Basic Principles of File Organization

FILE ORGANIZATION: PRIVATE
A designed and defined collection of record types, linkages, fields, entry points, and integrity rules required to support one or more business systems.
· Sequential

· Linked List

· Simple Index

· Segmented Index

· Direct Access (Hashed)

SEQUENTIAL FILE: Records are stored one after the other in key order.

LOCATE A RECORD: read data records from the beginning until the desired record is found.

ADD/DELETE RECORDS: rewrite all records after the modification to adjust record placement.

PROCESSING: typically done by reading a master file and a transaction tape, both sorted in key order. Master file records are updatated and written to a new master file. Entire file is rewritten on each batch run.

ADVANTAGES:

· Good for processing a large number of records at a time. Can process a number of records at a time from each block.

· Simple.

· Saves space.

PROBLEMS: hard to locate or insert single records.

COMBINATION -- INDEXED SEQUENTIAL. File is stored and processed sequentially in blocks. An index is maintained to locate the appropriate block.

LINKED LIST: Add physical pointers to each record that point to the location of the next record in the chain.

LOCATE A RECORD: begin with a starting address generated by some other scheme (hashing or indexing). Follow the chain of pointers from record to record until the desired record is located.

· Chain: last record has special end of list marker. Do not have to keep track of where you started.

· Ring: last record points to start. Can get back to parent from any intermediate point.

ADD/DELETE RECORDS: write new data where desired. Locate record in chain coming before the modification and change pointers appropriately.

PROCESSING: all processing is done via pointer order.

ADVANTAGES:

· allows getting to related child records without processing intermediate unrelated records or translating data values.

· Only 1 access per record.

· Relatively compact.

PROBLEMS: must navigate through chains to locate a given record. Reorganizing access paths is hard.

SIMPLE INDEX: Extract a file containing KEY value and DATA LOCATION POINTER for each record, sorted in key order. Place data where desired.

LOCATE RECORDS: read the index into memory and locate desired key value. Use pointer location to retrieve data.

ADD/DELETE RECORDS: place data where desired, rewrite entire index.

PROCESSING: on line processing done by revising index each time file is modified. Batch processing done by updating file with index off and then reindexing.

ADVANTAGES:

· access can be done without reading any data records. Very fast if the index fits in memory.

· Relatively simple. Data can be stored sequentially for batch processing at night.

PROBLEMS: rewriting the index for each update is very slow, particularly if the index is large.

MULTI LEVEL INDEX (POINTER ORDERED INDEX): Index is split into multiple level segments connected to each other by pointers. Root segments contain data block addresses.

LOCATE RECORDS: The index is searched from level to level (parsed) until the root segment containing the data address is located.

ADD/DELETE RECORDS: read and change only the index segments and data blocks needed to get to the data.

PROCESSING: single records are added and updated through the index. Batch processing can be done through a second set of pointers from data block to data block. The index only needs changing when records migrate from block to block.

ADVANTAGES:

· Index can be modified in segments. Only part of the index is used at a time.

· Batch processing can be done without turning off the index.

DISADVANTAGES: multiple accesses needed for each retrieval. Relatively complex.

DIRECT ACCESS (HASHED): Bucket address (similar to a block) is calculated directly from the key value using an algorithm.

LOCATING RECORDS: calculate address from key. If a record is in an overvlow bucket, then follow a supplemental pointer chain to it.

ADD/DELETE RECORDS: locate bucket by hashing. Insert or delete record in bucket (usually in key order).

PROCESSING: must be done via hashing algorithm or supplemental index.

ADVANTAGES: very fast random access and modification. Only 1 disk access per record.

DISADVANTAGE: batch processing difficult. Requires extra space and periodic reorganization.

