs a calculation using the data in that field. Operands in expr can include the name of a table field, a constant, or a function (which can be either intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks

The Sum function totals the values in a field. For example, you could use the Sum function to determine the total cost of freight charges.

The Sum function ignores records that contain Null fields. The following example shows how you can calculate the sum of the products of UnitPrice and Quantity fields:

SELECT
Sum(UnitPrice * Quantity)
AS [Total Revenue] FROM [Order Details];
You can use the Sum function in a query expression. You can also use this expression in the SQL property of a QueryDef object or when creating a Recordset based on an SQL query.

See Also

Var, VarP Functions

Return estimates of the variance for a population or a population sample represented as a set of values contained in a specified field on a query.

Syntax

Var(expr)
VarP(expr)
The expr placeholder represents a string expression identifying the field that contains the numeric data you want to evaluate or an expression that performs a calculation using the data in that field. Operands in expr can include the name of a table field, a constant, or a function (which can be either intrinsic or user-defined but not one of the other SQL aggregate functions).

Remarks

The VarP function evaluates a population, and the Var function evaluates a population sample.

If the underlying query contains fewer than two records, the Var and VarP functions return a Null value, which indicates that a variance cannot be calculated.

You can use the Var and VarP functions in a query expression or in an SQL statement .

See Also

INSERT INTO Statement

Adds a record or multiple records to a table. This is referred to as an append query .

Syntax

Multiple-record append query:

INSERT INTO target [(field1[, field2[, ...]])] [IN externaldatabase]
SELECT [source.]field1[, field2[, ...]
FROM tableexpression
Single-record append query:

INSERT INTO target [(field1[, field2[, ...]])]
VALUES (value1[, value2[, ...])

The INSERT INTO statement has these parts:

Part

Description

target
The name of the table or query to append records to.

field1, field2
Names of the fields to append data to, if following a target argument, or the names of fields to obtain data from, if following a source argument.

externaldatabase
The path to an external database . For a description of the path, see the IN clause.

source
The name of the table or query to copy records from.

tableexpression
The name of the table or tables from which records are inserted. This argument can be a single table name or a compound resulting from an INNER JOIN , LEFT JOIN , or RIGHT JOIN operation or a saved query.

value1, value2
The values to insert into the specific fields of the new record. Each value is inserted into the field that corresponds to the value's position in the list: value1 is inserted into field1 of the new record, value2 into field2, and so on. You must separate values with a comma, and enclose text fields in quotation marks (' ').

Remarks

You can use the INSERT INTO statement to add a single record to a table using the single-record append query syntax as shown above. In this case, your code specifies the name and value for each field of the record. You must specify each of the fields of the record that a value is to be assigned to and a value for that field. When you do not specify each field, the default value or Null is inserted for missing columns. Records are added to the end of the table.

You can also use INSERT INTO to append a set of records from another table or query by using the SELECT ... FROM clause as shown above in the multiple-record append query syntax. In this case, the SELECT clause specifies the fields to append to the specified target table.

The source or target table may specify a table or a query. If a query is specified, the Microsoft Jet database engine appends records to any and all tables specified by the query.

INSERT INTO is optional but when included, precedes the SELECT statement.

If your destination table contains a primary key , make sure you append unique, non-Null values to the primary key field or fields; if you do not, the Microsoft Jet database engine will not append the records.

If you append records to a table with an AutoNumber field and you want to renumber the appended records, do not include the AutoNumber field in your query. Do include the AutoNumber field in the query if you want to retain the original values from the field.

Use the IN clause to append records to a table in another database.

To create a new table, use the SELECT... INTO statement instead to create a make-table query .

To find out which records will be appended before you run the append query, first execute and view the results of a select query that uses the same selection criteria.

An append query copies records from one or more tables to another. The tables that contain the records you append are not affected by the append query.

