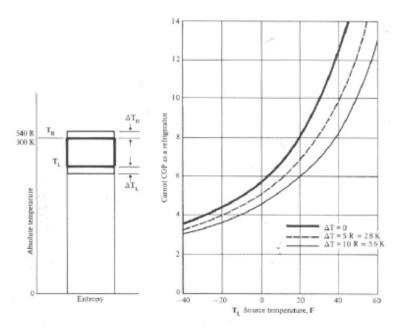

REFRIGERATION CYCLES

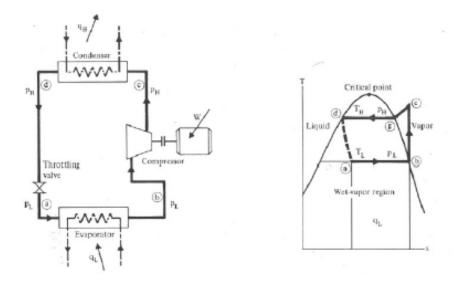
Carnot Cycle

We start discussing the well-known Carnot cycle in its refrigeration mode.


Figure 1: Carnot Cycle

In this cycle we define the coefficient of performance as follows:

$$COP = \frac{q_L}{w} = \frac{T_L}{T_H - T_L} \tag{1}$$


Which comes from the fact that $w = q_H - q_L$ (first law) and $q_L = T_L \Delta s$, $q_H = T_H \Delta s$ (second law). Note that w is also given by the area of the rectangle.

Temperature differences make the COP vary. For example, the next figure shows how COP varies with T_L (T_H is ambient in this case) and the temperature difference in exchangers.

Figure 2: *COP changes with heat exchanger temperature approximation and* $T_L(T_H=ambient)$

We now turn our attention to a real one stage refrigeration cycle, depicted in the next figure.

Figure 3: *Typical one-stage dry refrigeration Cycle*

We notice that:

- To be able to achieve the best match possible with the rectangular shape it is necessary to operate inside the two phase region.
- Compression is in this example performed outside the two phase region. Creating a "horn", which is not thermodynamically advisable, is mechanically better. For this reason, this cycle is called "dry" cycle. A "wet" cycle is shown in the next figure.

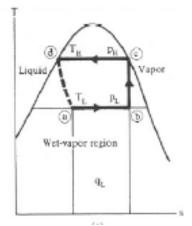
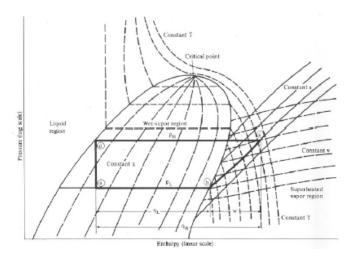



Figure 4: Wet refrigeration Cycle

- The expander has been substituted by a throttling valve. If an expander had been used the line from **d** to **a** would be a vertical line. This is also done for mechanical reasons.

The refrigeration cycles can also be represented in a P-H diagram.

Figure 5: *P-H diagram representation of a dry refrigeration cycle*

Refrigerant fluid choice: We now turn our attention to the fluids. Usually, one tends to pick p_L as low as possible, but not below atmospheric pressure. Thus, the refrigerant chosen needs to have a normal boiling point compatible with the lowest temperature of the cycle (usually 10° C lower than the system one wants to cool). The higher pressure needs to be compatible with the cooling media used for q_H . If this is cooling water, then the T_H needs to be around 10° C higher than the available cooling water temperature. The next table shows the existing refrigerants. It is followed by the boiling temperature and rang of selected refrigerants.

