SQL for SQL Server
Simple Retrieval

The basic form of an SQL expression is simple. It is merely SELECT_FROM_WHERE. After the SELECT, list those columns that you wish to have displayed. After the FROM, list the table or tables that are involved in the query. Finally, after the WHERE, list any conditions that apply to the data you wish to retrieve.

Example 1: Retrieve certain columns and all rows.

Statement: List the number, description and amount on hand of all parts.

Since we want all parts listed there is no need for the WHERE clause (we have no restrictions). The query is thus:

SELECT part_number, part_description, units_on_hand

FROM Part

The query will retrieve:

part_number
part_description
units_on_hand

AV13
Blade

40

AX12
Iron
 104

AX44
Tray

33

AZ52
Dartboard

20

BA74
Basketball

40

BH22
Cornpopper
95

BN34
Spa Bath
47

BT04
Gas Grill

11

(24 row(s) affected)

Example 2: Retrieve all columns and rows.

Statement: List the entire orders table.

You could use the same structure shown in example 1. However, there is a shortcut. Instead of listing all of the column names after the SELECT, you can use the symbol “*”. This indicates that you want all columns listed (in the order in which they have been described to the system during data definition). If you want all columns but in a different order, you would have to type the names of the columns in the order in which you want them to appear. In this case, assuming that the normal order is appropriate, the query would be:

SELECT *

FROM Orders

The query will retrieve:

Order_number
orderdate
 customer_numeric

12400

2001-09-04

405

12401

2001-09-04

412

12402

2001-09-04

567

12403

2001-09-04

587

12404

2001-09-04

622

12405

2001-09-04

555

12506

2001-09-04

777

(85 row(s) affected)

Example 3: Use of a simple condition with the WHERE clause.

* Simple conditions consists of a column name, comparison operator (i.e. “ = “), followed by a value or another column name

Statement: What is the first and last name of customer 405?

SELECT c_first, c_last

FROM Customer

WHERE customer_number = ‘405’

*character values must be enclosed in single quotation marks

The query will retrieve:

c_first
c_last

Al

Williams

(1 row(s) affected)

Example 4: Use of a compound condition within the WHERE clause.

*Compound conditions connects two or more simple conditions

Statement: List the number and description of all parts that are in warehouse 2 and have over 50 units on hand.

Compound conditions are possible within the WHERE clause using AND, OR, and NOT. In this case, you have:

SELECT part_number, part_description

FROM part

WHERE (warehouse_numeric = '2') AND (units_on_hand > 50)
The query will retrieve:

part_number

part_description

CZ81

Treadmill

(1 row(s) affected)

The condition in the WHERE clause does not have to be an ‘equal-to’ sign. Any of the normal comparison operators =, >, >=, <, <= may be used, as well as, <> (not equal-to). SQL also recognizes the operator != for ‘not equal-to’.

Example 5: Use of computed fields.

Statement: Find the available credit for all customers who have at least a $500 credit limit.

There is no column AvailableCredit in our database. It is, however, computable from two columns that are present, credit_limit and balance (AvailableCredit = credit_limit - balance). There are two possible ways around this problem. If the DBMS that we are using supports virtual columns (columns that are not physically stored but rather are computed from existing columns when needed), then AvailableCredit could have been described to the system as a virtual column during the definition of the Customer table, and we could use it in this query. Assuming that, for whatever reason, this has not been done, we have a second solution to the problem. SQL permits us to specify computations within the SQL expression. In this case, we would have:

SELECT customer_number, c_first, c_last, (credit_limit - balance)

FROM Customer

WHERE credit_limit >= 500

The query will retrieve:

customer_number
c_first
c_last

114

Roger

Twain

 471.00

124

Sally
Adams
 181.25

221

Louise
Henderson
 145.00

256

Ann
Samuels
1478.50

311

Don
Charles
 174.25

315

Tom
Daniels
 -20.75

322

Linda
Thompson
 354.50

405

Al
Williams
1097.25

412

Sally
 Adams

 182.50

413

Alan
Rogers
 -145.50

 (20 row(s) affected)

Note that the heading for the available credit column is simply a blank. Since this column does not exist in the Customer table, the computer does not know how to label the column. There is a facility within SQL to change any of the column headings to whatever you desire.