Instead of appending existing records from another table, you can specify the value for each field in a single new record using the VALUES clause. If you omit the field list, the VALUES clause must include a value for every field in the table; otherwise, the INSERT operation will fail. Use an additional INSERT INTO statement with a VALUES clause for each additional record you want to create.

See Also

FROM Clause

SELECT Statement

IN Clause

SELECT...INTO Statement

INNER JOIN Operation

WHERE Clause

LEFT JOIN, RIGHT JOIN Operations
DROP Statement

Deletes an existing table, procedure, or view from a database, or deletes an existing index from a table.

Note The Microsoft Jet database engine> does not support the use of DROP, or any of the DDL statements, with non-Microsoft Jet databases. Use the DAO Delete method instead.

Syntax

DROP {TABLE table | INDEX index ON table | PROCEDURE procedure | VIEW view}

The DROP statement has these parts:

Part

Description

table
The name of the table to be deleted or the table from which an index is to be deleted.

procedure
The name of the procedure to be deleted.

view
The name of the view to be deleted.

index
The name of the index to be deleted from table.
Remarks

You must close the table before you can delete it or remove an index from it.

You can also use ALTER TABLE to delete an index from a table.

You can use CREATE TABLE to create a table and CREATE INDEX or ALTER TABLE to create an index. To modify a table, use ALTER TABLE.

See Also

DELETE Statement

UPDATE Statement

Creates an update query that changes values in fields in a specified table based on specified criteria.

Syntax

UPDATE table
SET newvalue
WHERE criteria;

The UPDATE statement has these parts:

Part

Description

table
The name of the table containing the data you want to modify.

newvalue
An expression that determines the value to be inserted into a particular field in the updated records.

criteria
An expression that determines which records will be updated. Only records that satisfy the expression are updated.

Remarks

UPDATE is especially useful when you want to change many records or when the records that you want to change are in multiple tables.

You can change several fields at the same time. The following example increases the Order Amount values by 10 percent and the Freight values by 3 percent for shippers in the United Kingdom:

UPDATE Orders
SET OrderAmount = OrderAmount * 1.1,
Freight = Freight * 1.03
WHERE ShipCountry = 'UK';
Important

· UPDATE does not generate a result set. Also, after you update records using an update query, you cannot undo the operation. If you want to know which records were updated, first examine the results of a select query that uses the same criteria, and then run the update query.

· Maintain backup copies of your data at all times. If you update the wrong records, you can retrieve them from your backup copies.

See Also

Creates a delete query that removes records from one or more of the tables listed in the FROM clause that satisfy the WHERE clause.

Syntax

DELETE [table.*]
FROM table
WHERE criteria
The DELETE statement has these parts:

Part

Description

table
The optional name of the table from which records are deleted.

table
The name of the table from which records are deleted.

criteria
An expression that determines which records to delete.

Remarks

DELETE is especially useful when you want to delete many records.

To drop an entire table from the database, you can use the Execute method with a DROP statement. If you delete the table, however, the structure is lost. In contrast, when you use DELETE, only the data is deleted; the table structure and all of the table properties, such as field attributes and indexes, remain intact.

You can use DELETE to remove records from tables that are in a one-to-many relationship with other tables. Cascade delete operations cause the records in tables that are on the many side of the relationship to be deleted when the corresponding record in the one side of the relationship is deleted in the query. For example, in the relationship between the Customers and Orders tables, the Customers table is on the one side and the Orders table is on the many side of the relationship. Deleting a record from Customers results in the corresponding Orders records being deleted if the cascade delete option is specified.

A delete query deletes entire records, not just data in specific fields. If you want to delete values in a specific field, create an update query that changes the values to Null .

Important

· After you remove records using a delete query, you cannot undo the operation. If you want to know which records were deleted, first examine the results of a select query that uses the same criteria, and then run the delete query.

· Maintain backup copies of your data at all times. If you delete the wrong records, you can retrieve them from your backup copies.

See Also

