Algorithm for obtaining first bracket

Code in Excel for $\mathrm{x}_{\text {low }}$

IF ($\mathrm{f}_{\text {low }}>0$ AND $\mathrm{f}_{\text {high }}>0$, Then
$\operatorname{IF}\left(\mathrm{f}_{\text {low }}>\mathrm{f}_{\text {high }}\right.$, Then
$\mathrm{x}_{\text {low }}=\mathrm{x}_{\text {high }} \quad$ else $\operatorname{IF}\left(\operatorname{AND}\left(\mathrm{f}_{\text {low }}<0, \mathrm{f}_{\text {high }}<0\right)\right.$,
$\mathrm{x}_{\text {high }}=\mathrm{x}_{\text {high }}+\Delta \mathrm{x}$
$\mathrm{x}_{\text {low }}=\operatorname{IF}\left(\mathrm{AND}\left(\mathrm{f}_{\text {low }}>0, \mathrm{f}_{\text {high }}>0\right)\right.$, then $\operatorname{IF}\left(\mathrm{f}_{\text {low }}>\mathrm{f}_{\text {hish }}, \mathrm{x}_{\text {high, }} \mathrm{x}_{\text {low }}-\Delta \mathrm{x}\right)$

Else IF ($\mathrm{f}_{\text {low }}<\mathrm{f}_{\text {high }}$
Then
$\mathrm{X}_{\text {high }}=\mathrm{X}_{\text {low }}$
$\mathrm{X}_{\text {low }}=\mathrm{X}_{\text {low }}-\Delta \mathrm{x}$
ENDIF
ELSEIF ($\mathrm{f}_{\text {low }}<0$ AND $\mathrm{f}_{\text {high }}<0$,
Then
$\operatorname{IF}\left(\mathrm{f}_{\text {low }}>\mathrm{f}_{\text {high }}\right.$,
Then
$\mathrm{x}_{\text {low }}=\mathrm{x}_{\text {low }}-\Delta \mathrm{x}$
$\mathrm{X}_{\text {high }}=\mathrm{X}_{\text {low }}$
Else IF ($\mathrm{f}_{\text {low }}<\mathrm{f}_{\text {high }}$
Then
$\mathrm{X}_{\text {low }}=\mathrm{X}_{\text {high }}$
$x_{\text {high }}=x_{\text {high }}+\Delta x$
ENDIF
ELSEIF ($\mathrm{f}_{\text {low }} * \mathrm{f}_{\text {high }}<0$,
Then
$\operatorname{IF}\left(\mathrm{f}_{\text {low }} *\right.$ fmiddle <0, Then
$\mathrm{X}_{\text {high }}=\mathrm{X}_{\text {middle }}$
else $\operatorname{IF}\left(\mathrm{f}_{\text {high }} * \mathrm{f}_{\text {middle }}>0\right.$
Then
$\mathrm{X}_{\text {low }}=\mathrm{X}_{\text {middle }}$
ENDIF
ENDIF

Code in Excel for $\mathrm{x}_{\text {high }}$

IF ($\mathrm{f}_{\text {low }}>0$ AND $\mathrm{f}_{\text {high }}>0$,
Then
$\operatorname{IF}\left(\mathrm{f}_{\text {low }}>\mathrm{f}_{\text {high }}\right.$, Then

$\mathrm{x}_{\text {high }}=$	$\operatorname{IF}\left(\operatorname{AND}\left(\mathrm{f}_{\text {low }}>0, \mathrm{f}_{\text {high }}>0\right)\right.$,
	then $\operatorname{IF}\left(\mathrm{f}_{\text {low }}>\mathrm{f}_{\text {high }}, \mathrm{x}_{\text {high }}+\Delta \mathrm{x}, \mathrm{x}_{\text {low }}\right)$,

$\mathrm{x}_{\text {low }}=\mathrm{x}_{\text {high }}$
$\mathrm{x}_{\text {high }}=\mathrm{x}_{\text {high }}+\Delta \mathrm{x}$
Else IF $\left(\mathrm{f}_{\text {low }}<\mathrm{f}_{\text {high }}\right.$
Then
$\mathrm{x}_{\text {high }}=\mathrm{x}_{\text {low }}$
$\mathrm{x}_{\text {low }}=\mathrm{x}_{\text {low }}-\Delta \mathrm{x}$
ENDIF
ELSEIF ($\mathrm{f}_{\text {low }}<0$ AND $\mathrm{f}_{\text {high }}<0$, Then
$\operatorname{IF}\left(\mathrm{f}_{\text {low }}>\mathrm{f}_{\text {high }}\right.$, Then
$\mathrm{x}_{\text {low }}=\mathrm{x}_{\text {low }}-\Delta \mathrm{x}$
$\mathrm{x}_{\text {high }}=\mathrm{x}_{\text {low }}$
Else IF ($\mathrm{f}_{\text {low }}<\mathrm{f}_{\text {high }}$
Then
$\mathrm{x}_{\text {low }}=\mathrm{x}_{\text {high }}$
$x_{\text {high }}=x_{\text {high }}+\Delta x$
ENDIF
ELSEIF ($\mathrm{f}_{\text {low }} * \mathrm{f}_{\text {high }}<0$,
Then
$\operatorname{IF}\left(\mathrm{f}_{\text {low }} *\right.$ fmiddle <0,
Then
$\mathrm{x}_{\text {high }}=\mathrm{x}_{\text {middre }}$
else $\operatorname{IF}\left(\mathrm{f}_{\text {high }} * \mathrm{f}_{\text {middle }}>0\right.$,
Then
$\mathrm{X}_{\text {low }}=\mathrm{X}_{\text {middle }}$
ENDIF
ENDIF

