Water to Breathe?
A new technology may make it possible...
Oxygen From Water

Group 7

Anh Nguyen Juste Tchandja
Dustin Duke Justin Brown
Jorge Arias Keith Orendorff

May 2, 2003
New Technology

• A recently discovered technology uses the compound
\[\text{H}_2\text{O(terpy)Mn(O)}_2\text{Mn(terpy)OH}_2\text{](NO}_3\text{)}_3 \]
(oxygen evolving complex OEC) to catalyze the evolution of oxygen from water.
Project Objective

• To develop and design a profitable process that uses the OEC to produce oxygen from water.
Proposal

• We propose a process that will use the OEC with a series of multifunction reactors, a hydrogen oxygen separator and solar power to provide life-supporting oxygen on manned space exploration missions.

• As a basis for comparison we examine oxygen production to support a five man crew.
Space Exploration

- Currently, water electrolysis provides oxygen for the International Space Station and Mir.
- Also electrolysis is proposed for Mars exploration.
- Our task is to see if we can offer advantages over electrolysis.
Presentation Outline

• How the Chemistry Works
• Process Design / Technical Details
• Mars Logistics
• Economic Justification
• Conclusion
Chemistry

- Process utilizes 2 sets of reactions.
 - Oxygen Production/Catalyst Regeneration
 - Sulfuric Acid Regeneration/O₂ Recovery
- 2 reactors involved
 - 1 CSTR and 1 PFTR
 - After several revisions to original design
Main Catalyst

- $C_{30}H_{22}Mn_2N_6O_2$
- In the process, the hydrated form is used.
- $C_{30}H_{26}Mn_2N_6O_4$
- This has an additional water molecule attached to the Mn atom.
Overview of Chemistry

• Oxygen Production/Catalyst Regeneration
 \[17\text{H}_2\text{O} + \text{H}_2\text{SO}_4 \rightarrow 17\text{H}_2 + 8\text{O}_2 + \text{H}_2\text{SO}_5\]

• Sulfuric Acid Regeneration/O₂ Recovery
 \[\text{H}_2\text{SO}_5 \rightarrow \text{H}_2\text{SO}_4 + \frac{1}{2}\text{O}_2\]

• Overall
 – \[17\text{H}_2\text{O} \rightarrow 17\text{H}_2 + 8.5\text{O}_2\]
 – Daily: \[2400\text{H}_2\text{O} \rightarrow 2400\text{H}_2 + 1200\text{O}_2\]
Chemistry: In the Beginning

- Original Design was based on a direct scale up from the chemistry
 - Everything added to a beaker was poured into a batch reactor
 - Very Complicated Design
Problems: In the Beginning

• H_2SO_4 regenerated NO/NO$_2$ reaction
 – Air contamination
• Many reactors
 – Complicated PFD
The Beginning... ugly
The Middle Ages

• We get wiser, eliminate NO/NO₂
 – Equipment Eliminated
 • 1 Reactor
 • 1 Separator
 • 2 Pumps
 – Healthier solution regenerates with MnO₂ catalyst
 • No new chemicals added
Still in the Dark

- Problem: Perpetual Acid Dilution
- Still complicated PFD
Not so Bright PFD

[Diagram of a process flow diagram with labeled components R1, R2, R3, S1, and P1, showing flow streams labeled with H2O, O2, and H2SO4.]

[The diagram depicts a process flow involving multiple reactors (R1, R2, R3) and a separator (S1). The flow streams include water (H2O), oxygen (O2), and sulfuric acid (H2SO4).]
Chemistry Conquered: Bright Ideas

• Realize catalyst regeneration and O_2 production can occur simultaneously
 – Allows for continuous process

• Possible because
 – Catalyst not affected by pH
 – O_2 production is the Rate Limiting Step
PFD a Chemical Engineer can be Proud Of
Individual Reactions

