Framing the Domains of IT Management Research:

Glimpsing the Future through the Past

Robert W. Zmud, editor

The Origins of Software: Acquiring Systems at the End of the Century

Joey F. George

ISDS Department, 3189 CEBA

E.J. Ourso College of Business Administration

Louisiana State University

Baton Rouge, LA 70803

Version 2.0

June 16, 1999

The Origins of Software: Acquiring Systems at the End of the Century

INTRODUCTION

In 1968, the NATO science committee declared a software crisis. More than 30 years later, the $120+ billion global software industry continues to suffer through this crisis, so-called because software development projects have traditionally gone over budget, over deadline, and the resulting systems still failed to adequately perform the tasks for which they had been designed. By some estimates, as many as half of the systems development projects are cancelled before they are finished (Gibbs, 1994), sunk costs notwithstanding.

Despite sustained efforts to migrate software development from an art form to the discipline of engineering, timely, cost effective, requirements-matching software development remains elusive. Given the state of software development, executives and managers must confront a somewhat risky situation when considering software development and the acquisition of information systems (IS) to support their organizations. Fortunately, managers now have more choices than ever before for acquiring systems or having software developed to meet their business needs.

The purpose of this chapter is to present the issues related to information systems acquisition and software development at the end of the twentieth century, from both a practical and an academic perspective. In many ways, the issues related to systems development are at the heart of the IS academic discipline. The next section provides an overview of these issues, of software acquisition, and of systems development. The following section examines these issues in more detail, focusing on the many choices available to managers for both software acquisition and software development. The chapter closes with some suggestions for future academic research and a summary.

GENERAL OVERVIEW OF SOFTWARE ACQUISITION AND SOFTWARE DEVELOPMENT

In this chapter, we will be using the terms software acquisition and systems acquisition interchangeably, even though there are subtle differences in their meanings. Software consists of instructions written for a computer to perform and is typically only part of a system, although it may be large part. The system itself also includes computer hardware, procedures, telecommunication components, and the people who interact with the other components to fulfill the system's purpose. There is a similar distinction between systems development and software development, but we will also use the terms interchangeably.

Software development is the process through which software to perform some specific task is written, tested, and released for general use. It typically involves the activities of analyzing problems and opportunities, including analyzing existing systems, to determine just what it is the software being developed should do. Once the particulars of what the software should do to address the problem or opportunity are decided, exactly how the software is to accomplish that feat must be determined. Development, then, also typically involves design work, as software must be designed the same way any product must be designed. Thus, systems development is often referred to as systems analysis and design. Once designed, the software must be written for the computer, and then released to those who will use it. In the almost fifty years that software has been produced to support administrative business functions, researchers and practitioners alike have worked to develop better and better ways to develop software. A key issue, then, is what are the available choices for developing information systems and software? During this time, several different methods and techniques have been created to facilitate and support the development process. We will cover many of the better known methods and techniques later in this chapter.

Software acquisition includes software development, as one way to acquire software is to build it yourself. There are, however, many other ways to acquire software. In fact, there are probably more ways for an organization to acquire software now than there have ever been before. A second key issue, then, is what are the available choices for acquiring systems, in addition to in-house development. A more detailed discussion of acquisition opportunities immediately follows this section of the chapter.

A third key issue is whether a model can be developed that helps both academics and practitioners better understand the systems acquisition and development process. Probably the best known model that represents this process is the systems development life cycle. The life cycle model and its variants are based on two primary ideas, that software and systems development is an on-going circular process that proceeds from beginning to end and then back to beginning, and that the process can be divided into phases that are reasonably distinct from each other. We will present a generic life cycle model toward the end of the chapter. Some aspects of the life cycle model have been the focus of detailed models of their own. We will also review one such model, Lucas's (1997) model of what determines system use once the system has been implemented. Finally, we will review a model of acquisition strategy and implementation, based on the work of Iivari and Ervasti (1992).

A FRAME FOR UNDERSTANDING SOFTWARE ACQUISITION AND SOFTWARE DEVELOPMENT

SOFTWARE ACQUISITION

Legend has it that the first administrative information system developed in a commercial organization was developed at J. Lyons & Sons in the UK. In the U.S., the first administrative information system developed in a commercial organization is said to be payroll at General Electric, in 1954. At that time, and for many years afterwards, desiring an information system meant one thing only: in-house development. The software industry itself did not even come into existence until a decade after GE's payroll system was implemented.

Since GE's payroll system was brought on-line, in-house development has become a progressively smaller piece of all systems development work that takes place in and for organizations. Internal corporate IS shops now spend a smaller and smaller proportion of their time and effort on developing systems from scratch. In 1998, corporate IS groups reported spending 33% less time and money on traditional software development and maintenance than they did in 1997 (King & Cole-Gomolski, 1999). Instead, they increased work on packaged applications by a factor of three, and they increased outsourcing by 42%. Where in-house development occurred, it was related to internet technology. This is no doubt due to the limited availability of high quality packaged internet applications, given the relative novelty of moving mainstream applications to the internet. Developers probably also see internet-related development as being more challenging and more fun.

Managers today have many choices when seeking an information system. The choices we will examine in more detail are packaged applications purchased off-the-shelf, customized software and systems, outsourced development and operation, enterprise-wide systems, and in-house development. These choices of course represent points along a continuum of acquisition options. There are many hybrid combinations along the way.

Packaged Applications

Packaged applications are available in a wide variety of functions, sizes, prices, and platform compatibilities. According to the Gartner Group, the market for packaged applications for the client/server platform alone will reach $44.6 billion for 1999 (Meringer, 1997). The market is expected to decline to $37.5 billion by 2002, however, due to the diverting of dollars that would normally go to packaged applications to Y2K efforts, intranet development services, and to component-based applications (discussed later in this chapter).

Packaged applications tend to be complete and somewhat monolithic and resistant to customization. It is rare that a packaged application completely meets the needs of a particular organization, so the temptation to make changes in the application is great. Many vendors ask that the systems not be customized, although many are in practice.

