PROBLEM 1 (50 points)
A) (35 points) Derive the second order derivative evaluator. $\mathrm{O}\left(\mathrm{h}^{2}\right)$

ANSWER:

$$
\begin{aligned}
& f\left(x_{i+1}\right)=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right) h+\frac{f^{\prime \prime}\left(x_{i}\right)}{2} h^{2}+\cdots \\
& f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h}-\frac{f^{\prime \prime}\left(x_{i}\right)}{2} h+O\left(h^{2}\right) \\
& \text { BUT } f^{\prime \prime}\left(x_{i}\right)=\frac{f\left(x_{i+2}\right)-2 f\left(x_{i+1}\right)+f\left(x_{i}\right)}{h^{2}}+O(h)
\end{aligned}
$$

Therefore, substituting

$$
\begin{aligned}
& f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h}-\frac{f\left(x_{i+2}\right)-2 f\left(x_{i+1}\right)+f\left(x_{i}\right)}{2 h^{2}} h+O\left(h^{2}\right) \\
& f^{\prime}\left(x_{i}\right)=\frac{-f\left(x_{i+2}\right)+4 f\left(x_{i+1}\right)-3 f\left(x_{i}\right)}{2 h}+O\left(h^{2}\right)
\end{aligned}
$$

B) (15 points) Use it to evaluate the derivative of $f(x)=3^{*} \cos (3 x-2)$ at $\mathrm{x}=0.5$. Compare with the result using a first order formula $\mathrm{O}(\mathrm{h})$

ANSWER:

The derivative is: $f^{\prime}(x)=-3 * \sin (3 x-2)$. Then: $f^{\prime}(0.5)=-9 * \sin (-0.5)=4.31483$ We pick $\mathrm{h}=0.05$. Then

$$
\begin{aligned}
f^{\prime}\left(x_{i}\right) & =\frac{-f\left(x_{i+2}\right)+4 f\left(x_{i+1}\right)-3 f\left(x_{i}\right)}{2 h}=\frac{-f(0.6)+4 f(0.55)-3 f(0.5)}{2 * 0.5}= \\
& =-3 \cos (3 * 0.6-2)+4 * 3 \cos (3 * 0.55-2)-3 * 3 \cos (3 * 0.5-2)= \\
& =3[-\cos (-0.2)+4 * \cos (-0.35)-3 * \cos (-0.5)] \\
& =3[0.98007+4 * 0.93937-3 * 0.87758]=0.43403
\end{aligned}
$$

Remarkably close!!!!!! For the O(h) case we have

$$
\begin{aligned}
f^{\prime}\left(x_{i}\right) & =\frac{f\left(x_{i+1}\right)-f\left(x_{i}\right)}{h}=\frac{f(0.55)-f(0.5)}{0.05}=\frac{3 \cos (3 * 0.55-2)-3 \cos \left(3^{*} 0.5-2\right)}{0.05}= \\
& =60[\cos (-0.35)-\cos (-0.5)]=60[0.93937-0.87758]=3.70741
\end{aligned}
$$

Not that good!!!

PROBLEM 2 (50 points)
Consider $f(x, y)=x^{2} * \cos (y)-2 x$
A) (20 points) Use Univariate search to find the maximum (Start from 1, 1)

ANSWER:

We start with $f(1,1)=\cos (1)-2=-1.4597$. We fix $(y=1)$ and move in the x direction: $z(x)=x^{2} \cos (1)-2 x$. We could do a Golden section search on x, but the answer also comes from $z^{\prime}(x)=2 x \cos (1)-2=0$, or $x=1 / \cos (1)=1.85082$. We therefore fix x to this value and proceed, getting $w(y)=1.85082^{2} * \cos (y)-2 * 1.85082$. The maximum comes then from: $w^{\prime}(y)=-1.85082^{2} * \sin (y)=0$, which gives $\mathrm{y}=0$ (we ignore other points). This gives
$f(1.85082,0)=1.85082^{2} \cos (0)-2 * 1.85082=-0.2761$, which is progress.
We stick $y=0$ in the equation and obtain $z(x)=x^{2} \cos (0)-2 x=x^{2}-2 x$, which by the same procedure as before renders $z^{\prime}(x)=2 x-2=0$, or $\mathrm{x}=1$.

NOTE: We started from the right number for x , moved away from it and came back!!!

If we stick $\mathrm{x}=1$ in the equation again, we get $w(y)=\cos (y)-2$ and $w^{\prime}(y)=-\sin (y)=0$, which says we do not move and we are done!. This gives $f(1,0)=\cos (0)-2=-1$.

Is this a maximum? It can only be determined looking at the Hessian

$$
\begin{aligned}
& H=\left[\begin{array}{cc}
2 * \cos (y) & -2 x^{*} \sin (y) \\
-2 x^{*} \sin (y) & -x^{2} * \cos (y)
\end{array}\right]=\left[\begin{array}{cc}
2 * \cos (0) & -2 * \sin (0) \\
-2 * \sin (0) & -\cos (0)
\end{array}\right] \\
& =\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

The determinant is $|H|=-2$. Then we converged to a saddle point!!!! The univariate method has not worked!!!
B) (30 points) Use Steepest ascent to find the maximum. (Start from 1, 1)

ANSWER:

For this we need to calculate the gradient. Thus,

$$
\begin{aligned}
& \nabla f(x, y)=\left[\begin{array}{c}
2 x^{*} \cos (y)-2 \\
-x^{2} * \sin (y)
\end{array}\right] . \text { This is the direction of steepest ascend. Thus, } \\
& \nabla f(1,1)=\left[\begin{array}{c}
2 * \cos (1)-2 \\
-* \sin (1)
\end{array}\right]=\left[\begin{array}{c}
-0.9194 \\
-0.8415
\end{array}\right] \\
& \text { Thus we set }\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
1-0.9194 * h \\
1-0.8415 * h
\end{array}\right] \text {, which gives: } \\
& f(x, y)=z(h)=\left(1-0.9194^{*} h\right)^{2} * \cos \left(1-0.8415^{*} h\right)-2(1-0.9194 * h)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
z^{\prime}(h)= & 2(-0.9194)(1-0.9194 * h) * \cos (1-0.8415 * h)- \\
& -(-0.8415)(1-0.9194 * h)^{2} * \sin (1-0.8415 * h)-2(-0.9194)
\end{aligned}
$$

which is not easily solvable. The direction to go is for h positive (set by the method)., so we use golden search.

In the quiz I would not expect more than a few iterations of this if not just setting it up.