• Oxygen Production/Catalyst Regeneration

\[
2C_{30}H_{26}Mn_2N_6O_4 + 16H_2O \rightarrow 4C_{15}H_{11}N_3 + 2MnO_4^- + 2Mn^{3+} + 8O_2 + 40H^+ + 44e^- \\
2MnO_4^- + 16H^+ + 10e^- \rightarrow 2Mn^{2+} + 8H_2O \\
7H_2SO_4 + 7H_2O \rightarrow 7H_2SO_5 + 14H^+ + 14e^- \\
34H^+ + 34e^- \rightarrow 17H_2 \\
2Mn^{2+} + 2Mn^{3+} + 4C_{15}H_{11}N_3 + 6H_2SO_5 + 2H_2O + 4H^+ + 14e^- \rightarrow 2C_{30}H_{26}Mn_2N_6O_4 + 6H_2SO_4
\]

\[
17H_2O + H_2SO_4 \rightarrow 17H_2 + 8O_2 + H_2SO_5
\]

• Sulfuric Acid Regeneration/O_2 Recovery

\[
H_2SO_5 + H_2O \rightarrow H_2SO_4 + H_2O_2 \text{ (in the presence of MnO}_2\text{ catalyst)} \\
H_2O_2 \rightarrow H_2O + \frac{1}{2}O_2 \text{ (in the presence of MnO}_2\text{ catalyst)} \\
H_2SO_5 \rightarrow H_2SO_4 + \frac{1}{2}O_2
\]
Theoretical Thermodynamics

- Reaction requires 285.8 kJ/mole H\textsubscript{2}O
- Need 2400 moles H\textsubscript{2}O per day
 - 685.920 MJ per day
 - 7.94 kW per day
 - Actual numbers are higher due to pumping, heat loss, etc...
Continuous System

• Advantages:
 – Simple operations
 – Smaller space occupied
 – Less catalyst required
 – Low equipment cost
 – Heat integration
 – Low operating cost
 – Keep the O_2 concentration constant
Continuous System (cont.)

- Require two reactors
- Total reactor volume 30 L
- Reactor costs $15,500 (Including heat exchanger)
Continuous System (cont.)

- CSTR:
 - Produce O_2
 - Regenerate catalyst
 - Condition:
 - Pressure: 9 atm
 - Temperature: 25°C
Experimental Reaction Rate

\[y = -0.0007x^2 + 0.127x \]

<table>
<thead>
<tr>
<th>Time (minutes)</th>
<th>Moles O₂/Mole Catalyst</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Experimental Data

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>Mol O₂/Mol cat.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>0.4</td>
</tr>
<tr>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>6</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Continuous System (cont.)

• CSTR:
 – Volume: 20L
 – Energy required: 8.4kW
 – Catalyst used: 10.1 moles
 – Feed water flow rate: 2.8L/hr
 – Sulfuric acid 0.57M, flow rate: 111L/hr
Continuous System (cont.)

• PFTR
 – Regenerate sulfuric acid
 – Enthalpy change: -0.27 kW
 – Catalyst: MnO$_2$
 – Condition:
 • Pressure: 9 atm
 • Temperature: between 50 and 100$^\circ$C
Continuous System (cont.)

• PFTR:
 – Volume: 10L
 – ID = 15cm
 – Length 56cm
 – Feed flow rate: 111L/hr
 – Catalyst lined reactor tubes
Hydrogen Oxygen Separation

Definition of the problem
 Design a particular process that can meet the requirements.

 Feed flowrate = 1200 mol O₂/day
 Purity = 100%
<table>
<thead>
<tr>
<th>Separation Process</th>
<th>Favorable Flowrates</th>
<th>Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cryogenically distillation</td>
<td>High</td>
<td>Compressor Heat exchanger Expander</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Expander Distillation Column Condenser</td>
</tr>
<tr>
<td>PSA (Pressure Swing Adsorption)</td>
<td>Medium</td>
<td>Two adsorbers Compressor</td>
</tr>
<tr>
<td>Membrane</td>
<td>Low</td>
<td>Compressor Membrane</td>
</tr>
</tbody>
</table>