There are many different criteria managers can use to choose the appropriate packaged application. One set is provided, in no particular order of importance, is presented here (Hoffer, et al., 1999): Cost, functionality, vendor support, viability of vendor, flexibility, documentation, response time, ease of installation.

Bell Canada follows a series of sequential steps in its software acquisition process (Mayrand & Coallier, 1996). The process begins with the internal identification of a need, followed by the definition of detailed requirements, issuing of a request for quotation, and a vendor pre-selection. Next, risks are assessed at three levels: development and support capability of the supplier, product, and project. Assessments are followed by vendor selection, negotiation of a contract, and contract management and operation.

Increasingly, software developed for the packaged applications market is being developed with the use of overseas programmers and developers, primarily because of wage rates that are an order of magnitude less than those in the U.S. Overseas programmers also have a reputation for being more productive than U.S. programmers and for producing higher quality software (Yourdon, 1996). The practice of using global software teams, whether internal to a firm or contracted out, is gaining popularity as a way to deal with increased wages and limited availability of IS professionals in the U.S. (Carmel, 1997; Boutellier, et al., 1998). Using less expensive and more productive labor helps keep down the costs of software development.

Globally based software teams are not beneficial for every software development project. Developing software with globally dispersed teams is motivated by five factors, according to Carmel (1997): 1) employing the best programmers in the world, regardless of where they are located; 2) the ability to effectively manage globally dispersed teams through information technology; 3) designing projects so that development work can proceed around the clock, taking advantage of programmers in different time zones; 4) signaling the global presence of a company by locating development activities around the world; and 5) reducing costs through employing programmers in low-wage countries. There are seven primary factors companies consider in moving programming work to low-wage countries, according to Yourdon (1996). The first factor is language familiarity, that is, the development project needs people with expertise in a particular programming language. The second reason is the availability of telecommunications connections, the third is spoken language (typically English), and the fourth factor is large staff. Given the combined costs of information technology infrastructure, travel, and of establishing the relationship with an off-shore firm, it makes sense to work with a firm with a large staff so that the overhead costs can be distributed over more personnel. The final three factors are low cost, the ability to start on the project quickly, and the experience of the off-shore firm with other projects and other global partners.

Customized Software

Customized software as used here does not refer to packaged applications that have been customized to better fit the acquiring organization's needs. Rather, it refers to the development of software that has been commissioned from another firm for the acquiring firm. Typically, when we think of this type of system development, we think of it being provided by large consulting firms, such as Andersen Consulting. But there are hundreds of smaller, regional consulting firms that provide the same services. Rather than have a system designed and developed in-house, an organization can contract with a consulting firm to have the system built. Such an approach works very well where the organization does not have the in-house experience, personnel or expertise to develop the desired system.

Outsourced Operations & Development

Outsourcing is the process of contracting with a separate business entity to provide some to all information system services. These services can include operations, maintenance, telecommunications, specific application areas, and systems development and support. Outsourcing is a large and growing segment of the IS industry, with a global market of $76 billion in 1995 and a projected global market of over $121 billion in the year 2000 (Lacity & Willcocks, 1998; see also their chapter in this book). Outsourcing provides a way for firms to leapfrog their current position in IS and to turn over development and operations to staff with skills not found internally. Outsourcing continues to grow in popularity. According to a 1998 Corbett Group study, 97% of more than 200 executives polled said they increased spending on outsourcing in 1998 over 1997. These executives also expected to increase spending in 1999 over 1998 levels. A total of 60% were satisfied with their outsourcing initiatives (Merrill, 1999).

Enterprise-wide Systems

One of the most remarkable trends in systems development in the 1990s is the growth of enterprise-wide systems, sometimes called enterprise resource planning (ERP) systems. Enterprise-wide systems offer the ability to integrate business processes across functional areas, so that the focus of the system is the process, not the parochial interests of particular departments or divisions. Although these systems are quite complex, costly to implement, and somewhat inflexible in the way they must be implemented and operated, many organizations have followed the ERP path. The 1998 market for enterprise-wide systems is estimated to have been $15 billion, with SAP AG holding one-third of the market. SAP's 1998 revenues of $5 billion represent over 19,000 installations of its key product R/3 is over 90 countries. The other market leaders in this segment include Baan, PeopleSoft, and Oracle.

Although the general trend with regards to ERP systems has been for a firm to deal exclusively with a single vendor for a single enterprise-wide implementation of the vendor's ERP products, some firms have instead followed a best-of-breed strategy. Such a strategy typically entails using different products from different ERP vendors, as well as specialized products from non-ERP vendors, and developing other software in-house to fill in the gaps and ease cross-product integration. The key advantage of a best-of-breed strategy is that it capitalizes on the strengths of individual vendor products. For example, a firm might use SAP's order entry modules, Oracle's financial systems, and PeopleSoft's human resources products. For the increased system functionality offered in such a scheme, however, the firm gives up the single architecture, single interface, and single vendor connection that comes with adopting one ERP vendor's products to support all functions throughout the firm.

In-house Development

Clearly, given all the alternatives methods of systems development available to managers today, it is no longer as cost effective as it once was (if it really ever was) to completely develop an information system in-house from scratch. One reason is that systems are much more complex and interdependent with other systems now than they have ever been before. Another reason is that in almost 50 years of systems development, many basic administrative systems have been developed so often and in so many different ways, we can say without a doubt that we have mastered these systems. Payroll is certainly an example, as is inventory management and order entry.

Edward Yourdon, the well known systems development pioneer, says the development of yet another order entry or inventory control system is boring, although it is work that has to be done. Maintaining legacy systems, systems that companies have been using and maintaining for decades due to their mission critical nature despite their technical obsolescence, falls into the same category. Yourdon says that developing traditional administrative systems (again) and maintaining legacy systems is commodity work, and therefore subject to commodity pricing (Yourdon, 1996, p. 33). If true, then it follows that managers would seek low cost alternatives to in-house development and maintenance.

