TEST WEEK 1

PROBLEM 1 (10 points)

State the difference between chopping, rounding and truncation error

ANSWER:

-"One method of approximation [of a number] would be to merely omit, or "chop-off", ... higher terms" - Chapra and Canale- 5th Ed., Page 73.

-Rounding is when the last digit of the approximation of a number is chosen to be the lowest or the highest approximation of the remainder, depending on whether this remainder is lower or higher than $0.5 \ 10^{-(n+1)}$, where n is the last significant digit used.

-"Truncation errors are those that result from using an approximation in place of an exact mathematical procedure" - Chapra and Canale- 5th Ed., Page 73

PROBLEM 2 (15 points)

a) Determine the number of terms needed to approximate e^{-x} to 5 significant figures. For

x=1.3. Use
$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \dots$$

ANSWER:			
<u>Term</u>	<u>Value of Term</u>	<u>Series</u>	<u>Significant</u>
			<u>figures</u>
1-x	-0.3	-0.3	0
$x^{2}/2!$	0.845	0.545	0
$-x^{3}/3!$	-0.36616666666	0.17883333333	0
$x^{4}/4!$	0.11904167	0.2978375	1
$-x^{5}/5!$	-0.030941083	0.266896417	1
$x^{6}/6!$	0.006703901	0.273600318	2
$-x^{7}/7!$	-0.00124501	0.272355308	3
$x^{8}/8!$	0.000202314	0.272557622	4
$-x^{9}/9!$	-0.0000292232	0.272528399	4
$x^{10}/10!$	0.00000379901	0.272532198	5
$-x^{11}/11!$	-0.00000379901	0.272531749	5

TEN (10) Terms are needed

Repeat using

$$e^{-x} = \frac{1}{e^{x}} = \frac{1}{1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots}.$$

ANSWER:				
Term	<u>Value of Term</u>	Series	<u>1/Series</u>	<u>Significant</u>
				<u>figures</u>
1+x	2.3	2.3	0.43478261	0
$x^{2}/2!$	0.845	3.145	0.31796502	0
$x^{3}/3!$	0.366166666	3.511166666666	0.28480562	1
x ⁴ / 4!	0.11904167	3.630170833	0.27546913	2
x ⁵ / 5!	0.030941083	3.661111917	0.27314106	2
$x^{6}/6!$	0.006703901	3.667815818	0.2726483	3
$x^{7} / 7!$	0.00124501	3.669060828	0.27254931	4
$x^{8}/8!$	0.000202314	3.669263142	0.27253428	5
x ⁹ / 9!	0.0000292232	3.669292366	0.27253211	5
$x^{10}/10!$	0.00000379901	3.669296165	0.27253183	6
$x^{11}/11!$	0.00000379901	3.669296614	0.27253180	6

NINE (9) Terms are needed

b) Look how the series changes after you add a term in both cases. Can you explain the difference?

ANSWER:

The first series has alternate signs and therefore it oscillates around the final true value. The second in turn approximates the value from above and therefore converges faster.

PROBLEM 3 (25 points) Consider

Consider $\frac{dc}{dt} = -kc$, where k is a constant. a) Obtain the formula for *c* vs. time.

ANSWER:

$$\frac{dc}{c} = -kdt \implies d \ln c = -kdt \implies \ln c = -kt + K' \implies c = Ke^{-kt}$$

But c=c_o at t=0, Then $c = c_o e^{-kt}$

b) Integrate numerically and compare. Use k=1.

ANSWER: See file attached

PROBLEM 4 (10 points)

Write down the algorithm for bracketing. If you do not remember, reason it out!!! Draw the graphs and establish the logic!!

```
ANSWER:
```

- 1) Take two points x1 and x2
- 2) Calculate f1 and f2
- 3) If $f_1>0$, $f_2>0$, then go to 4, otherwise go to 6
- 4) IF f1>f2, then a) x1=x2 and b) x2=x2+ Δx , and c) go to 2; Otherwise go to 5,
- 5) a) x2=x1 and b) x1=x1- Δ x, and c) go to 2
- 6) If f1 < 0, f2 < 0, then go to 7, otherwise go to 9
- 7) IF f1>f2, then a) x2=x1 and b) x1=x1- Δx , and c) go to 2; Otherwise go to 8,
- 8) a) x1=x2 and b) x2=x2+ Δ x, and c) go to 2
- 9) Calculate $x_{3}=(x_{1}+x_{2})/2$
- 10) Calculate f3
- 11) If (x3-x1)<epsilon, stop. Solution found!!
- 12) If f3*f1<0, then a) x2=x3, b) go to 9; Otherwise a)x1=x3, b) go to 9

PROBLEM 5 (20 points)

Consider

$$f(x) = 2\sin(\sqrt{x}) - x$$

Use a fixed point method to obtain the smallest positive root. This will make you think carefully about your starting point. Write down your considerations...

ANSWER:

$$x = g(x) = 2\sin(\sqrt{x})$$

Do not start at x=0. It is actually one root, but we look for a positive one. So pick a positive number.

PROBLEM 6 (20 points)

Consider

$$f(x) = 2\sin(\sqrt{x}) - x$$

a) Use Newton Raphson to obtain the root. Start at $x_0=1$.

ANSWER:

See attached file.

b) What happens if you start at $x_0=0.1$.

ANSWER:

See attached file.

c) Is starting at at $x_0=0$ a good idea? Why?

ANSWER:

First, the derivative at zero does not exist. But, one could actually "trick" the method by being clever. Indded

$$f(x)/f'(x) = \left[2\sin(\sqrt{x}) - x\right]/\left[\cos(\sqrt{x})/\sqrt{x} - 1\right] = \sqrt{x}\left[2\sin(\sqrt{x}) - x\right]/\left[\cos(\sqrt{x}) - \sqrt{x}\right]$$

which renders

$$f(0)/f'(0) = \sqrt{0} \left[2\sin(\sqrt{0}) - 0 \right] / \left[\cos(\sqrt{0}) - \sqrt{0} \right] = 0 * \left[0 - 0 \right] / \left[1 - 0 \right] = 0$$

But even if this problem is "solved", the NR will not move away from x=0 (because it is already a root).