To insert a column name, simply use the keyword AS followed by the desired column name (i.e. AvailableCredit), following the SQL expression of the computed column, (credit_limit - balance). Thus, we would have:

SELECT customer_number, c_first, c_last, (credit_limit - balance) AS AvailableCredit

FROM Customer

WHERE credit_limit >= 500

The new query will retrieve the same results as above, but replaces the blank with a new column name, AvailableCredit.

Example 6: Use of “LIKE”.

Statement: List the first and last name and the address, city, and state of all the customers who live in Ada.

Because of the way our Customer table has been designed, this is a relatively simple query and there would be no use for the LIKE clause. You would simply use the following SQL statement:

SELECT c_first, c_last, c_street, c_city, c_state

FROM Customer

WHERE c_city = 'Ada'

Let’s say that the Customer table had been designed differently and the customer address, city, and state were all included under one column, c_address. For example, customer 311’s record would now look like:

Customer_number c_first c_last c_address balance credit_limit slsrep_numb

 311

Don Charles 48 College, Ira, MI 49034 825.75 1000.00 2
Now how would you perform the same query that we performed above? In an instance like this when the city is just a portion of the column labeled c_address, and thus anyone living in Ada has “Ada” somewhere within his or her address, you can use the LIKE clause.

SELECT customer_number, c_first, c_last, c_address

FROM Customer

WHERE Address LIKE ‘%Ada%’

The symbol “%” is used as a wild card. Thus, we are asking for all customers whose address is “LIKE” some collection of characters, followed by Ada, followed by some other characters. Note that this query would also pick up a customer whose address was “576 Adabell, Lansing, MI”. We would probably be safer to have asked for an address like ‘%,Ada,%’ although this would have missed an address entered as “108 Pine, Ada, MI” since this address does not contain the string of characters “,Ada,” but rather “, Ada,”.

Sorting
Example 7: Use of ORDER BY and IN.

Statement:

A. List all customers ordered by last name.

B. List all customers who have a credit limit of $300 or $1000 ordered by last name.
C. List all customers whose first name begins with “A” ordered by last name.
In a relational database, the order of the rows is considered immaterial. Therefore, if the order in which the data is displayed is important to you, then you should request that the results be displayed in the desired order through your query. In SQL, this is done through an ORDER BY clause.

7A:

SELECT c_first, c_last

FROM Customer

ORDER BY c_last

The query will retrieve:

c_first
c_last

Sally

Adams

Sally
Adams

Don
Charles

Mateen
Cleaves

Tom
Daniels

Tran
Dinh

Patrick
Ewing

Mara
Galvez

Roger
Twain

Al
Williams

(22 row(s) affected)

7B:

SELECT c_first, c_last

FROM Customer

WHERE credit_limit IN (300,1000)

ORDER BY c_last

The query will retrieve:

c_first
c_last

Sally

Adams

Don
Charles

Mara
Galvez

Louise
Henderson

Dan
Martin

Marco
Polo

Linda
Thompson

(7 row(s) affected)

7C:

SELECT c_first, c_last

FROM Customer

WHERE c_last LIKE ‘A%’

ORDER BY c_last

You should use name LIKE ‘A%’ instead of ‘%A%’ because name LIKE ‘%A%’ would give you all the customers whose name had the letter A anywhere within the last name.

The query will retrieve:

c_first c_last

Sally Adams

Sally Adams

(2 row(s) affected)

Example 8: Sorting with multiple keys, descending order.

Statement: List the customer number, first and last name, and credit limit of all customers, ordered by decreasing credit limit and by customer number within credit limit.

This is accomplished as follows:

SELECT customer_number, c_first, c_last, credit_limit

FROM Customer

ORDER BY credit_limit DESC, customer_number

The query will retrieve:

customer_number
c_first
c_last

credit_limit

412

Sally
Adams
2000.00

256
Ann
Samuels
1500.00

405
Al Williams
1500.00

522

Mary
Nelson

1500.00

124
Sally
Adams
1000.00

221
Louise
Henderson
1000.00

778

Betty
Hurst

 400.00

112
Martin
Lombard
 200.00

(22 row(s) affected)

Built-In Functions
SQL has several built-in functions:

COUNT - count of the number of values in a column

SUM - sum of the values in a column

AVG - average of the values in a column

MAX - largest of the values in a column

MIN - smallest of the values in a column

Example 9: Use of the built-in function COUNT.