That maintenance may account for as much as 50 to 80% of the information systems budget (Nosek and Palvia, 1990) provides additional incentives for finding low-cost alternatives. Obviously, more of the information system budget devoted to maintenance leaves less for funding for development. In-house development can lead to a larger maintenance burden than other development methods, such as packaged applications, according to a recent study (Banker, Davis & Slaughter, 1998). The study found that using a code generator as the basis for in-house development was related to an increase in maintenance hours, while using packaged applications was associated with a decrease in maintenance effort.

Choosing Among Acquisition Methods

As we have seen, managers have many choices when seeking to acquire software systems. It is useful to compare the choices side-by-side, even though sometimes the method chosen is determined by political and other organizational factors beyond the manager's control. Table 1 compares the five methods introduced here on five different criteria: cost, risk, extent to which the system matches the firm's needs, ease of installation, and maintenance. As the table shows, there are trade-offs in choosing one acquisition method over others. Determining which criteria are the most crucial will help determine which method is chosen. For example, if meeting the needs of the organization is the most important criterion, the in-house development would be the best method to choose. However, along with the close match between organization needs and system capabilities comes high cost and extensive maintenance needs. There is also some degree of risk involved. On the other hand, if one wants to minimize cost and risk, packaged applications may be the best choice, but the system's match to organizational requirements will never be perfect. There are, of course, other criteria that could be used to help inform the decision of which method to use --- these five are offered as a useful and illustrative set.

Table 1: Comparison of software acquisition choices.

Method
Cost
Risk
Meets Needs
Ease of Installation
Maintenance

Packaged Applications
Low to Moderate
Low to Moderate
To a limited

Extent
Moderate
Moderate

Customized Software
Moderate to High
Moderate
Limited to High extent
Moderate
Moderate to Extensive

Outsourced Operations & Development
Moderate to High
Moderate
Limited
Not applicable since systems are installed by someone else
Not applicable since systems are maintained by someone else

Enterprise-wide Systems
High
Moderate to High
Limited
Difficult & complex
Moderate to Extensive

In-house Development
High
Moderate to High
High extent
Moderate
Extensive

SOFTWARE DEVELOPMENT

In the early years, especially in the time before third-generation languages like COBOL, software development more closely resembled an art form than a production business process. Some will argue that software development is still not a regular, repeatable production process, but we are clearly making progress in that direction. Several processes, as well as tools and techniques have been developed to make software development more predictable. Many of these are described in the next two sections. We will look first at several tools and techniques, including prototyping, joint application design (JAD), computer-assisted software engineering (CASE) tools, and visual development environments. In the following section, we will look at process, and end with a table that compares the processes discussed.

Tools & Techniques

Prototyping is a process borrowed from engineering, in which a scale model of an object or system is developed, both as a test-of-concept and as a device to facilitate communication between designer and client. The software tools used for prototyping can be as simple as paint programs or as complex as CASE tools that allow users to enter data and navigate between screens. The main idea behind prototyping as a technique is the provision of a means by which developers can transform user requirements into objects that users can see, touch, and use. Users can then provide feedback to developers about the prototype, about what works and what doesn’t, and about what else they would like to see. The developer can then take that feedback and use it to modify the prototype, beginning another round of iteration between user and developer. At some point, it must be decided to either keep the prototype as the basis for the production system or to throw it away, while using the knowledge gained in the prototyping process to construct the production system. Prototyping marks a huge gain in productivity over earlier means for specifying requirements, where the best that could be done to represent requirements would have been paper-based specifications and diagrams. By its very nature, prototyping encouraged meaningful and frequent interaction between user and developer.

Joint Application Design (JAD) is a technique developed primarily to address the issues involved in determining user requirements for a system. Traditionally, a developer determines requirements by interviewing users, studying existing systems, perusing input form, reports, and other documents, and observing users while working. User interviews are an important source of information for what the system being developed should do and look like. Interviews, however, are difficult to schedule, as users must also tend to their regular work while assisting the developer. Contradictions between users must also be reconciled, which requires follow-up interviews. The process can be very time consuming and frustrating.

JAD was developed to deal with the difficulties in scheduling interviews and reconciling the information collected from them. In JAD, key users meet with management representatives and systems developers, sometimes for a day, sometimes for an entire week, to determine requirements for a system. The process is very structured, typically led by a trained JAD facilitator whose primary role it is to keep the process moving. JAD essentially allows for many interviews to be conducted at once and for contradictions to be reconciled on the spot (although that is not always possible). A JAD is typically held off-site to minimize the distractions participants will experience if working at the office. (See Wood & Silver, 1995, for more information on JAD.)

Computer-assisted software engineering (CASE) tools were developed as a way to use the power of information technology to support the software development process. CASE tools are bundles of software tools that make analysis, design, documentation, and coding consistent, complete, and easier to accomplish. These tools include tools for creating and maintaining data flow diagrams, entity-relationship diagrams, and process flow diagrams, among others. The diagramming tools are linked in that each object created in one of the tools is entered into the central repository around which the CASE product is built. The repository stores data about all of the different elements that make up the system analysis and design. CASE tools typically also contain facilities that allow for screen and report design, which support prototyping, as well as facilities that generate database structures and program code. Many CASE tools also allow checking for consistency, completeness, and design errors.

Although CASE tools can be expensive, costing several thousand dollars per copy, including training and support, it is generally believed to increase developer productivity. A case study of the implementation of Texas Instruments' Information Engineering Facility (IEF) at a British firm in 1989-90 reports productivity improvements of 85% and system delivery rate increases of around 200% (Finlay & Mitchell, 1994). Developers who use CASE are more likely to follow a structured systems development methodology and take part in JAD, prototyping, and rapid application development than their counterparts who do not use CASE (Lending & Chervany, 1998). However, given the high cost and steep learning curve for using CASE, relatively few firms have adopted CASE tools, and in those that have, relatively few developers use CASE (Iiavari, 1996; Lending & Chervany, 1998). Where CASE tools have been adopted, there was strong management support for the approach, the tools were perceived as having relative advantage over non-CASE methods, and use tended to be mandated, not voluntary (Iiavari, 1996).