Less is more
Membrane

Goal: Maximum recovery of Oxygen

Topological Optimization

Several different flowsheets were considered

Optimization includes: Feed/permeate pressure ratio, Number of membrane units and recovery of hydrogen.
Excel Based Program
<table>
<thead>
<tr>
<th>Variables for YOU to SPECIFY:</th>
<th>Length</th>
<th>0</th>
<th>t1</th>
<th>t2</th>
<th>r_{H_2}</th>
<th>r_{O_2}</th>
<th>Hydrogen</th>
<th>Oxygen</th>
<th>Actual Oxygen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desired mols Hydrogen in Oxygen stream (yr)</td>
<td>0.02</td>
<td>0</td>
<td>1.6698472</td>
<td>0.1450177</td>
<td>0.0169865</td>
<td>0.0114017</td>
<td>0.8830105</td>
<td>0.9865383</td>
<td>0.9865383</td>
</tr>
<tr>
<td>Feed/Permeate Ratio (PR)</td>
<td>9</td>
<td>0.02</td>
<td>1.6688555</td>
<td>0.14750713</td>
<td>0.0333085</td>
<td>0.0029324</td>
<td>0.9666815</td>
<td>0.9870647</td>
<td>0.9970647</td>
</tr>
<tr>
<td>mols of Hydrogen in Feed (yr)</td>
<td>0.88686667</td>
<td>0.03</td>
<td>1.5186871</td>
<td>0.1940261</td>
<td>0.04882719</td>
<td>0.0044454</td>
<td>0.96017281</td>
<td>0.9657464</td>
<td>0.9657464</td>
</tr>
<tr>
<td>Selectivity (S)</td>
<td>12</td>
<td>1.62763155</td>
<td>0.15065113</td>
<td>0.0625551</td>
<td>0.0053167</td>
<td>0.93376848</td>
<td>0.9406893</td>
<td>0.9406893</td>
<td></td>
</tr>
<tr>
<td>Desired Feed Flow Rate (SCFH)</td>
<td>200</td>
<td>25</td>
<td>1.62324141</td>
<td>0.15212685</td>
<td>0.08258952</td>
<td>0.0074533</td>
<td>0.91741408</td>
<td>0.9254767</td>
<td>0.9254767</td>
</tr>
<tr>
<td>Number of Membranes you want to use</td>
<td>1</td>
<td>0.05</td>
<td>1.62389557</td>
<td>0.15371712</td>
<td>0.09582289</td>
<td>0.0086995</td>
<td>0.90117712</td>
<td>0.910105</td>
<td>0.910105</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variables for YOU to GUESS:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Factor (G) (maybe 0.31)</td>
<td>0.21218053</td>
<td>0.08</td>
<td>1.60412632</td>
<td>0.15987071</td>
<td>0.13104805</td>
<td>0.2112664</td>
<td>0.86395958</td>
<td>0.8703728</td>
<td>0.8703728</td>
</tr>
<tr>
<td>Recovery of Hydrogen (r_1) (maybe 0.98)</td>
<td>0.93333272</td>
<td>0.09</td>
<td>1.59408565</td>
<td>0.15956204</td>
<td>0.14696592</td>
<td>0.1363914</td>
<td>0.85994968</td>
<td>0.8630086</td>
<td>0.8630086</td>
</tr>
<tr>
<td>Recovery of Oxygen (r_2)</td>
<td>0.65210089</td>
<td>0.11</td>
<td>1.58390113</td>
<td>0.16034953</td>
<td>0.16278403</td>
<td>0.1530263</td>
<td>0.83721597</td>
<td>0.8409873</td>
<td>0.8409873</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESULTS:</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mols of Hydrogen in permeate (yn)**</td>
<td>0.15528037</td>
<td>0.13</td>
<td>1.5522873</td>
<td>0.1586159</td>
<td>0.20697225</td>
<td>0.2021792</td>
<td>0.79302775</td>
<td>0.9797208</td>
<td>0.9797208</td>
</tr>
<tr>
<td>F1</td>
<td>7.0707E-09</td>
<td>0.14</td>
<td>1.5413381</td>
<td>0.1674337</td>
<td>0.22508623</td>
<td>0.2189225</td>
<td>0.77491377</td>
<td>0.9710077</td>
<td>0.9710077</td>
</tr>
<tr>
<td>F2</td>
<td>-1.3973E-09</td>
<td>0.15</td>
<td>1.5302362</td>
<td>0.16927652</td>
<td>0.24399952</td>
<td>0.2356504</td>
<td>0.75610404</td>
<td>0.9624149</td>
<td>0.9624149</td>
</tr>
<tr>
<td>t3</td>
<td>1.7801E-08</td>
<td>0.16</td>
<td>1.51906769</td>
<td>0.17115359</td>
<td>0.25580293</td>
<td>0.2529567</td>
<td>0.74415371</td>
<td>0.9674034</td>
<td>0.9674034</td>
</tr>
<tr>
<td>Final Area Factor (G)</td>
<td>0.2122</td>
<td>0.17</td>
<td>1.5073941</td>
<td>0.1730982</td>
<td>0.27058669</td>
<td>0.2702717</td>
<td>0.7394321</td>
<td>0.9728273</td>
<td>0.9728273</td>
</tr>
<tr>
<td>Recovery of Hydrogen (r_1)</td>
<td>0.9534</td>
<td>0.18</td>
<td>1.49016141</td>
<td>0.17489736</td>
<td>0.26361803</td>
<td>0.2677714</td>
<td>0.71343371</td>
<td>0.9172206</td>
<td>0.9172206</td>
</tr>
<tr>
<td>Recovery of Oxygen (r_2)</td>
<td>0.6521</td>
<td>0.19</td>
<td>1.48139446</td>
<td>0.17896684</td>
<td>0.30490881</td>
<td>0.2964881</td>
<td>0.89334119</td>
<td>0.9649531</td>
<td>0.9649531</td>
</tr>
<tr>
<td>Area of the All of the Membranes (ft²)</td>
<td>181.0972</td>
<td>0.20</td>
<td>1.45996141</td>
<td>0.18100203</td>
<td>0.32159075</td>
<td>0.3144651</td>
<td>0.6721943</td>
<td>0.8695349</td>
<td>0.8695349</td>
</tr>
<tr>
<td>Area of Each Membrane (ft²)</td>
<td>181.0972</td>
<td>0.22</td>
<td>1.44776847</td>
<td>0.1830891</td>
<td>0.34325642</td>
<td>0.3099772</td>
<td>0.6572548</td>
<td>0.9046028</td>
<td>0.9046028</td>
</tr>
<tr>
<td>square meters</td>
<td>16.82</td>
<td>0.23</td>
<td>1.43483069</td>
<td>0.1851087</td>
<td>0.36862626</td>
<td>0.3523889</td>
<td>0.6438374</td>
<td>0.9621711</td>
<td>0.9621711</td>
</tr>
</tbody>
</table>