Statement: How many different types of parts are in the item class “AP”?

In this query, we are interested in the number of rows that contain the item class called “AP”. The query should be stated as follows:

SELECT COUNT (part_number) AS Diff_Part_Types

FROM Part

WHERE item_class = ‘AP’

The query will retrieve:

Diff_Part_Types

5

(1 row(s) affected)

Example 10: Use of COUNT and SUM.
Statement: Find the number of customers and the total of their balances
.

SELECT COUNT (customer_number) AS NoOfCustomer, SUM(balance) AS Totalbalance

FROM Customer

The query will retrieve:

NoOfCustomer
Totalbalance

22

14607.37

(1 row(s) affected)

Subqueries

Example 11: Nesting Queries.
Statement:

A. What is the largest credit limit of any customer of sales representative 6?

B. Which customers have this credit limit?
C. Find the answer to part B in one step.
11A.

SELECT MAX(credit_limit) AS MaxCreditLimit

FROM Customer

WHERE slsrep_numb = ‘06’

The query will retrieve:

MaxCreditLimit

1500.00

(1 row(s) affected)

11B. (After you see the answer from part A)

SELECT customer_number, c_first, c_last

FROM Customer

WHERE credit_limit = 1500

The query will retrieve:

customer_number

c_first

c_last

256

Ann
Samuels

405

Al
Williams

522

Mary
Nelson

(3 row(s) affected)

11C:

In part C, you are going to accomplish the same thing that you accomplished in parts A and B, but in one step. You can accomplish this through a nesting query:

SELECT customer_number, c_first, c_last

FROM Customer

WHERE credit_limit IN

(SELECT MAX(credit_limit)

FROM Customer

WHERE slsrep_numb = ‘06’)

The query will retrieve the same results as in 11B. The portion of the SQL statement that is contained in the parenthesis is called a subquery. The subquery is evaluated first and then the outer query is evaluated in relation to the subquery.

Example 12: Use of Distinct.

Statement:

A. Find the numbers of all customers who currently have orders.

B. Find the numbers of all customers who currently have orders, making sure to list each customer only once.

C. Count the number of customers who currently have orders.

12A:

The formulation for this query is quite simple if you think about what the question is asking. If a customer currently has an order, then the customer’s number must appear in at least one row of the Orders table. Therefore the query should be written as follows:

SELECT customer_numeric

FROM Orders

The query will retrieve:
customer_numeric

405

412

567

587

622

555

777

413

221

112

(85 row(s) affected)

12B:

When you look at the answer to part A, you will see that some of the customer numbers appear more than once. If you want to ensure that this duplication does not occur, you can use the DISTINCT clause.

SELECT DISTINCT customer_numeric

FROM Orders

The query will retrieve:

customer_numeric

112

114

124

221

256

311

315

777

778

880

(21 row(s) affected)

12C:

Part C involves counting. Although counting has been discussed before, it is important to mention it again when we are discussing the DISTINCT clause. Without the DISTINCT clause, duplicate numbers may be counted twice as the following examples demonstrate:

SELECT COUNT(customer_numeric) AS num_of_customers

FROM Orders

The query will retrieve:

num_of_customers

85

(1 row(s) affected)

SELECT COUNT(DISTINCT Customer_numeric) AS num_of_customers

FROM Orders

The query will retrieve:

Num_of_customers

21

The same results can be achieved by the following query:

SELECT COUNT(customer_number) AS num_of_customers

FROM Customer

WHERE customer_number IN

(SELECT DISTINCT customer_numeric

FROM Orders)

Example 13: Use of a built-in function in a subquery.

Statement: List the number and first and last name of all customers whose balance is over the average balance of all customers.

SELECT Customer_number, c_first, c_last, balance

FROM Customer

WHERE balance >

(SELECT AVG(balance)

FROM Customer)

The query will retrieve:
customer_number
c_first
c_last

balance

124
Sally
Adams

 818.75

221
Louise Henderson
 855.00

311
Don
Charles
 825.75

315
Tom
Daniels
 770.75

412
Sally
Adams

1817.50

555
Patsy
Hinez
 751.25

622
Dan
Martin
1045.75

701
Patrick
Ewing
 750.25

704
MateenCleaves
1700.12

705
Jerry
Stackhouse
 700.12

880
Daniel
Tanner
 851.25

(11 row(s) affected)

Grouping

Example 14: Using GROUP BY and HAVING.