Visual development environments is a term that refers to a new generation of programming tools that make programming more productive. These tools can increase programming productivity through their object-oriented focus (discussed later) and the ability they give developers to easily create screens, reports, and graphical user interface controls. Some of the best known visual development environments include Microsoft's VisualBasic, Powersoft's PowerBuilder, and Inprise's Delphi. Visual development environments are popular and their use is growing. For example, International Data Corporation forecasts VisualBasic use to grow 3.5% per year between 1998 and 2003 to over 6.8 million users, and 45% of managers surveyed by Computerworld identified VisualBasic as one of the two languages they consider most important in their future development efforts (Orenstein, 1999).

Comparing Tools & Techniques

All four of the software development tools and techniques introduced above have two things in common: Each increases the productivity of systems developers, and each can be used to save time in the development process. However, each tool and technique has its own unique advantages and disadvantages, as shown in Table 2. Prototyping's primary advantage is speed. Its use can speed up the requirements analysis process and can also speed up the early stages of design and construction. Sometimes, however, the iteration between developers and users can go on indefinitely, potentially prolonging the process. On the other hand, ending the iteration too early can prematurely freeze requirements before they have been fully explored and discovered. JAD helps elicit requirements in a complete and thorough manner, and it saves time in interviewing and data collection time, but it can be expensive in terms of travel and living expenses for participants, and in terms of the salary expenses incurred during the course of the JAD. CASE tools are also expensive, and they have a steep learning curve for developers. Their use, however, engenders structure into the development process, helping make the process more like engineering. (Structure is also a potential disadvantage, in IS shops where there was no structure previously, or where structure limits creativity and speed). Perhaps the main advantage for CASE tool is the central repository, as it reinforces standards for all members of the development team. The contents of the repository can also potentially be used in other projects. Finally, visual development environments offer the advantages of an object-oriented focus (discussed in the next section under "reuse") and relative low cost. Like CASE tools, though, visual development environments do have a not insubstantial learning curve associated with them.

Table 2: Comparison of tools and techniques used in software development.

Tool & Technique
Key Advantages
Key Disadvantages

Prototyping
Speed

Provides tangible model which can become basis for production system
Iteration can continue indefinitely Can be too fast -- requirements can be frozen too early

Joint Application Design (JAD)
Saves time in interviewing

Process is very structured
Expensive

Low tech

CASE
Enforces structure

Repository

Facilitates error checking
Enforces structure

Steep learning curve

Expensive

Visual Development Environments
Object-oriented focus

Relatively inexpensive

Ease of window creation
Learning curve

Process

Along with tools and techniques created to increase development productivity, a great deal of attention has also been paid to process. Even the most innovative tools and techniques used to support software development will be less than effective if they are not adequately embedded in a guiding development process. In this section, we briefly cover some of the major processes designed to improve software development: structured analysis and structured design, rapid application design (RAD), reuse, and participatory design.

Structured analysis and structured design were proposed at the end of the seventies as part of the general push toward moving software development away from an art form toward an engineering discipline. Structured analysis relies on many of the diagrams now standard in CASE tools, such as data flow diagrams and entity relationship diagrams. Structured design focused on tools such as structure charts and concepts such as modularization, coupling, cohesion, and structured programming. But more important than the specific diagrams and tools used in structured analysis and design was the focus on managing the overall process as organized and disciplined (Yourdon, 1989). Despite the intuitive appeal of bringing order to chaos that structured analysis and design promises, adoption by software development groups has generally been slow (Fichman and Kemerer, 1993). For many, it was difficult to accept discipline where it had been missing before, and there was a not insubstantial learning curve associated with learning how to use the many diagrams and other tools that supported structured analysis and design.

Rapid Application Development (RAD) is a development methodology generally credited to James Martin, another well-known systems development leader (Martin, 1991). The idea behind RAD is captured in its name: dramatically shorten the time necessary for systems to be developed. Complex business systems can take years to develop using structured analysis and design processes, but with the ever quickening pace of business in a global economy, firms cannot wait for systems that might no longer be adequate models of the business processes they are supposed to support. According to Martin, following the RAD approach can result in a system in 6 months when following the traditional approach would have taken four times as long.

RAD can result in such vast time savings, and related savings in other resources like money, because of how it is designed to work. First RAD makes heavy use of JAD and of CASE tools to support prototyping. The first JAD meetings in a rapid application development effort may involve prototyping very early in the process, before more a traditional JAD would. The prototype developed also tends to become the basis for the production system, rather than being thrown away, as discussed previously. Second, the prototyping process in a RAD requires more intensive participation from users in a true partnership with developers. Users may also become involved in the design process itself instead of ending their participation after requirements determination is complete, which is more typically the case. Martin (1991) also argues that developers must be trained in the right skills and methodologies, and management must lend its complete support, for RAD to be successful.

RAD is not without its problems. Sometimes, due to the speed with which systems are developed, some of the basics of software development are overlooked. These include interface consistency across the system, programming standards such as documentation and data naming standards, upwards scalability to larger numbers of more diverse users, and planning for system administration chores such as database maintenance and organization, backup and recovery, and so on (Bourne, 1994).

Reuse is the use of previously written software resources in new applications. As so many bits and pieces of applications are relatively generic across applications, it seems intuitive that great savings can be achieved in many areas if those generic bits and pieces do not have to be written anew each time they are needed. Reuse should increase programmer productivity, as being able to use existing software for some functions means they can perform more work in the same amount of time. Reuse should also decrease development time, minimizing schedule overruns. Because existing pieces of software have already been tested, reusing them should also result in higher quality software with lower defect rates which is easier to maintain.

