Thermo Review 1/19

* Lectures on Prof. website *→

Sander, Chemical Engineering Thermo
First 4 chapters. [In library]

"Processes that take place in real life":

- Heating ? associated w/ heat
- Cooling ? exchangers
- Pressurizing = pumps, Compressors & opposite
- De-pressurizing = Valves, Expanders

- Mixing ? VLE, Dist column
- Separate ? Absorbance

- Reactions ? Exn thermodynamics

Never heat or pressurize/depressurize at the same time b/c it is cheaper to perform processes separately.

Small ΔT w/ heating and cooling
Small ΔP w/ pressurizing and depressurizing

\[\Theta = U + M \left(\frac{v^2}{2} + g \right) \]
from gravity

\[\Theta = \text{Energy (not specific energy)} \]

\[U = \text{internal energy "soul of mass"} \]

changes w/ Temp. and Pressure

Little molecules (bonds)

\[\frac{v^2}{2} = \text{kinetic energy per unit mass} \]
Energy Conservation

1st law

\[\frac{d}{dt} \left[U + M \left(\frac{V^2}{2} + V \right) \right] = \sum M_i \left(U + \frac{V^2}{2} + V \right) + Q \]

\[+ \dot{W} - P \frac{dV}{dt} + \sum M_i (PV) \]

\textbf{Work} = PV = \text{associated with mass entering and leaving system}

\textbf{Work (Shaft)} \quad f = PA

\[W = -P \frac{dV}{dt} \]

\cdot impellers

\cdot electricity

\cdot stirrers = make energy b/c move molecules

\textbf{Closed Systems}

\cdot No mass enters or leaves system

\begin{align*}
\text{Isolated System - No heat or mass exchanged} \\
\text{Adiabatic} \Rightarrow Q = 0
\end{align*}

\[\Delta U = Q + W \]

\[\Rightarrow \left(\dot{W} - \int P dV \right) \] \text{from Equation (Energy conservation)}

\textbf{Constant Pressure}

\[W = \dot{W} + P \Delta V \]

\textbf{Constant Volume} \quad \text{b/c} \Delta V = 0

\[W = \dot{W} \]

Batch reactors usually closed systems

\cdot Most plants are continuous w/ open systems
Steady State

- No fluctuations of pressure or temp w/ respect to time
 - In 1st law anything w/ dt is equal to zero

\[\Delta U = Q - P \Delta V \]

\[\Delta H = Q + W_g \]
 - used when pressure is constant

Entropy

- property that grows w/ every system does not change in equilibrium

\[\frac{dS}{dt} = \frac{Q}{T} + S_{gen} \]

\[\Delta S = \int \frac{Q}{T} \ dt + S_{gen} \]

2nd law of Thermo

\[S_{gen} \geq 0 \]

- Possible TEST question + LIFE lesson-ish
 - Use 2nd law to evaluate situations and decide whether impossible or possible
 - If \(S_{gen} \) is negative IMPOSSIBLE!
 - Cannot calculate on own - must use formula to solve

\[\Delta S \Rightarrow \text{comes from table!} \]

"No entropy Thermometer" measured through tiny steps w/ calorimeter
Reversible
does not generate any entropy
\[S_{\text{gen}} = 0 \]

\[\text{piston} \]

1 marble All marbles
@ time @ once

* Example explained in book

Find Temperature

\[\Delta S \text{ valve} \]
\[\Rightarrow \Delta S \text{ compressor} \]

\[\text{constant Temp horizontal lines} \]
\[\text{constant entropy vertical lines} \]

Pressurizing system (compressor)
NOT isobaric
Volume changes.
Entropy is isotropic (in reversible systems)
\[\Delta s = \int_{s_0}^{s_1} \frac{dQ}{T} \quad S_{\text{gen}} = 0 \quad \Rightarrow \quad \text{constant entropy} \]

Expander \Rightarrow compressor in reverse
\[\Delta H = 0 \]
flow same before \& after

Valve \Rightarrow Pressure gets smaller velocity increases
Adiabatic / No \(W_b \) / only PV work \(\Delta H = \Delta E_{\text{kinetic}} \)
Carnot Cycle (TG diagram)

1. Expansion
2. Compression
3. Heating
4. Cooling

Most efficient cycle (closed cycle)

\[\eta = \frac{Q}{W} \] efficiency

1. Heating
 - Adding heat
2. Compression
 - Adding work
3. Cooling
 - Heat leaves
4. Expansion
 - Work leaves

Engineering Rule:
"If you are heating, NO PRESSURE Δ"

Intersting:
Plane Wings Vibrate to absorb surges
Avoid clouds because of density changes of density
Surge vibration small pressure changes

Mixture do not cool down or heat up at a constant temp use pure fluid

Cannot do this (Surge - Vibrate) too much. Damage compressor + expander

Can have vertical line outside 2 phase region.
Pick Refrigerant

- Pressure above atm
- Temp above ambient
- Want Δh to be as small as possible
 \Rightarrow Total amount of work needed (PT work)

Valve instead of Expander

Air conditioning system at your house

Only simple systems on test.

Rankine cycle \Rightarrow produces work
Refrigerant cycle in reverse