square meters	16.82	0.24	1.42210112	0.18730287	0.37282907	0.3937192	0.6221793	0.982908	0.982908
O₂ purity	0.97999988	0.25	1.40971459	0.18947062	0.38691982	0.4163863	0.6100692	0.9840337	0.9840337
recovery	0.84559445	0.26	1.3982247	0.19167234	0.40879944	0.4353331	0.59812056	0.9584856	0.9584856
UO₂ Cost	516.920	0.27	1.3891457	0.19390921	0.41470407	0.4545245	0.65825613	0.9544755	0.9544755
Permeate	179.59	0.28	1.3891457	0.19510589	0.42393402	0.4741325	0.7160583	0.9588575	0.9588575
Retentate	51.18	0.29	1.3590748	0.19460697	0.4414479	0.4933912	0.6650522	0.9590080	0.9590080
0.3	1.34102679	0.20	0.20006289	0.45352505	0.5514744	0.54649459	0.94859259	0.94859259	
Optimization Equations

Pressure Ratio = \(PR = \frac{P_{\text{Feed}}}{P_{\text{Permeate}}} \)

Recovery of Hydrogen = \(r_1 = \frac{Q \cdot (y_r \cdot PR - y_p)}{y_f} \)

Recovery of Oxygen = \(r_2 = \frac{Q \cdot (PR \cdot (1 - y_r) \cdot (1 - y_p))}{S \cdot (1 - y_f)} \)

\(y_r = \frac{(1 - r_1)}{[(1 - r_1) + (1 - y_f) / y_p \cdot (1 - r_2)]} \)