Although reuse can conceivably apply to many different aspects of software, typically it is most commonly applied to two different development technologies, object-orientation and component-based development. Object-orientation is marked jump from the traditional approach to programming that separates the data stored about an entity and the functions the program performs that use those data. In object-orientation, both data and function are combined in one item. For example, an employee object would contain both the data about employees and the instructions necessary for calculating payroll for a variety of job types. The object could be used in any application that dealt with employees, but if changes had to be made in calculating payroll for different type employees, the changes would only have to be made to the object and not to the various applications that used it. By definition, using the employee object in more than one application constitutes reuse. As with CASE tools and structured analysis and design, developers have been slow to adopt object-orientation (Fichman & Kemerer, 1993). That has started to change recently, however, with the growing popularity of object-oriented programming languages like C++ and Java.

Component-based development is similar to object-orientation, in that the focus is on creating general-purpose pieces of software that can be used interchangeably in many different programs. Components can be as small as objects or as large as pieces of software that handle single business functions, such as currency conversion. The idea behind component-based development is the assembly of an application from many different components at many different levels of complexity and size. Many vendors, such as Sterling Software, are working on developing libraries of components that can be retrieved and assembled as needed into desired applications. While the market for component-based development is small, estimated currently at about 200,000 developers, it is expected to grow at a rate of over 65% per year to a total of 1.5 million developers in 2003 (Orenstein, 1999).

There is some evidence that reuse can be effective, especially from the object-orientation perspective. For example, one laboratory study found reuse of object libraries to result in increased productivity, reduced defect density, and reduced rework (Basili, Briand, and Melo, 1996). However, for reuse to work in an organizational setting, many different issues must be addressed. Technical issues include the current lack of a methodology for creating and clearly defining and labeling reusable components for placement in a library, and the current lack of reusable and reliable software resources. Key organizational issues include the lack of commitment to reuse as well as the lack of proper training and rewards needed to promote it, the lack of organizational support for institutionalizing reuse, and the difficulty in measuring the economic gains from reuse. Key legal and contractual issues focus on reusing objects and components originally used in other programs and systems (Kim & Stohr, 1998).

Participatory Design is a very different approach to systems development than anything we have discussed so far. Developed in Northern Europe, participatory design focuses primarily on the system's users and how the system will affect their work lives. In some cases, the entire user community may play an active role in the systems development process, while in others, users may select representatives to represent them. Typically, system developers work for the users. Management and outside consultants provide advice but do not control the process. Participatory design efforts include a repertoire of flexible practices and general guidelines. Running through the repertoire are the twin themes of mutual reciprocal learning, in which users and developers teach each other about work and technology respectively, and design by doing, which resembles prototyping but does not necessarily require sophisticated computing to implement (Carmel, Whitaker, and George, 1993). While well-known in Northern Europe, especially in the Nordic countries, participatory design is still in its infancy in North America.

Comparison of Software Development Processes

As with the tools and techniques used to support systems development, development processes each promote improved software development, and each has its own unique advantages and disadvantages. Many of these pros and cons are discussed above. Table 3 lists the processes and their key advantages and disadvantages side-by-side. Though structured analysis and design were introduced more than 20 years ago, structured methodologies have yet to be introduced into all IS shops. Despite the advantage of supporting a more engineering-like approach to development, IS shops were slow to adopt structured methods due to the learning curves involved in learning the methods and in comprehending how best to use the various diagramming techniques involved. The clear advantage for the Rapid Application Development approach is speed, with heavy user participation also being an advantage. Speed is also the worst enemy of the RAD approach, as many of the standards of systems development, such as scalability and planning for systems administration, are sometimes ignored during the accelerated development process. Savings in development time and increased systems quality are advantages of reuse, but as with the structured methods, adoption in IS shops has been slow. For reuse to achieve its maximum benefits, there also needs to be organizational support for encouraging the creation of reusable components and of making those available to other developers. Finally, participatory design has the advantage of being user centered, with the potential to match the systems being developed to the work they support. This approach is not very well known outside of Northern Europe, however, and it represents a radical departure from past efforts in many organizations.

Table 3: Comparison of software development processes.

Process
Key Advantages
Key Disadvantages

Structured Analysis & Structured Design
Structured method

Introduces methodology
Developers were slow to adopt

Learning curve for method

Learning curve for tools that support method

Rapid Application Development (RAD)
Speed

Heavy user participation
Can be too fast -- requirements can be frozen too early

Can overlook basic standards of systems development

Reuse
Can reduce development time

Improves software quality
Developers slow to adopt

Requires organizational support

Participatory Design
User centered
Not very well known outside Northern Europe

May represent radical departure for some North American firms

MODELS

Unlike many of the other areas of study featured in this book, software acquisition and development has no single universally agreed upon model that represents all of its key variables and relationships. Perhaps the closest thing there is to a universal model of systems development is the systems development life cycle, although there are as many different versions of the life cycle as there are people who write about it. In the next section, we provide two generic life cycle models, the waterfall and the spiral models. Following that, we will present a model that attempts to explain system use once a system has been implemented (Lucas, 1977). Finally, we will present a model of software acquisition strategy and implementation, based on the work of Iivari and Ervasti (1992).

The Systems Development Life Cycle

The systems development life cycle (SDLC) embodies the key ideas in any product life cycle. At some point, a need is recognized; the need is investigated and a solution is designed, built, and released. Eventually, the solution reaches its maximum usefulness and begins to decline. Eventually, it must be replaced and a new solution must be created. Once cycle has ended and a new one begins.

Although no two people in the IS field, either academics or practitioners, seems to agree about the exact form and contents of the systems development life cycle, it does constitute a useful model of the systems development process. Figure 1 shows a generic SDLC model, typically referred to as a waterfall model.

Figure 1: A generic waterfall systems development life cycle

[image: image1.png]Risk Assessment

Planning

go-no-go axis

Customer
Communication

project entry poirt Engineering

Customer

Evaluation Construction and Release

Although different versions of the waterfall SDLC have different numbers of phases, the generic model here has five phases that capture the basic structure of the systems development process. The first phase, Planning, represents all of the activities that result in the identification of a need for a system. For in-house development, that need come from a high-level planning process or through a need identified by users, and the need may be a result of a problem or an opportunity. For a software vendor, the need may be identified through market research or other means.