Table 2-1: Refrigerants
ASHRAE STANDARD DESIGNATION OF REFRIGERANTS

Refrigerant number	Chemical name	Chemical formula
218 290*	Octafluoropropane Propane	CF ₃ CF ₂ CF ₃ CH ₃ CH ₂ CH ₃
Cyclic organic compounds		a 15 mps a Tills
C316	Dichlorohexafluorocyclobutane	C ₄ Cl ₂ F ₆
C317	Monochloroheptafluorocyclobutane	C ₄ ClF ₇
C318	Octafluorocyclobutane	C ₄ F ₈
Azeotropes		
500	Refrigerants 12/152a 73.8/26.2wt %;	CCl ₂ F ₂ /CH ₃ CHF ₂
501	Refrigerants 22/12 75/25wt %	CHCIF2/CCl2F2
502	Refrigerants 22/115 48.8/51.2wt %	CHCIF2/CCIF2CF3
Miscellaneous organic compounds Hydrocarbons		
50	Methane	CH ₄
170	Ethane	CH ₃ CH ₃
290	Propane	CH ₃ CH ₂ CH ₃
600	Butane	CH ₃ CH ₂ CH ₂ CH ₃
601	Isobutane	CH(CH ₃) ₃
1150 [†]	Ethylene	CH ₂ =CH ₂
1270†	Propylene	CH ₃ CH=CH ₂
Oxygen compounds		and the second state
610	Ethyl ether	C2H5OC2H5
611	Methyl formate	HCOOCH ₃
Nitrogen compounds		
630	Methyl amine	CH ₃ NH ₂
631	Ethyl amine	C ₂ H ₅ NH ₂
Inorganic compounds (Cryogenic)		
702	Hydrogen (normal and para)	H ₂
704	Helium	He
720	Neon	Ne
728	Nitrogen	N
729	Air	0.21O ₂ , 0.78N ₂ , 0.01A
732	Oxygen	O ₂
740	Argon	A

Methane, ethane, and propane appear in the halocarbon section in their proper numerical order, but these compounds are not halocarbons.

‡ Carrier Corporation Document 2-D-127, p. 1.

[†] Ethylene and propylene appear in the hydrocarbon section to indicate that these compounds are hydrocarbons, but are properly identified in the section unsaturated organic compounds.

Table 2-1: Refrigerants Continued)
ASHRAE STANDARD DESIGNATION OF REFRIGERANTS

Refrigerant number	Chemical name	Chemical formula
218 290*	Octafluoropropane Propane	CF ₃ CF ₂ CF ₃ CH ₃ CH ₂ CH ₃
Cyclic organic compounds		a 11 may be a Tiffer
C316	Dichlorohexafluorocyclobutane	C ₄ Cl ₂ F ₆
C317	Monochloroheptafluorocyclobutane	C4ClF7
C318	Octafluorocyclobutane	C ₄ F ₈
Azeotropes		
500	Refrigerants 12/152a 73.8/26.2wt %;	CCl ₂ F ₂ /CH ₃ CHF ₂
501	Refrigerants 22/12 75/25wt %	CHCIF2/CCl2F2
502	Refrigerants 22/115 48.8/51.2wt %	CHCIF2/CCIF2CF3
Miscellaneous organic compounds Hydrocarbons		
50	Methane	CH ₄
170	Ethane	CH ₃ CH ₃
290	Propane	CH ₃ CH ₂ CH ₃
600	Butane	CH3CH2CH2CH3
601	Isobutane	CH(CH ₃) ₃
1150†	Ethylene	CH ₂ =CH ₂
1270†	Propylene	CH ₃ CH=CH ₂
Oxygen compounds		a la la constituir
610	Ethyl ether	C2H5OC2H5
611	Methyl formate	HCOOCH ₃
Nitrogen compounds		
630	Methyl amine	CH ₃ NH ₂
631	Ethyl amine	C ₂ H ₅ NH ₂
Inorganic compounds (Cryogenic)		
702	Hydrogen (normal and para)	H ₂
704	Helium	He
720	Neon	Ne
728	Nitrogen	N
729	Air	0.21O ₂ , 0.78N ₂ , 0.01A
732	Oxygen	O ₂
740	Argon	A