\(y_p = \frac{R_{1G} - r_1}{(R_{1G} - r_1) + ((1 - y_f) / y_p \cdot R_{2G} - r_2)} \)
Engineering Ideas

Optimized Flowsheets

<table>
<thead>
<tr>
<th></th>
<th>Without Reactor</th>
<th>Featuring a Reactor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxygen Concentration</td>
<td>98%</td>
<td>100%</td>
</tr>
<tr>
<td>Recovery of Oxygen</td>
<td>62%</td>
<td>64%</td>
</tr>
<tr>
<td>Membrane Units</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
Results

Oxygen Profile Across Membrane

Recoveries vs Length
Optimized Membrane

- Recovery of Oxygen: 65%
- Pressure Ratio: 9
- PRISM® hollow fiber membrane
- Membrane Area: 17 m²
- Estimated cost: $17,000
Reactor 3

\[2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \]

- Complete purification of Oxygen
- Catalyst: a fixed-bed 0.5\% Platinum
- Volume: 0.5 L
- Estimated cost: $700
Reactor 4

2H₂ + O₂ → 2H₂O

- Complete purification of Hydrogen
- Catalyst: a fixed-bed 0.5% Platinum
- Volume: 2.7 L
- Estimated cost based on Pt cost: $3800
Cost Breakdown

Table 1: Price Breakdown 1200 mole per Day Ex.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Quantity</th>
<th>Price / Unit</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor 1</td>
<td>1</td>
<td>$10,100</td>
<td>$10,100</td>
</tr>
<tr>
<td>Reactor 2</td>
<td>1</td>
<td>$3,800</td>
<td>$3,800</td>
</tr>
<tr>
<td>Heat exchanger</td>
<td>1</td>
<td>$500</td>
<td>$500</td>
</tr>
<tr>
<td>Reactor 3</td>
<td>1</td>
<td>$700</td>
<td>$700</td>
</tr>
<tr>
<td>Reactor 4</td>
<td>1</td>
<td>$3,700</td>
<td>$3,700</td>
</tr>
<tr>
<td>H₂-O₂ Separator</td>
<td>1</td>
<td>$17,000</td>
<td>$17,000</td>
</tr>
<tr>
<td>Water Pump</td>
<td>1</td>
<td>$3,600</td>
<td>$3,600</td>
</tr>
<tr>
<td>Liquid Pumps</td>
<td>3</td>
<td>$160</td>
<td>$480</td>
</tr>
<tr>
<td>Catalyst</td>
<td>10.1 mol</td>
<td>$25,200 / mol</td>
<td>$254,500</td>
</tr>
<tr>
<td>Total Unit Cost</td>
<td>****</td>
<td>**</td>
<td>$294,220</td>
</tr>
</tbody>
</table>
Water in Mars

• Where can we find water in Mars?
 - North pole: 75% of top 3 ft of soil is ice
 - Subsurface as liquid

• How much water is on Mars?
 - 0.03% of mars weight
What to do with H_2 produced?

• Vent H_2 gas to the Martian atmosphere

• Future Options:
 – Produce more water from CO_2
 \[4H_2 + CO_2 \leftrightarrow 2H_2O + CH_4 \]
 – Methane can be liquefied and used for space vehicle propulsion
Power Supply

- Total system energy requirements 9.2 kW
- Mars may receive 44% less solar radiation than Earth
- Solar panel area needed: 1880 ft²
- 139 panels cost $83,400
Battery Power Supply

- Rechargeable batteries ensure constant power supply.
- Design for emergency 1 day power supply
Battery

• Characteristic:
 – 12 V/ 446 AH at 100 hr rate
 – Weight: 272 grams
 – Operating conditions: -40 C to 60 C
 – Cost is $813 per battery
 – Each battery delivers 53.5 Watts
Power Requirements

• The system requires 9.2 kW

• We will need 172 batteries to provide 9.2 kW

• Total cost of $140,000
Establishing an Atmosphere in Tent on Mars

- Tent Size
- Tent Volume = 25,000 ft³
- 79% N₂ & 21% O₂ needed
- CO₂ & H₂O vapor removed
Establishing an Atmosphere in Tent on Mars

