PROBLEM 1 (10 points)

State the difference between chopping, rounding and truncation error

ANSWER:

-"One method of approximation [of a number] would be to merely omit, or "chop-off", \ldots higher terms" - Chapra and Canale- $5^{\text {th }}$ Ed., Page 73.
-Rounding is when the last digit of the approximation of a number is chosen to be the lowest or the highest approximation of the remainder, depending on whether this remainder is lower or higher than $0.510^{-(\mathrm{n}+1)}$, where n is the last significant digit used.
-"Truncation errors are those that result from using an approximation in place of an exact mathematical procedure" - Chapra and Canale- $5^{\text {th }}$ Ed., Page 73

PROBLEM 2 (15 points)

a) Determine the number of terms needed to approximate e^{-x} to 5 significant figures. For $\mathrm{x}=1.3$. Use $e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\ldots$.

ANSWER:

Term	Value of Term	Series	$\frac{\text { Significant }}{\text { figures }}$
$1-x$	-0.3	-0.3	0
$x^{2} / 2!$	0.845	0.545	0
$-x^{3} / 3!$	-0.36616666666	0.17883333333	0
$x^{4} / 4!$	0.11904167	0.2978375	1
$-x^{5} / 5!$	-0.030941083	0.266896417	1
$x^{6} / 6$!	0.006703901	0.273600318	2
$-x^{7} / 7!$	-0.00124501	0.272355308	3
$x^{8} / 8$!	0.000202314	0.272557622	4
$-x^{9} / 9!$	-0.0000292232	0.272528399	4
$x^{10} / 10$!	0.00000379901	0.272532198	5
$-x^{11} / 11$!	-0.00000379901	0.272531749	5

TEN (10) Terms are needed

Repeat using
$e^{-x}=\frac{1}{e^{x}}=\frac{1}{1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\ldots}$.

ANSWER:

Term	Value of Term	Series	1/Series	$\frac{\text { Significant }}{\text { fiqures }}$
$1+x$	2.3	2.3	0.43478261	0
$x^{2} / 2$!	0.845	3.145	0.31796502	0
$x^{3} / 3$!	0.366166666	3.51116666666	0.28480562	1
$x^{4} / 4!$	0.11904167	3.630170833	0.27546913	2
$x^{5} / 5!$	0.030941083	3.661111917	0.27314106	2
$x^{6} / 6!$	0.006703901	3.667815818	0.2726483	3
$x^{7} / 7!$	0.00124501	3.669060828	0.27254931	4
$x^{8} / 8$!	0.000202314	3.669263142	0.27253428	5
$x^{9} / 9!$	0.0000292232	3.669292366	0.27253211	5
$x^{10} / 10$!	0.00000379901	3.669296165	0.27253183	6
$x^{11} / 11$!	0.00000379901	3.669296614	0.27253180	6

NINE (9) Terms are needed

b) Look how the series changes after you add a term in both cases. Can you explain the difference?

ANSWER:

The first series has alternate signs and therefore it oscillates around the final true value. The second in turn approximates the value from above and therefore converges faster.

PROBLEM 3 (25 points)

Consider
$\frac{d c}{d t}=-k c$, where k is a constant.
a) Obtain the formula for c vs. time.

ANSWER:

$\frac{d c}{c}=-k d t \Rightarrow d \ln c=-k d t \Rightarrow \ln c=-k t+K^{\prime} \Rightarrow \quad c=K e^{-k t}$
But $\mathrm{c}=\mathrm{c}_{0}$ at $\mathrm{t}=0$, Then $c=c_{o} e^{-k t}$
b) Integrate numerically and compare. Use $\mathrm{k}=1$.

ANSWER:

See file attached

PROBLEM 4 (10 points)

Write down the algorithm for bracketing. If you do not remember, reason it out!!! Draw the graphs and establish the logic!!

ANSWER:

1) Take two points $x 1$ and $x 2$
2) Calculate f1 and f2
3) If f1>0, f2>0, then go to 4 , otherwise go to 6
4) IF fl $>\mathrm{f} 2$, then a) $\mathrm{x} 1=\mathrm{x} 2$ and b) $\mathrm{x} 2=\mathrm{x} 2+\Delta \mathrm{x}$, and c) go to 2 ; Otherwise go to 5 ,
5) a) $x 2=x 1$ and b) $x 1=x 1-\Delta x$, and c) go to 2
6) If f1 <0, f2 <0, then go to 7 , otherwise go to 9
7) IF fl>f2, then a) $x 2=x 1$ and b) $x 1=x 1-\Delta x$, and c) go to 2 ; Otherwise go to 8 ,
8) a) $x 1=x 2$ and b) $x 2=x 2+\Delta x$, and c) go to 2
9) Calculate $x 3=(x 1+x 2) / 2$
10) Calculate f3
11) If ($x 3-x 1$) <epsilon, stop. Solution found!!
12) If $\mathrm{f} 3 * \mathrm{f} 1<0$, then a) $\mathrm{x} 2=\mathrm{x} 3$, b) go to 9 ; Otherwise a$) \mathrm{x} 1=\mathrm{x} 3$, b) go to 9

PROBLEM 5 (20 points)

Consider

$$
f(x)=2 \sin (\sqrt{x})-x
$$

Use a fixed point method to obtain the smallest positive root. This will make you think carefully about your starting point. Write down your considerations...

ANSWER:

$$
x=g(x)=2 \sin (\sqrt{x})
$$

Do not start at $\mathrm{x}=0$. It is actually one root, but we look for a positive one. So pick a positive number.

PROBLEM 6 (20 points)

Consider

$$
f(x)=2 \sin (\sqrt{x})-x
$$

a) Use Newton Raphson to obtain the root. Start at $\mathrm{x}_{0}=1$.

ANSWER:

See attached file.
b) What happens if you start at $\mathrm{x}_{0}=0.1$.

ANSWER:

See attached file.
c) Is starting at at $\mathrm{x}_{0}=0$ a good idea? Why?

ANSWER:

First, the derivative at zero does not exist. But, one could actually "trick"the method by being clever. Indded

$$
\begin{aligned}
& f(x) / f^{\prime}(x)=[2 \sin (\sqrt{x})-x] /[\cos (\sqrt{x}) / \sqrt{x}-1]= \\
& \quad=\sqrt{x}[2 \sin (\sqrt{x})-x] /[\cos (\sqrt{x})-\sqrt{x}]
\end{aligned}
$$

which renders

$$
f(0) / f^{\prime}(0)=\sqrt{0}[2 \sin (\sqrt{0})-0] /[\cos (\sqrt{0})-\sqrt{0}]=0 *[0-0] /[1-0]=0
$$

But even if this problem is "solved", the NR will not move away from $x=0$ (because it is already a root).

