Pricing of Consumer Products

Pricing of Existing Products as Currently Done

Marketing constructs a Sales/Price relationship

New Products

In this case Pricing is more difficult because:

- a) Consumer profiles need to be chosen
- b) The actual product may need to be changed in composition or structure to improve profits
- c) The choice of markets also changes profit distribution
- d) The existing manufacturing process and the associated Supply Chain may need adaptation, or be built from scratch.
- e) Advertising means and intensity play a bigger role and need to be decided.

All are so intertwined that decisions on each item affect directly all the rest.

AN INTEGRATED MODEL IS A MUST

We resort to the following formula from Micro-economics

$p_1d_1 = p_2 d_2$

where

- p₁= new product price
- d₁= new product demand
- $p_2 =$ competition's product price
- d₂= competition product demand

When no competition exists, then we use $p_1 d_1 = constant$

We use the above formula for conceptual reasons. In reality we use a slightly more complex one.

Explanation

$$p_1d_1 = p_2 d_2$$

When the prices are equal $p_1 = p_2$

 $d_1 = d_2$

Market is split equally

This is true only when

- a) Products are of equal quality (consumer is indifferent when prices are equal)
- b) Consumer has equal knowledge about existence of both products

We therefore introduce two parameters α and β

$\boldsymbol{\beta} \mathbf{p}_1 \mathbf{d}_1 = \mathbf{p}_2 \mathbf{d}_2 \boldsymbol{a}$

- is a positive coefficient that is a measure of how much more appealing to the consumer the new product will be, given equal prices.
- **a**: is a positive coefficient that is a measure of how much the consumer knows about the existence of the new product.

Not the formula we use in class

Assume that β =0.5, that is, the consumer will like the new product twice as much as the competition.

Also assume that *a*=1, that is, the consumer knows both products perfectly well.

Then, when the prices are equal $p_1 = p_2$ $d_1 = 2d_2$ Market share is 2/3

We calculate β as a function of the ratio of "happiness" both products give the customer

In fact β can change throughout time. Too.

We propose $\beta = H_2/H_1$ That is, the ratio of "preferences".

We use
$$H_i = \Sigma w_i y_i$$

w_i= weights y_i= Normalized scores (0-1) of consumer attributes (color, taste, smoothness, size, functionality, etc)

Connect y_i to physical properties or product structure

Assume that $\beta=1$, that is, the consumer prefers the new product as much as the competition.

Also assume that a=0.5, that is, half of consumers know about the product

Then, when the prices are equal $p_1 = p_2$ $d_1 = 0.5 d_2$ Market share is 1/3

Integrated Pricing Model

Find (SIMULTANEOUSLY) product composition/Structure Market and consumer profile Price Corresponding Manufacturing Corresponding Supply Chain

SUCH THAT Net Present value is maximum

Subject to:

Maximum Capital Investment Logistic and resource constraints

Consider an over-the-counter skin moisturizing lotion

for ichthyosis patients _

Ichthyosis Vulgaris

This requires the usual ingredients of a moisturizing lotion (occlusives, Emollients, Humectants) active ingredients to promote desquamation (exfoliants) Additional ingredients (emulsifying agents, preservatives, thickeners, PH adjustors and antioxidants)

Perfect product : Lotion that give MAXIMUM HAPPINESSS

Pre-Shower Lotion Formulation

Ingredient	Percent (%)	Function
Water	60	Solvent
Ammonium Lactate	10	Desquamation
Retinyl Palmitate	8	Antioxidant
Jojoba Oil	8	Emollient
PEG-4	8	Emollient/Liposome Formation
Cetyl Alcohol	2.9	Emulsifier
Octyldodecanol	2.9	Thickener
Phenoxyethanol	0.196	Preservative
Maleic Acid	0.004	pH Adjuster

Shower Gel Formulation					
Ingredient	Percent %	Function			
Water	52	Solvent			
Polysorbate-20	20	Surfactant			
Cocoamidopropyl Betaine	5	Surfactant			
Lactic Acid	4	Exfollient/NMF			
Urea	4	NMF			
Sodium PCA	3	NMF			
Urocanic Acid	3	NMF			
Citric Acid	3	NMF			
Oleic Acid	3	Emollient/Thickener			
Cetyl Alcohol	2.796	Emulsifier			
Phenolxyethanol	0.2	Preservative			
Maleic Acid	0.004	pH Adjustor			

After-Shower Lotion Formulation					
Ingredient	Percent %	Function			
Water	60	Solvent			
Dimethicone	10	Humectant			
Lanolin	8	Humectant			
PEG-4	6.996	Emollient/Liposome Formation			
Cetyl Alcohol	5	Emulsifier			
Ceramide	3	SC Lipid/Humectant			
Isostearic Acid	2.8	Thickener			
Palm Oil	2	Emollient			
γ-Linoleic Acid	1	SC Lipid			
Cholesterol	1	SC Lipid			
Phenoxyethanol	0.2	Preservative			
Maleic Acid	0.004	pH Adjustor			

How is preference constructed?

Consumer Satisfaction vs rating Consumer rating vs Physical property

Unfortunately, a loosing money proposition at average market prices

	Cost (million \$)
Raw Material Cost/yr	51.62
Total Product Cost/yr	58
Annual Product Revenue/yr	16.2
NPW	-125.54

Substitute ingredients are needed

Happiness model illustrated for Pre-Shower Lotion:

Relative proportions of Water, Ammonium Lactate, Jojoba Oil where changed to give a relative happiness value of β =0.78, and with it, the product sold as the three lotions has competitive prices.

Next step: Conduct a full optimization using the happiness model and the pricing formulas to also allow demand vary