Pricing of Consumer Products

Pricing of Existing Products as Currently Done

Marketing constructs a Sales/Price relationship

New Products

In this case Pricing is more difficult because:
a) Consumer profiles need to be chosen
b) The actual product may need to be changed in composition or structure to improve profits
c) The choice of markets also changes profit distribution
d) The existing manufacturing process and the associated Supply Chain may need adaptation, or be built from scratch.
e) Advertising means and intensity play a bigger role and need to be decided.

All are so intertwined that decisions on each item affect directly all the rest.

Pricing Model

We resort to the following formula from Micro-economics

$$
p_{1} d_{1}=p_{2} d_{2}
$$

where
$\mathrm{P}_{1}=$ new product price
$d_{1}=$ new product demand
$\mathrm{P}_{2}=$ competition's product price
$\mathrm{Cl}_{2}=$ competition product demand
When no competition exists, then we use $p_{1} d_{1}=$ constant

We use the above formula for conceptual reasons. In reality we use a slightly more complex one.

Pricing Model

Explanation

$$
p_{1} d_{1}=p_{2} d_{2}
$$

When the prices are equal $\mathbf{p}_{\mathbf{1}}=\boldsymbol{p}_{\mathbf{2}}$

$$
d_{1}=d_{2}
$$

Market is split equally

This is true only when
a) Products are of equal quality (consumer is indifferent when prices ære equal)
b) Consumer has equal knowledge about existence of both products

Pricing Model

We therefore introduce two parameters α and β

$$
\beta p_{1} \mathbf{d}_{1}=p_{2} \mathbf{d}_{2} a
$$

B. is a positive coefficient that is a measure of how much more appealing to the consumer the new product will be, given equal prices.

Cr: is a positive coefficient that is a measure of how much the consumer knows about the existence of the new product.

Not the formula we use in class

Pricing Model

Assume that $\beta=0.5$, that is, the consumer will like the new product twice as much as the competition.

Also assume that $a=1$, that is, the consumer knows both products perfectly well.

Then, when the prices are equal $p_{1}=p_{2}$

$$
d_{1}=2 d_{2}
$$

Market share is $2 / 3$

We calculate β as a function of the ratio of "happiness" both products give the customer

Pricing Model

In fact β can change throughout time. Too.

We propose $\beta=\mathrm{H}_{2} / \mathrm{H}_{1} \quad$ That is, the ratio of "preferences".
We use $\boldsymbol{H}_{\mathbf{i}}=\boldsymbol{\Sigma} \mathbf{w}_{\mathbf{i}} \mathbf{y}_{\mathbf{i}}$
$\mathrm{w}_{\mathrm{i}}=$ weights
$\mathrm{y}_{\mathrm{i}}=$ Normalized scores ($\mathbf{0}-\mathbf{1}$) of consumer attributes
(color, taste, smoothness, size, functionality, etc)
E Connect y_{i} to physical properties or product structure

Pricing Model

Assume that $\beta=1$, that is, the consumer prefers the new product as much as the competition.

Also assume that $a=0.5$, that is, half of consumers know about the product

Then, when the prices are equal $\mathbf{p}_{1}=\mathbf{p}_{\mathbf{2}}$

$$
d_{1}=0.5 d_{2}
$$

Pricing Model

In fact a is a function of time

Which can be altered

 by advertisement

Integrated Pricing Model

product composition/Structure Market and consumer profile Price
Corresponding Manufacturing Corresponding Supply Chain

SUCH THAT
Net Present value is maximum
Subject to:
Maximum Capital Investment
Logistic and resource constraints

Example

Consider an over-the-counter skin moisturizing lotion for ichthyosis patients

Ichthyosis Vulgaris
This requires the usual ingredients of a moisturizing lotion (occlusives, Emollients, Humectants) active ingredients to promote desquamation (exfolliants)
Additional ingredients
(emulsifying agents, preservatives, thickeners, PH adjustors and antioxidants)

Example

Perfect product: Lotion that give MAXIMUM HAPPINESSS

Pre-Shower Lotion Formulation		
Ingredient	Percent (\%)	Function
Water	60	Solvent
Ammonium Lactate	10	Desquamation
Retinyl Palmitate	8	Antioxidant
Jojoba Oil	8	Emollient
PEG-4	8	Emollient/Liposome Formation
Cetyl Alcohol	2.9	Emulsifier
Octyldodecanol	2.9	Thickener
Phenoxyethanol	0.196	Preservative
Maleic Acid	0.004	pH Adjuster

Example

Shower Gel Formulation

Ingredient	Percent \%	Function
Water	52	Solvent
Polysorbate-20	20	Surfactant
Cocoamidopropyl Betaine	5	Surfactant
Lactic Acid	4	Exfollient/NMF
Urea	4	NMF
Sodium PCA	3	NMF
Urocanic Acid	3	NMF
Citric Acid	3	NMF
Oleic Acid	3	Emollient/Thickener
Cetyl Alcohol	2.796	Emulsifier
Phenolxyethanol	0.2	Preservative
Maleic Acid	0.004	pH Adjustor

Example

| After-Shower Lotion Formulation | | |
| :---: | :---: | :---: | :---: |
| Ingredient | Percent \% | Function |
| Water | 60 | Solvent |
| Dimethicone | 10 | Humectant |
| Lanolin | 8 | Humectant |
| PEG-4 | 6.996 | Emollient/ Liposome Formation |
| Cetyl Alcohol | 5 | Emulsifier |
| Ceramide | 3 | SC Lipid/Humectant |
| Isostearic Acid | 2.8 | Thickener |
| Palm Oil | 2 | Emollient |
| $\boldsymbol{\gamma}$-Linoleic Acid | 1 | SC Lipid |
| Cholesterol | 1 | SC Lipid |
| Phenoxyethanol | 0.2 | Preservative |
| Maleic Acid | 0.004 | pH Adjustor |

Example

How is preference constructed?

Consumer Satisfaction vs rating

Consumer rating vs Physical property

Example

Unfortunately, aloosing money proposition at average market prices

	Cost (million \$)
Raw Material Cost/yr	51.62
Total Product Cost/yr	58
Annual Product Revenue/yr	16.2
$\mathbf{N P W}$	$\mathbf{- 1 2 5 . 5 4}$

Substitute ingredlients are needed

Example

Happiness model illustrated for Pre-Shower Lotion:

Relative proportions of Water, Ammonium Lactate, Jojoba Oil where changed to give a relative happiness walue of $\beta=0.78$, and with it, the product sold as the three lotions has competitive prices.

Substitutes NPW vs Package Price
(FIXED DEMAND)

Price per Package (\$)

Next step: Conduct a full optimization using the happiness model and the pricing formulas to also allow demand vary