- O_2 Produced by unit per day
- Amount of O_2 5 men need per day
- Air Needed in Tent = 25,000 ft3 = 19,750 ft3 N$_2$ & 5,250 ft3 O$_2$
- Time Needed to Fill Tent with O_2 = 5.5 days
Establishing an Atmosphere in Tent on Mars

- \(\text{N}_2 \) needed
 - 2 x 800 L Liquid \(\text{N}_2 \)
- \(\text{CO}_2 \) & \(\text{H}_2\text{O} \) removed
 - 1 person = 234 moles / day
 - 5 man team = 27,000 L of each / day
- Silica gel - Molecular Sieve System
Establishing an Atmosphere in Tent on Mars

- Two Systems Used
 - 1 Adsorbing & 1 Desorbing
- Columns will regenerate 4 Times / day
- Regenerate by Heating Columns to 300 °C
Establishing an Atmosphere in Tent on Mars

- **H₂O Vapor Removed**
 - Want 30% Humidity
 - Need 7,500 ft³
 - If 27,000 ft³ H₂O removed, Air should stay at 30% Humidity
 - Silica Gel Adsorbs 6,750 L H₂O / time
 - 0.481 L / Column
 - Need 4 L Silica Gel
 - Column = 1 ft high & 1.8 in diameter
 - Silica Gel cost = $643.
Establishing an Atmosphere in Tent on Mars

- CO₂ Removed
 - 27,000 ft³ / day
 - Molecular Sieve 13X Adsorbs 6,750 L CO₂ / cycle
 - 65.3 L / column
 - 262 L Molecular Sieve 13X
 - Column = 4 ft high & 10.3 in diameter
 - 13X Cost = $70,100
Economics

• Identified Possible Applications for the Process
 – Steel-making Industry
 – Paper Manufacturing
 – Sewage Treatment
 – Medical Use
 – Life Support Applications
Economics

• Industrial Scale Applications
 – Typical Plant produces 2000 tons O₂ per day
 – For Our Process:
 \[(56 \text{ mil. mol O}_2 / \text{ day})(1 \text{ mol cat. / 182.4 mol O}_2 \text{ day})\]
 \[= 307,000 \text{ mol cat.}\]

 At catalyst cost of $25,200 / mol cat.
 Total catalyst cost would be $7.7 billion!
 Compared to less than $200 million for a
 Cryogenic Plant
Economics

• Small Scale Applications
 – Laboratory
 – Home Medical Use
 – Space Station
 – Mars Exploration
On Earth

• For laboratory or home use, compressed oxygen costs less than $0.30 per 100 scf.

• Comparable Oxygen from Water unit = no less than $50,000

• Not worthwhile when maintenance and energy costs are included.
In Space

- To provide a 5 man crew with oxygen:
 - Electrolysis requires 12.7 kW
 - OFW only needs 9.2 kW
Comparison

• Thermodynamic Efficiency: \(\frac{\Delta H_{RXN \ H_2O}}{\text{Energy Required}} \)

• \(\Delta H_{RXN \ H_2O} = 686 \text{ MJ} \)

• TE electrolysis = 686 MJ / 1080 MJ = 63.5 %

• TE OFW = 686 MJ / 795 MJ = 86 %
Comparison

• Electrolysis total cost $1,275,000
 – Electrolysis equipment cost approx. $720,000
 – Additional cost for power supply $555,000
 – Power supply is 44% total cost

• OFW total cost $689,000
 – OFW unit cost $295,000
 – Power supply costs $394,000
 – Power supply is 57% total cost
Comparison

• Advantages of OFW over electrolysis:
 – For electrolysis, 38% more energy means 38% more solar panel area required
 – Potentially much less than 1/2 of the cost of electrolysis
Uncertainties

• Experimentation to test catalyst useful life

• Continuous reaction efficiency

• Reactor scale-up
Conclusions

• Water can be used for O_2 production
• Eventually plants will be used
• Waste H_2 stream has many possibilities
• Infinite space exploration potential
• Nifty thinking on our part