Statement:

A. List the order total for each order.

B. List the order total for those orders that amount to over $700.

14A:

The order total is equal to the sum of number of products ordered multiplied by their respective quoted prices for each order number. The query should be written as follows:

SELECT order_number, SUM(numeric_ordered * quoted_price) AS order_total

FROM Order_Line

GROUP BY order_number

ORDER BY order_number

The query will retrieve:

order_number order_total

12400 970.94

12401 74.82

12402 547.51

12403 108.79

12404 77.84

12405 22.95

12406 22.95

12753 27.10

12754 27.10

12755 27.10

(85 row(s) affected)

14B:

In part B we are including a restriction. This restriction does not apply to individual rows but rather to groups. Since the WHERE clause applies only to rows, it should not be used in a case such as this. In this particular situation you should use a HAVING clause.

SELECT order_number, SUM(numeric_ordered * quoted_price)

FROM Order_Line

GROUP BY order_number

HAVING SUM (numeric_ordered * quoted_price) > 700

ORDER BY order_number

The query will retrieve:

order_number

12400 970.94

12494 1119.96

12498 1220.21

12517 1349.91

12520 1599.96

12525 773.75

12538 1119.96

12543 703.36

(8 row(s) affected)

Example 15: HAVING vs WHERE.

Statement:

A. List each credit limit together with the number of customers who have this limit.

B. Same as query A, but only list those credit limits held by more than one customer.

C. List each credit limit together with the number of customers of sales representative 3 who have this limit.

D. Same as query C, but only list those credit limits held by more than one customer.

15A.

In order to count the number of customers who have a particular credit limit, the data must be GROUPED BY this credit limit. The query should be written as follows:

SELECT credit_limit, COUNT(customer_number) AS no_of_customers

FROM Customer

GROUP BY credit_limit

The query will retrieve:

credit_limit no_of_customers

200.00

1

400.00
1

500.00
1

650.00
3

700.00
2

750.00
3

1000.00
7

1500.00
3

2000.00
1

(9 row(s) affected)

15B.

Since this condition involves a group total, a HAVING clause must be used. The query should be written as follows:

SELECT credit_limit, COUNT(customer_number) AS no_of_customers

FROM Customer

GROUP BY Credit_limit

HAVING COUNT(customer_number) > 1

The query will retrieve:

credit_limit no_of_customers

650.00

3

700.00

2

750.00

3

1000.00

7

1500.00

3

(5 row(s) affected)

15C:

This condition only involves rows rather than groups, so the WHERE clause should be used here. The query should be written as follows:

SELECT credit_limit, COUNT(customer_number)

FROM Customer

WHERE clsrep_numb = ‘03’

GROUP BY credit_limit

The query will retrieve:

credit_limit
no_of_customers

1000.00
2

2000.00
1

(2 row(s) affected)

15D:

In part D, both a WHERE clause and a HAVING clause are needed since the conditions involve both rows and groups. The query should be written as follows:

SELECT credit_limit, COUNT(customer_number)

FROM Customer

WHERE slsrep_numb = ‘03’

GROUP BY credit_limit

HAVING COUNT(customer_number) > 1

The query will retrieve:

credit_limit
no_of_customers

1000.00

2

(1 row(s) affected)

Querying Multiple Tables

Example 16: Joining two tables together.

Statement: For each part that is on order, find the part number, number ordered, and unit price of the part.