Once the need is recognized, it is important to gain a clear understanding of the problem or opportunity that sparked the need. The existing system should be analyzed, and any additional requirements should be determined in this phase, Analysis. Useful tools for Analysis include JAD and prototyping. Once the existing situation is understood, along with where the system under development needs to be, a solution can be designed, and this is what occurs in the Design phase. Design will typically involve both high-level logical design and physical design tied to a particular computing platform and operating environment. Once designed, the solution can be constructed, tested, and installed or released, the primary activities of Implementation. Once the solution has been installed in an organization, the Maintenance phase begins. In Maintenance, the work centers on keeping the solution viable, including making any changes required due to the changing business environment and changing regulations and legal conditions. In Maintenance, programmers also work to correct errors in the system and to optimize system performance. At some point, the solution is no longer viable and a new solution must be sought, ending one cycle and beginning another.

Notice that there are two sets of arrows connecting the phases in Figure 1. One set goes downhill, connecting the phases in the order in which they were described above. Yet the systems development process is rarely this cleanly structured. More typical are returns to earlier phases for one or more iterations before progress can continue. That is the purpose of the set of arrows going backwards in the diagram. They allow the work flow to move from one phase to an earlier phase, and in conjunction with the downstream arrows, allow for numerous iterations between phases.

One other point that should be made is that the division of the overall systems development process into distinct phases allows for milestones and concrete deliverables to be specified for the end of each phase. Project management may not allow the next phase to begin until those milestones and deliverables have been met. Distinct phases also allow higher management to review a development project at the end of each phase to determine if the project should continue or be stopped at that point.

The name waterfall refers to the shape of the model, in that the work flow cascades from one phase down to the next until the end is reached. Techniques such as RAD use modified versions of the waterfall SDLC. For example, Martin's RAD life cycle combines analysis and logical design into a single phase called User Design (Martin, 1991). Another way to visualize the SDLC is the spiral model (see Boehm, 1988), shown below in Figure 2. The spiral model is also referred to as an evolutionary model.

Figure 2: A spiral systems development life cycle (from Pressman, 1997)

The spiral model combines the iterative nature of prototyping with the systematic, stepwise approach of the waterfall model. Software is seen as being developed in a series of incremental releases. Early releases might be prototypes, but increasingly, the versions of the software developed are more complete. As more complete versions of the software are released, what was conceptualized as maintenance in the waterfall model is conceptualized here as subsequent passes around the spiral.

According to this model, each pass around the spiral, whether for initial iterative development or for later maintenance, moves through six different tasks (Pressman, 1997). The first is Customer Communication, which involves establishing effective communication between the developer and the customer or user. The second task is Planning, where resources, time-lines, and other project information is defined. The third task is Risk Assessment. Here, technical and management risks are assessed, and if the risks are too high, the project can be ended at the go-no-go axis. The fourth task is Engineering, which represents the building of the software application. Engineering corresponds to Design in the waterfall model. The fifth task is Construction and Release, which contains many of the same activities as were included in the Implementation phase above: construction, testing, installation and providing user support. The sixth task is Customer Evaluation. The evaluation process elicits feedback on the Engineering and Construction and Release tasks.

While the waterfall model is a simple and easy to understand representation of the systems development process, the spiral model presents a more complex and hence more realistic view. The spiral model adds iteration, risk assessment, and a more sophisticated view of maintenance to the basic waterfall model. Many of the basic tasks central to system development are the same in both models, however, as would be expected. The spiral model has also had great success in practice. Boehm (1988) cites adherence to the model as the cause of productivity improvements as high as 50% in development projects at TRW, where Boehm's particular version of the model was developed and used. The spiral model is not suited to all software development efforts, however. It best fits large-scale development projects. Another limitation in practice is its demands for considerable risk assessment expertise in order to succeed, an issue of particular concern to both Boehm and Pressman.

A Model of System Use

Lucas (1997), who has extensively studied information systems implementation, identified six factors that influence the extent to which a system is used. These factors and the relationships they have to each other and to system use, are shown in Figure 3.

Figure 3: Lucas's model of factors affecting system use (Lucas, 1997).

The six factors that are thought to directly affect use are: 1) User's personal stake, 2) User demographics, 3) Performance, 4) Satisfaction, 5) System characteristics, and 6) Organizational support. The first four factors all relate to the user him- or herself. The last two factors are contextual, largely outside the user's control.

The user’s personal stake refers to the importance of the system domain for the user, that is, how relevant the system is to the work the user performs. The higher the user's personal stake in the system, the more likely he or she will use it. As the model shows, the user’s personal stake is itself influenced by the level of support management provides for implementation, and by the urgency to the user of the problem addressed by the system. The higher the level of management support and the more urgent the problem, the higher the user’s personal stake in the system. User demographics are user characteristics, such as age and degree of computer experience. The presence of some demographics will lead to higher levels of use; other will be associated with lower levels of use. Performance reflects what an individual user can do with a system to support his or her work. The relationship between performance and use goes both ways. The higher the levels of performance, the more use. The more use, the greater the performance. The relationship between use and satisfaction is also a two-way relationship. The more satisfied the user is with the system, the more he or she will use it. The more he or she uses it, the more satisfied he or she will be.

The two contextual factors are system characteristics and organization support. System characteristics include such aspects of the system’s design as ease of use, reliability, and relevance to the tasks that the system supports. As with demographics, some system characteristics will be associated with higher levels of use, and others will be related to lower levels of use. Organization support refers to the support infrastructure in the firm, consisting of people and systems that help users with any problems they encounter or questions they have regarding system use. The better the overall level of support, the more likely an individual will be to use a particular system.