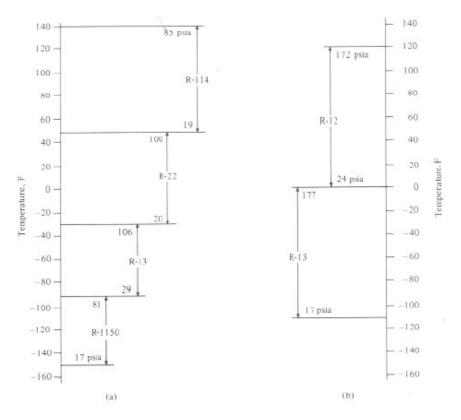
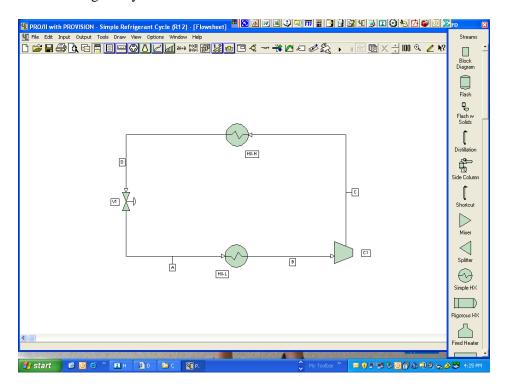
^{*} Methane, ethane, and propane appear in the halocarbon section in their proper numerical order, but these compounds are not halocarbons.

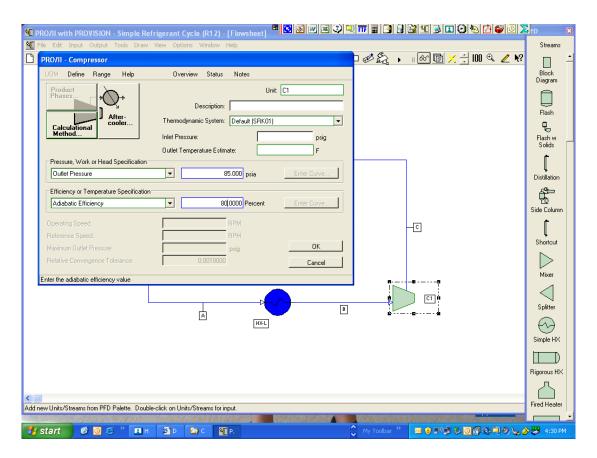
[†] Ethylene and propylene appear in the hydrocarbon section to indicate that these compounds are hydrocarbons, but are properly identified in the section unsaturated organic compounds. ‡ Carrier Corporation Document 2-D-127, p. 1.

Table 2-1: Refrigerants Continued)

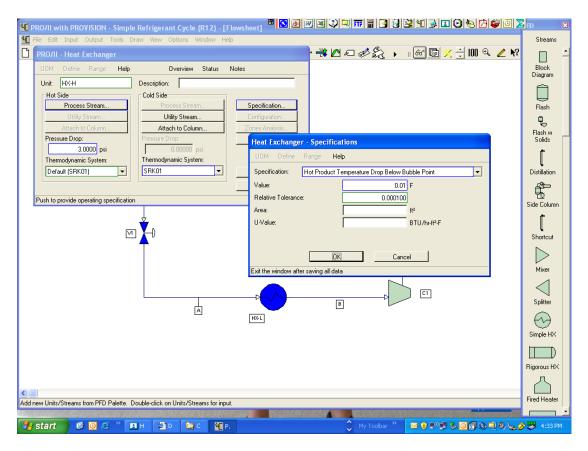
ASHRAE STANDARD DESIGNATION OF REFRIGERANTS

Refrigerant number	Chemical name	Chemical formula
Inorganic compounds		
(noncryogenic)	The same of the sa	0.000
717	Ammonia	NH ₃
718	Water	H ₂ O
744	Carbon dioxide	CO ₂
744A	Nitrous oxide	N ₂ O
764	Sulfur dioxide	SO ₂
Unsaturated organic		
compounds		
1112a	Dichlorodifluoroethylene	CCl ₂ =CF ₂
1113	Monochlorotrifluoroethylene	CCIF=CF ₂
1114	Tetrafluoroethylene	CF ₂ =CF ₂
1120	Trichloroethylene	CHCl=CCl ₂
1130	Dichloroethylene	CHCl=CHCl
1132a	Vinylidene fluoride	CH ₂ =CF ₂
1140	Vinyl chloride	CH2=CHCl
1141	Vinyl fluoride	CH ₂ =CHF
1150	Ethylene	CH ₂ =CH ₂
1270	Propylene	CH3CH=CH2