A part is considered to be on order if there is a row in the Order_Line table in which the part appears. You can easily find the part number and number of parts ordered in the Order_Line table. However, the unit price can only be found in the Part table. In order to satisfy this query, the Part table and the Order_Line table must be joined together. In this instance, the process of joining tables involves finding part numbers in the Order_Line table that match up to the corresponding part numbers in the Part table. The query should be written as follows:

SELECT order_number, Order_Line.part_number, unit_price

FROM Order_Line, Part

WHERE Order_Line.part_number = Part.part_number

The query will retrieve:

order_number
part_number
unit_price

12400

AX12

 24.95

12400
BZ66

399.99

12400
CA15
 18.50

12400
CB03
299.99

12400
CB65
 10.99

12400
CX45
 35.50

12401
AX12
 24.95

12401
BN34
 12.47

12401
QW56
 34.12

12752
BA74
 29.95

12753
BA74
 29.95

12754
BA74
 29.95

12755
BA74
 29.95

(117 row(s) affected)

Here we indicated all fields that we wanted to display in the SELECT clause. In the FROM clause, we list the tables that are involved in the query. In the WHERE clause we give the condition that will restrict the data to be retrieved to only those rows from the two relations that match.

Example 17: Comparison of JOIN and the use of IN.

Statement: Find the description of all parts included in order number 12498.

This query also involves both the Part table and the ORDERLIN table so it is very similar to the query that we just wrote. The query should be written as follows:

SELECT Part.part_description

FROM Order_Line, Part

WHERE (Part.part_number = Order_Line.part_number)

AND order_number = '12498'

The query will retrieve:

part_description

Dartboard

Basketball

Spa Bath

Gas Grill

Toaster

Dryer

Bike

Statue

Pool Table

Vacuum

Bread Maker

(11 row(s) affected)

It is important to notice that Order_Line was listed in the FROM clause even though there were no fields from the Order_Line relation that were to be displayed. Because a field from the Order_Line relation was listed in the WHERE clause, the Order_Line table must be listed in the FROM clause.

Another approach could be taken in this situation involving the IN clause and a subquery. We could first find all of the part numbers in the Order_Line relation that appear on any row in which the order number is 12498 as a subquery. Next we find the descriptions of any parts whose part number is in this list. The query would be written as follows:

SELECT part_description

FROM Part

WHERE Part.part_number IN

(SELECT Order_Line.part_number

FROM Order_Line

WHERE order_number = ‘12498’)

Example 18: Comparison of IN and EXISTS.

Statement:

A. Find the number and date of those orders that contain part “BT04”.

B. Find the number and date of those orders that do not contain part “BT04”.
18A:

This query is similar to the previous example and could thus be handled in either of the two ways given by the previous example. Using the formulation involving IN would give:

SELECT Orders.order_number, orderdate

FROM Orders

WHERE Orders.order_number IN

(SELECT Order_Line.order_number

FROM Order_Line

WHERE part_number = ‘BT04’)

The query will retrieve:
order_number
orderdate

12491

2001-09-02 00:00:00.000

12498

2001-09-05 00:00:00.000

12500

2001-09-05 00:00:00.000

12517

2001-09-08 00:00:00.000

12541

2001-09-20 00:00:00.000

(5 row(s) affected)

18B:

This query could be handled in essentially the same way, except that the “IN” would be replaced by “NOT IN”. An alternative formulation can be given using the SQL word “EXISTS”. However, in this case, we would use “NOT EXISTS”. The query should be written as follows:

SELECT order_number, orderdate

FROM Orders

WHERE NOT EXISTS

(SELECT *

FROM Order_Line

WHERE Orders.order_number =

Order_Line.order_number

AND part_number = ‘BT04’)

For each order number in the Orders table, the subquery is selecting those rows of the Order_Line table on which the order number matches the order number from the Orders table and the part number is “BT04”

The query will retrieve:

order_number
orderdate

12400 2001-09-04 00:00:00.000

12401 2001-09-04 00:00:00.000

12402 2001-09-04 00:00:00.000

12403 2001-09-04 00:00:00.000

12404 2001-09-04 00:00:00.000

12405 2001-09-04 00:00:00.000

12406 2001-09-04 00:00:00.000

12407 2001-09-04 00:00:00.000

12752 2001-09-26 00:00:00.000

12753 2001-09-26 00:00:00.000

12754 2001-09-26 00:00:00.000

12755 2001-09-26 00:00:00.000

(80 row(s) affected)

Example 19: Subquery within a Subquery.

Statement: Find all of the numbers and dates of those orders that include a part located in warehouse 3.

