QUIZ \#1

PROBLEM 1

Newton's law of cooling says that the temperature of a body (T)changes at a rate that is proportional to the difference between its temperature and the surrounding medium (usually the ambient) (T_{a}), that is:
$\frac{d T}{d t}=-k\left(T-T_{a}\right)$
where k is the heat transfer coefficient.
a) Obtain the formula for temperature vs. time
b) Integrate numerically and compare, for the temperature of a cup of coffee that is initially at $68^{\circ} \mathrm{C}$. (use $\mathrm{k}=0.017 / \mathrm{min}$. You choose the value of T_{a}). What is the largest error incurred by the approximate formula?

ANSWER:

$$
\begin{aligned}
\frac{d T}{d t} & =-k\left(T-T_{a}\right) \Rightarrow \frac{d T}{\left(T-T_{a}\right)}=-k d t \Rightarrow d \ln \left(T-T_{a}\right)=-k d t \\
& \Rightarrow \ln \left(T-T_{a}\right)=K-k t
\end{aligned}
$$

But $T=T_{0}$ at $t=0$. Then $\ln \left(T_{0}-T_{a}\right)=K$. Therefore:

$$
\begin{aligned}
& \ln \left(T-T_{a}\right)=\ln \left(T_{0}-T_{a}\right)-k t \Rightarrow \ln \frac{\left(T-T_{a}\right)}{\left(T_{0}-T_{a}\right)}=-k t \Rightarrow \frac{\left(T-T_{a}\right)}{\left(T_{0}-T_{a}\right)}=e^{-k t} \\
& \quad \Rightarrow \quad\left(T-T_{a}\right)=\left(T_{0}-T_{a}\right) e^{-k t} \quad \Rightarrow T=T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}
\end{aligned}
$$

Therefore: $\quad T=T_{a}+\left(T_{0}-T_{a}\right) e^{-k t}$

Numerical integration : $\frac{d T}{d t} \cong \frac{\left(T_{i+1}-T_{i}\right)}{\Delta t}$. Therefore $\frac{\left(T_{i+1}-T_{i}\right)}{\Delta t} \cong-k\left(T_{i}-T_{a}\right) \Rightarrow T_{i+1} \cong T_{i}-k\left(T_{i}-T_{a}\right) \Delta t \quad$ See attached Excel file for the implementation

PROBLEM 2

Determine the number of terms needed to approximate $\cos x$ to 8 significant figures. For $\mathrm{x}=0.3 \pi$. Use
$\cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\ldots$.

ANSWER:	
$\frac{x^{2}}{2}=\frac{(0.3 \pi)^{2}}{2}=0.4444132198$	$\cos x=1-\frac{x^{2}}{2}=0.555867802$
$\frac{x^{4}}{4!}=\frac{(0.3 \pi)^{4}}{24}=0.032875568$	$\cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}=0.588743370$
$\frac{x^{6}}{6!}=\frac{(0.3 \pi)^{6}}{720}=0.000973407$	$\cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}=0.587769964$

Looks like the second significant figure will not change anymore
$\frac{x^{8}}{8!}=\frac{(0.3 \pi)^{8}}{40320}=0.00001544 \quad \cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}=0.587785404$
Looks like the fourth significant figure will not change anymore
$\frac{x^{10}}{10!}=\frac{(0.3 \pi)^{10}}{3628800}=0.000000152387 \cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\frac{x^{10}}{10!}=0.587785251$
Looks like the sixth significant figure will not change anymore
$\frac{x^{12}}{12!}=\frac{(0.3 \pi)^{12}}{479001600}=0.00000000102545$

$$
\cos x=1-\frac{x^{2}}{2}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\frac{x^{8}}{8!}-\frac{x^{10}}{10!}=0.587785251
$$

Looks like the eighth significant figure will not change anymore
THE ANSWER IS 7 terms (this includes the zero order term : 1)