A Model of Software Acquisition and Implementation

Iivari and Ervasti (1992) studied 21 information systems developed and implemented for the city government of Oulu, Finland. Their study is one of the few that actually took into account software acquisition strategies and the role they play in the systems development process. Iivari and Ervasti focused on three acquisition strategies: 1) packaged applications, 2) joint development between the city government and an external software developer, and 3) in-house development. Using correlational analysis, they found that acquisition strategy was related to job satisfaction, effectiveness of the adopting organizational unit, the structure and process of the adopting unit, and the originality of the system. They found no relationships between acquisition strategy and user participation, management participation, and implementability. (Implementability consists of three different measures: ease of implementation, implementation support, and extent of IS modifications.) A model based on these findings is presented in Figure 4. The positive and negative signs in the model indicate the direction of the statistically significant correlation found to exist between each set of variables in the model.

Figure 4: A model of the role of software acquisition strategy in implementation

(based on Iivari and Ervasti, 1992).

Even though acquisition strategy is not related to user participation, management participation, or implementability, these constructs were found to be related to other factors. For completeness, these other relationships are shown in the model. Acquisition strategy may not be related to the relative ease of implementation of a system, but user participation is positively related to implementability. Implementability, in turn, is positively related to unit effectiveness and the structure and process of the adopting unit. Acquisition strategy is positively related to both of these factors. Both user and management participation are positively related to the unit effectiveness. Finally, in addition to its direct, positive relationship with the structure and process of the adopting unit, acquisition strategy is indirectly related to structure and process through its positive relationship with originality.

Two findings of note from this research are the lack of relationships between acquisition strategy and user participation, on one hand, and between acquisition strategy and implementability, on the other. It seems intuitive that the role users would play in the development process would depend on the acquisition strategy used. For example, there would be little user participation in the process of acquiring packaged applications, beyond their role in the analysis process. At the other end of the spectrum, for in-house development, users would have the opportunity for involvement in many aspects of the design and development process, in addition to their role in analysis. However, it is generally the case that users have a restricted role in systems development, limited typically to participation in early requirements determination and to assessment of completed systems. Such activities would be largely the same, regardless of acquisition strategy employed, thus helping to explain the lack of a relationship between acquisition strategy and user participation.

It also seems intuitive that there should be a relationship between acquisition strategy and implementability. Again, taking packaged applications as an example, vendors would be expected to provide little implementation support past the somewhat mechanical installation process. The ability to modify the software would also be limited. For in-house implementations, the level of implementation support would be relatively high, given that the designers and developers themselves would be on-site and able to provide assistance. Although modifications during implementation would be discouraged, they could be more easily handled for a system developed in-house than would be the case for packaged applications. The lack of a relationship here is not as easy to explain as the lack of a relationship between acquisition strategy and user participation.

The research by Iivari and Ervasti is noteworthy because they do directly take into account acquisition strategy. Given the changing nature of the systems development process in organizations today, acquisition strategy has become an important factor to consider.

FUTURE RESEARCH

As this chapter has shown, there are many choices for managers engaging in systems development and software acquisition. New choices seem to become available on a regular basis, as practitioners and academics seek to improve software development methods and make them faster and more effective. Given the continuous introduction of new approaches and techniques, it is difficult to keep up and to plan and conduct meaningful research accordingly. Yet there is much future research that can be done to help us understand software development and acquisition, especially since the software crisis identified by NATO in 1968 is still with us. Six different areas for future research are briefly described below: model development, the acquisition process, the trend to enterprise-wide systems, the effects of rapid development, reuse, and the effects of the growing pervasiveness of the internet and corporate intranets.

Three different models were presented in this chapter, the systems development life cycle, a model of system use, and a model of software acquisition strategy and implementation. Each model captures a piece of the larger software acquisition process, but no model adequately addresses all of its aspects. A comprehensive model, especially one that takes software acquisition strategy into account, would be useful to both practitioners and academics.

Most research in systems development has focused on in-house development and, more recently, on how software is developed by software vendors. As more and more development work involves acquiring software, assembling applications, and outsourcing development, acquisition strategy becomes an important concept to study. Which strategies are more effective and why? What contextual variables are important to determining the best acquisition strategy?

One acquisition strategy that continues to grow in popularity is the reliance on large-scale enterprise-wide systems, such as SAP's R/3. To date, there have been few academic studies of enterprise-wide systems, the decision to acquire them, their implementation, or their success or failure. Given how popular this acquisition option has become, rigorous study of enterprise-wide systems is definitely needed.

As we have seen, for software vendors and in-house development, speed to completion is more and more important. Rapid development processes have been in place for several years now in many organizations, but we know little about how effective they are other than anecdotal evidence that reports faster development. But can faster development be consistent with quality development? How effective and efficient are applications developed at an accelerated rate? Does rapid development lead to what Yourdon (1996) calls "good-enough" software, which can serve its purpose reasonably and then be replaced with something else that is also good enough rather than ideal?

Savings in time to completion is also a reason for increased reuse of software components and objects. Although reuse has been a popular topic for decades, there is still much to be done to make it an effective, reliable approach. More research is called for on making reuse viable, both from the perspective of making it easier to prepare objects and components to be used by others, and from the perspective of making it easier to find desired objects and components and use them in systems under development.

Finally, software acquisition and development are both going to be affected by increased use of the internet and of corporate intranets. Intranets will influence the look and functionality of systems developed for internal use. The internet will facilitate adopting parts of internal systems for shared use with external constituencies, like customers and suppliers. But the internet also has the potential to affect the software acquisition and development process itself. Already, the internet is a prime vehicle for acquiring software specifications and demos. Being able to find existing software by easily searching the net may expedite the early stages of acquisition and development. It will also be possible for application assemblers to use the internet to find, download, and pay for existing objects and components they can use. This area is ripe for more research.

SUMMARY

The software crisis identified over 30 years ago continues, in large part because advances in computing hardware outstrip advances in software development. It is difficult for information systems personnel to keep up with the demand for effective, quality software to support business administrative processes. Increasingly, IS shops are focusing more on software acquisition and application assembly than on outright software development in order to develop and implement applications more quickly. Given the continuing software crisis, we asked three key questions at the beginning of the chapter:

What are the available choices for developing information systems and software? We answered this question in two ways, by looking at tools and techniques, and by reviewing different processes. Under tools and techniques, we discussed prototyping, joint application design (JAD), computer-assisted software engineering (CASE) tools, and visual development environments. Under process, we reviewed structured analysis and structured design, rapid application design (RAD), reuse, and participatory design. The most promising approaches in coming years appear to be prototyping, visual development environments, RAD, and reuse.