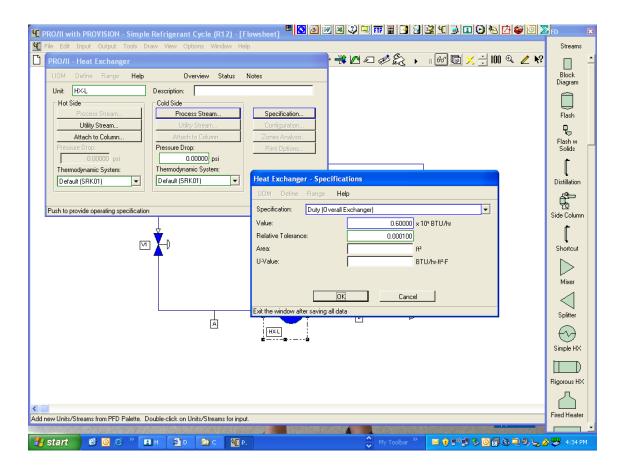



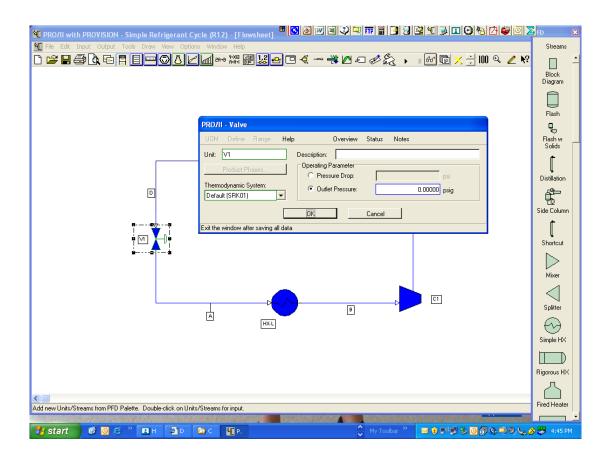

Figure 2-6: Temperature Ranges of Refrigerants

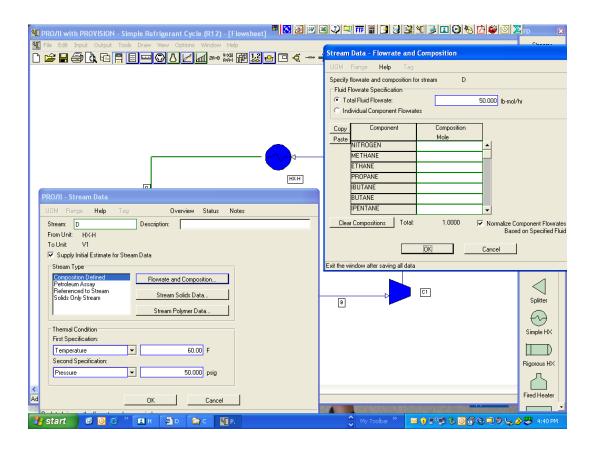
We now turn to Pro II to show how a refrigerant cycle is built. We start with entering the cycle as follows:



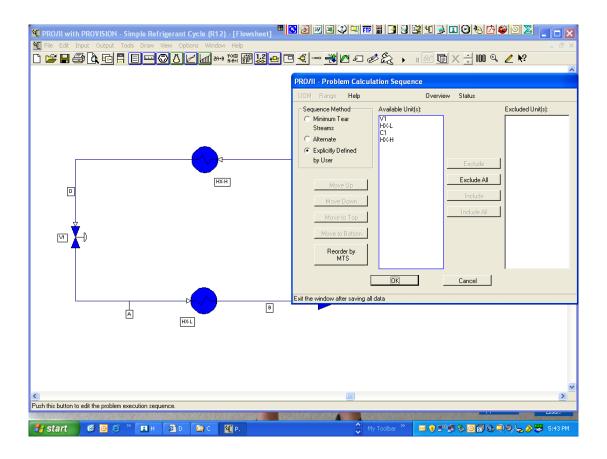
We pick R12, which will allow us to cool down anything to