You can approach this problem by determining the list of part numbers in the Part relation for those parts that are located in warehouse 3. Once you have completed that, you can obtain a list of order numbers in the Order_Line relation where the corresponding part number is in your previous part number list. Finally, you can retrieve those order numbers and dates in the Orders relation for which the order number is in the list of order numbers obtained in your second step. The query would be written as follows:

SELECT order_number, orderdate

FROM Orders

WHERE order_number IN

(SELECT order_number

FROM Order_Line

WHERE part_number IN

(SELECT part_number

FROM Part

WHERE warehouse_numeric = ‘3’))

The query will retrieve:

order_number
orderdate

12400

2001-09-04 00:00:00.000

12401

2001-09-04 00:00:00.000

12402

2001-09-04 00:00:00.000

12403

2001-09-04 00:00:00.000

12404

2001-09-04 00:00:00.000

12405

2001-09-04 00:00:00.000

12406

2001-09-04 00:00:00.000

12407

2001-09-04 00:00:00.000

12744

2001-09-25 00:00:00.000

12745

2001-09-25 00:00:00.000

12746

2001-09-26 00:00:00.000

(52 row(s) affected)

You could perform this query in an alternative fashion by joining all the tables rather than using subqueries. The query should be written as follows:

SELECT Order_line.order_number, orderdate

FROM Order_Line, Orders, Part

WHERE Orders.order_number = Order_Line.order_number

AND Order_Line.part_number = Part.part_number

AND warehouse_numeric = '3'

GROUP BY order_line.order_number, orderdate

This query would produce the same results as the previous query.

Example 20: A Comprehensive Example.

Statement: List the customer number, the order number, the order date and the order total for all of those orders whose total is over $100. The query should be written as follows:

SELECT customer_numeric, Orders.order_number, orderdate, SUM(numeric_ordered * quoted_price) AS OrderTotal

FROM Orders, Order_Line

WHERE Orders.order_number = Order_Line.order_number

GROUP BY Orders.order_number, customer_numeric, orderdate

HAVING SUM(numeric_ordered * quoted_price) > 100

ORDER BY Orders.order_number

The query will retrieve:

customer_numeric
 order_number
orderdate

OrderTotal

405

12400

2001-09-04 00:00:00.000 970.94

567

12402

2001-09-04 00:00:00.000 547.51

587

12403

2001-09-04 00:00:00.000 108.79

124

12489

2001-09-02 00:00:00.000 241.45

311

12491

2001-09-02 00:00:00.000 549.98

315

12494

2001-09-04 00:00:00.000 1119.96

522

12498

2001-09-05 00:00:00.000 1220.21

124

12500
2001-09-05 00:00:00.000 149.99

Using An Alias

Example 21: Use of an alias.

Statement: List the number and first and last name of all sales representatives together with the number and first and last name of all the customers they represent.

When tables are listed in the FROM clause, you have the option of giving each table an alias or alternate name that you can use throughout the rest of your statement. You do this by immediately following the table with the alias. There should not be any commas separating the table and the alias. Aliases allow you to simplify your statement. An example of a query using an alias follows:

SELECT S.slsrep_numb, S.sr_first, S.sr_last, C.customer_number, C.c_first, C.c_last

FROM Sales_Rep S, Customer C

WHERE (S.slsrep_numb = C.slsrep_numb)

This query will retrieve:

slsrep_numb S.sr_first
S.sr_last customer_number
C.c_first
C.c_last
 9

 Rebecca
Shaw

112
Martin
Lombard

5
 Todd
Oldham

114

Roger

Twain

3

 Mary
Jones

124

Sally

Adams

6

 William
Smith

221

Louise

Henderson

6

 William
Smith

256

Ann

Samuels

12

 Miguel
Diaz

311

Don
Charles

6

 William
Smith

 315

Tom

Daniels

12

 Miguel
Diaz

322

Linda

Thompson

12
 Miguel
Diaz

 405
 Al
 Williams

3

 Mary
Jones

412

Sally
 Adams

4

 Kelly
Parker

413
Alan
 Rogers

12
 Miguel
Diaz

 522
Mary
Nelson

2
 Michael
Johnson

555
Patsy
Hinez

6
 William
Smith

567
Tran
Dinh

6
 William
Smith

 587
 Mara
Galvez

3
 Mary
Jones

622
Dan
Martin

6
 William
Smith

701
Patrick
Ewing

10
 Andrew
Leroy

704
Mateen
Cleaves

13
 Billy Ray
Valentine

705
Jerry
Stackhouse

2
 Michael
Johnson

777
Marco
Polo

13
 Billy Ray
Valentine

778
Betty
Hurst

2
 Michael
Johnson

880
Daniel
Tanner

(22 row(s) affected)

Although aliases can be useful for helping to simplify queries, they can also be essential. The next example demonstrates when an alias is essential.