What are the available choices for acquiring systems? The primary options available to managers now that we discussed were: 1) packaged applications, 2) customized software, 3) outsourcing, 4) enterprise-wide systems, and 5) in-house development. Each option has its own advantages and disadvantages, but given forecasts regarding each option, it appears that outsourcing and enterprise-wide systems will become the predominant modes for software acquisition in the next few years.

Can a model can be developed that helps both academics and practitioners better understand the systems acquisition and development process? We presented three models, one of the systems development life cycle, one of the factors influencing system use after implementation, and one that related acquisition strategy and aspects of the implementation process. None of these models captures the entire systems development and acquisition process. Creating such a model was one of the six areas of future research we suggested.

Clearly there is much research left to be done in the area of systems development and software acquisition. This is a dynamic field. Although members of the development community are sometimes slow to embrace new approaches, other members are quick to invent new and better ways of doing things. When new approaches are finally adopted, they become part of established standards that are in turn difficult to dislodge. Yet new ways of doing things are continually being developed and made available to those responsible for acquiring and developing software. If a follow up for this chapter were written 10 years from now, many of the methodologies and tools discussed here would not be included, and new, as-yet-undeveloped approaches will take their place. In the meantime, we can do our best to understand the choices that are available now and which best suit our immediate and long-term goals.

REFERENCES

Banker, R.D., Davis, G.B., and Slaughter, S.A. 1998. "Software Development Practices, Software Complexity, and Software Maintenance Performance: A Field Study." Management Science 44(4), 433-450.

Basili, V.R., Briand, L.C., and Melo, W.L. 1996. "How Reuse Influences Productivity in Object-Oriented Systems." Communications of the ACM 39(10), 104-116.

Boehm, B.W. 1988. "A Spiral Model of Software Development and Enhancement." Computer 21(5), 61-72.

Boutellier, R., Gassmann, O., Macho, H. and Roux, M. 1998. "Management of Dispersed Product Teams: The Role of Information Technologies." R&D Management, 28(1), 13-25.

Bourne, K.C. 1994. "Putting Rigor Back in RAD." Database Programming and Design 7(8), 25-30.

Carmel, E. 1997. "The Explosion of Global Software Teams." Computerworld, 31(49), 12/8/97, C6+.

Carmel, E., Whitaker, R., and George, J.F. 1993. "PD and Joint Application Design: A Transatlantic Comparison." Communications of the ACM 36(6), 40-48.

Finlay, P.N. & Mitchell, A.C. 1994. "Perceptions of the Benefits from the Introduction of CASE: An Empirical Study." MIS Quarterly, 18(4), 353-370.

Gibbs, W.W. 1994. "Software's Chronic Crisis" Scientific American, 86-95.

Hoffer, J.A., George, J.F., and Valacich, J.S. 1999. Modern Systems Analysis and Design, 2/e. Reading, MA: Addison Wesley.

Iiavari, J. 1996. "Why are CASE Tools Not Used?" Communications of the ACM 39(10), 94-103.

Iivari, J. & Ervasti, I. 1992. "The Impact of Alternative IS Acquisition Options Upon the IS Implementation and Success." Proceedings of the 1992 ACM SIGCPR Conference on Computer Personnel Research, 338-349.

Kim, Y. and Stohr, E.A. 1998. "Software Reuse: Survey and Research Directions." Journal of MIS 14(4), 113-147.

King, J. and Cole-Gomolski, B. 1999. "IT Doing Less Development, More Installation, Outsourcing." Computerworld, 1/25/99, 4+.

Lending, D. and Chervany, N. 1998. "The Use of CASE Tools." Computer Personnel Research 98, Boston, MA, 49-58.

Lucas, H.C. Information Technology for Management. 1997. New York: McGraw-Hill.

Martin, J. Rapid Application Development. 1991. New York: Macmillan Publishing Company.

Mayrand, J. and Coallier, F. 1996. "System Acquisition Based on Software Product Assessment." Proceedings of ICSE-18, 210-219.

Merigner, J., Deutsch, W., and Manoussoff, L. 1997. "Sizing Technology Services." The Forrester Report, 14(8), www.forrester.com/
Merrill, Kevin. 1999. "Poll: IT Outsourcing Shows No Signs of Slowing." TechWeb, 3/31/99, www.techweb.com.

Nosek, J.T. & Palvia, P. 1990. "Software Maintenance Management: Changes in the Past Decade." Journal of Software Maintenance 2(3), 157-174.

Orenstein, D. 1999. "Java, VisualBasic Seen as Languages of the Future." Computerworld, 3/39/99.

Pressman, R.S. 1997. "Software Engineering." In M. Dorfman and R.H.Thayer (eds) Software Engineering. Los Alamitos, CA: IEEE Computer Society Press, 57-74.

SAP. 1998. 1998 Annual Report.

Wood, J. & Silver, D. 1995. Joint Application Design, 2/e New York: John Wiley & Sons.

Yourdon, E. 1989. Managing the Structured Techniques, 4/e. Englewood Cliffs, N.J.: Prentice Hall.

Yourdon, E. 1996. Rise and Resurrection of the American Programmer. Upper Saddle River, N.J.: Prentice Hall.

Management

Support

System

Characteristics

Performance

Satisfaction

Problem

Urgency

User

Demographics

 User’s

Personal

 Stake

Organizational Support

Use

Implementation

Maintenance

Design

Analysis

Planning

Unit

Effectiveness

User

Participation

Management

Participation

System

Originality

Job

Satisfaction

Structure &

Process of

Adopting Unit

Acquisition

Strategy

System

Implementability

+

+

+

+

+

+

+/-

+/-

-

+

+

+

+

+

+

+

+

-

1
2