Next we define the outlet pressure of the compressor. This needs to be such that stream C (after the cooler) is higher than 60 $^{\circ}F$. To start we choose around 85 psia.

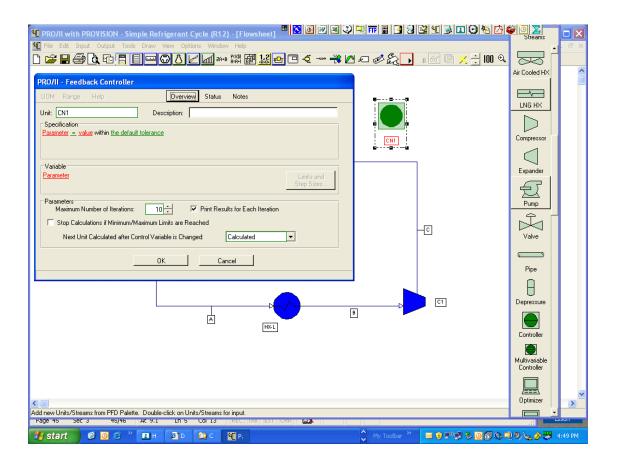

Next we define the top heat exchanger, by specifying an outlet temperature slightly below the bubble point.


We continue by specifying the duty of the bottom exchanger. This is customary because this is the targeted design goal of the cycle.

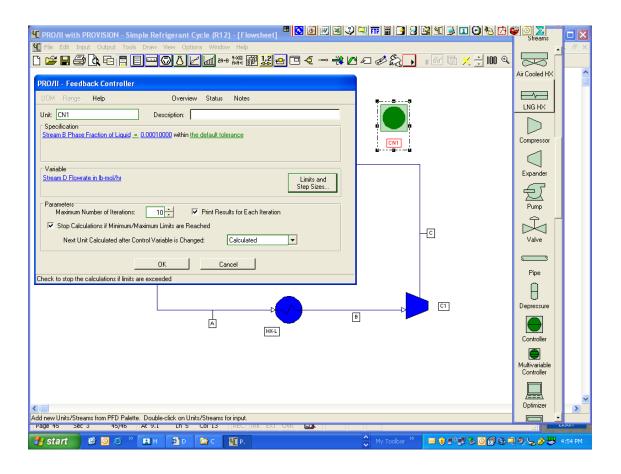
We enter the outlet pressure of the valve (atmospheric).



We also realize that this flowsheet does not have input or output streams. Thus, to start the simulation, one needs to give an initial value to a stream. We chose stream D, and initialize with a flowrate that is guessed.


If the flowrate chosen is too high, then the inlet of the compressor will be two phase and this is not advisable. If the flowrate is too low, the cycle will loose efficiency (the "horn" will get larger).

Warning: Pro II may not realize internally that it needs to solve the unit that the initialized stream feeds to and try to continue until it reaches convergence in the loop but it will loose the input data. To avoid problems we specify the order in which we want the flowsheet to solve by clicking in the unit sequence button.



Construct the simulation above described and determine the right flowrate in the cycle. Determine all temperatures and obtain the COP. Compare it with a Carnot Cycle.

The above exercise can be done automatically using a "controller", which is a type of "spec and vary" equivalent to "Goal Seek" in Excel. Once the controller is picked, double clicking on it reveals the menu.

Thus, we choose to have the inlet to the compressor just slightly above dew point (specification) and we vary the flowrate, just as we did by hand. It is, however, easier to specify a very low liquid fraction. Make sure the starting point is close to the right value. Sometimes the controller has a hard time converging.