More Involved Joins

Example 22: Joining a table to itself.
Statement: Find the list of any pairs of customers who have the same first and last name.

If our database contained two different customer tables and the query requested us to find customers in one table who had the same name as customers in the second table, we would perform a simple join operation. However, we only have one customer table in our database. Using the alias feature of SQL, we can treat our Customer table as though it is two tables in order to fulfill the request. The query should be written as follows:

SELECT X.customer_number, X.c_first, X.c_last, Y.customer_number, Y.c_first, Y.c_last

FROM Customer X, Customer Y

WHERE (X.c_first = Y.c_first AND X.c_last = Y.c_last)

AND (X.Customer_number < Y.Customer_number)

The query would retrieve:

customer_number
c_first

c_last

customer_number
c_first
c_last

124
Sally
Adams

412

Sally
Adams

(1 row(s) affected)
** The last line in the query was necessary in order to eliminate duplicates. For example, without it, the query would retrieve the following:

customer_number
c_first

c_last
customer_number
c_first

c_last

124

Sally

Adams

412

 Sally

Adams

412

Sally

Adams

124

 Sally

Adams

Example 23: An example involving joining all five tables.

Statement: List the number and first and last name of all sales representatives who represent any customers who currently have any orders on file for parts in item class “HW”. The query should be written as follows:

SELECT Sales_Rep.slsrep_numb, Sales_Rep.sr_first, Sales_Rep.sr_last

FROM Sales_Rep, Customer, Orders, Order_Line, Part

WHERE ((Sales_Rep.slsrep_numb = Customer.slsrep_numb)

AND (Customer.customer_number = Orders.customer_numeric)

AND (Orders.order_number = Order_Line.order_number)

AND (Order_Line.part_number = Part.part_number)

AND (item_class = 'HW'))

GROUP BY Sales_Rep.slsrep_numb, sr_first, sr_last

The query will retrieve:

slsrep_numb

sr_first
sr_lastName

2
Michael
Johnson

3
Mary
Jones

4
Kelly
Parker

5
Todd
Oldham

6
William
Smith

9
Rebecca
Shaw

12
Miguel
Diaz

13
Billy Ray
Valentine

(8 row(s) affected)

Union, Intersection, and Difference

SQL supports the set of operation union, intersection and difference. The UNION of two relations is a relation containing all the rows that are in either the first relation, the second relation, or both. The intersection (INTERSECT) of two relations is a relation that contains all of the rows that are in both relations. The difference (MINUS or EXCEPT) of two relations is the set of rows that are in the first relation but are not in the second relation. However, most DMBS’s do not support INTERSECT and MINUS—only Oracle does.

These operations have an obvious restriction. It does not make sense to talk about the union of the Customer table and the Orders table, for example. The two relations must have the same structure, which is termed union-compatible. Union-compatible is defined as two relations that have the same number of attributes (columns) and the corresponding attributes have the same domain (of the same type). The column headings of the two relations do not have to be identical but the columns must come from the same domain.
Example 24: Use of Union.

Statement: List the number and first and last name of all customers who are either represented by sales representative 12 or who currently have orders on file, or both.

SELECT Customer_number, c_first, c_last

FROM Customer

WHERE slsrep_numb = '12'

UNION

SELECT Customer.customer_number, c_first, c_last

FROM Customer, Orders

WHERE Customer.customer_number = Orders.customer_numeric

The query will retrieve:

customer_number

c_first
c_last

112

Martin
Lombard

114

Roger
Twain

124

Sally
Adams

221

Louise
Henderson

256

Ann
Samuels

311

Don
 Charles

315

Tom
Daniels

322

Linda
Thompson

405

Al
Williams

412

Sally
Adams

880

Daniel
Tanner

(21 row(s) affected)

All and ANY

Example 27: Use of ALL.
Statement: Find the number, first and last name, current balance, and sales representative number of those customers whose balance is larger than the balances of all customers of sales representative 12.

This query can be satisfied by finding the maximum balance of the customers that are represented by sales representative 12 in a subquery and then finding all customers whose balance is greater than this number. The query can also be satisfied using an ALL statement, which is demonstrated below:

SELECT customer_number, c_first, c_last, balance, slsrep_numb

FROM Customer

WHERE balance > ALL

(SELECT balance

FROM Customer

WHERE slsrep_numb = ‘12’)

The query will retrieve:

Customer_number
c_first

c_last

balance
slsrep_numb

221

Louise
Henderson
 855.00
6

412
Sally
Adams 1817.50
3

622
Dan
Martin
1045.75
3

704
Mateen
Cleaves
1700.12
10

880
Daniel
Tanner
 851.25
2

(5 row(s) affected)

Example 28: Use of ANY.

Statement: Find the number, first and last name, current balance, and sales representative number of those customers whose balance is larger than the balance of any customer of sales representative 12.

This query can be satisfied by finding the minimum balance of the customers that are represented by sales representative 12 in a subquery and then finding all customers whose balance is greater than this number. The query can also be satisfied using an ANY statement which is demonstrated below:

SELECT Customer_number, c_first, c_last, balance, slsrep_numb

FROM Customer

WHERE balance > ANY

(SELECT balance

FROM Customer

WHERE Slsrep_numb = ‘12’)

The query will retrieve:

customer_number
c_first
c_last

balance
slsrep_numb
112
Martin
Lombard
310.00

9

114
Roger
Twain
279.00

5

124
Sally
Adams
818.75

3

778
Betty
Hurst
500.63

13

880
Daniel
Tanner 851.25

2

(20 row(s) affected)

Update

Example 29: Change existing data in the database.

Statement: Change the street of sales representative 12 to “111 Brookhollow”. The command should be written as follows:

UPDATE Sales_Rep

SET c_street = ‘111 Brookhollow’

WHERE slsrep_numb = ‘12’

Example 30: Add new data to the database.

Statement: Add new customer (444, Cindy, Wilson, 317 Harvard, Grant, MI, 0.00, 300, 6) to the database. The command should be written as follows:

INSERT INTO Customer

VALUES

(‘444’,‘CINDY’,‘WILSON’,‘317 Harvard’,‘Grant’,‘MI’,0.00,300,’06’)

Example 31: Delete data from the database.
Statement: Delete customer 124 from the database. The command should be written as follows:

DELETE Customer

WHERE customer_number = ‘124’

When deleting records from a database it is important to remember to use the primary key. For example, say we had said to delete the customer named Sally Adams. If we had written our command this way, two records would have been deleted because there are two customers named Sally Adams. We may only have meant to delete one. Since primary keys are unique, there will be no chance of deleting more than one record when you delete using the primary key.

Example 32: Change data in the database based on a compound condition.

Statement: For each customer with a $500 credit limit whose balance does not exceed his/her credit limit, increase the credit limit to $800. The command should be written as follows:

UPDATE Customer

SET Credit_limit = 800

WHERE Credit_limit = 500

AND balance < Credit_limit
Example 33: Create a new relation with data from an existing relation.

Statement: Create a new relation called “Cust” containing the same columns as Customer but only the rows for which the credit limit is $500 or less.

The first thing that must be done is to describe the new table using the data definition facilities of SQL.

CREATE TABLE Cust

(CustNumber

CHAR(4).

CustFirst

CHAR(10).

CustLast

CHAR(10).

CustC_street

CHAR(20).

CustCity

CHAR(10).

CustState

CHAR(2).

balance

DECIMAL(7,2).

Credit_limit

DECIMAL(4,2)

Slsrep_numb

CHAR(2))

**
CHAR(4) (4 represents the number of characters allocated in the relation

DECIMAL (7,2) (7 = length of the total digits; 2 = number of decimal places

Example: 15000.00

Once we have described the new table, we can use the INSERT command we used earlier. However, we must also use a SELECT command to indicate what is to be inserted into this new table. The command should be written as follows:

INSERT INTO Cust

SELECT *

FROM Customer

WHERE Credit_limit <= 500
28

