## Vinyl Chloride Production Senior Design Presentation

Jeremy Dry Bryce Lawson Phuong Le Group 10 Israel Osisanya Deepa Patel Anecia Shelton

### **Project Purpose**

 To design an environmentally safe vinyl chloride production plant.

#### **Questions:**

- What is Vinyl Chloride?
- How its being produced?
- How much does it cost to be environmentally friendly?



# Vinyl Chloride

99% of VCM is used to manufacture polyvinyl chloride (PVC).

 PVC consumption is second to low density polyethylene.

VCM production results in a number of unwanted by-products.

#### VCM Plant Emissions in the United States



### Manufacturing Methods

Vinyl Chloride from Acetylene
 Vinyl Chloride from Ethane
 Vinyl Chloride from Ethylene (Direct Route)

Vinyl Chloride from Ethylene (EDC)

#### **Balanced Process for Vinyl Chloride Production**

- Direct chlorination $CH_2CH_2 + Cl_2 \rightarrow ClCH_2CH_2Cl (EDC)$ Oxychlorination $CH_2CH_2 + 2 HCl + \frac{1}{2} O_2 \rightarrow EDC + H_2O$ EDC pyrolysis $2 EDC \rightarrow 2 CH_2CHCl (VCM) + 2 HCl$ Overall reaction $2 CH_2CH_2 + Cl_2 + \frac{1}{2} O_2 \rightarrow 2 CH_2CHCl + H_2O$ •No generation of HCl
  - 95% of the world's VCM is produced utilizing the balanced process

#### **Balanced Process for Vinyl Chloride Production**



#### Direct Chlorination and Oxychlorination P&ID CAUSTIC SCRUBBERS



S50

FT

### Vinyl Chloride Plant Reactor Design

- •Theoretical reactor design equations
- •Literature kinetic data used to calculated rate constants

 Numerical Integration used to calculated specified parameters

### **Reactor Design**



$$r_i = k_f [C_k] - k_r [C_k]$$

#### **Oxychlorination Chemistry**



Plus nine other main by product formation reactions
Excel Reactor Model of Oxychlorination

#### **Oxychlorination Reactor Results**

#### Oxy Reactor Effluent Flow Rates (lb-mol/hr)

| EDC             | 1341  | Chloral          | 0.25 |
|-----------------|-------|------------------|------|
| Water           | 1341  | CCl <sub>4</sub> | 1.25 |
| TEC             | 1.26  | Methyl Chloride  | 0.12 |
| CO <sub>2</sub> | 140   | Chloroform       | 0.11 |
| Ethylene        | 5.5   | Chloroethane     | 0.11 |
| Oxygen          | 2.76  | Chloroprene      | 0.10 |
| HC1             | 0.015 | Vinyl Acetylene  | 0.09 |
| Acetylene       | 0.13  | Dichloromethane  | 0.10 |

#### **Oxychlorination Reactor Parameters**

| Reactor Temperature (°C)          | 305  |
|-----------------------------------|------|
| Reactor Pressure (psig)           | 58   |
| Reactor Volume (ft <sup>3</sup> ) | 461  |
| Tube Diameter (in)                | 2    |
| Tube Length (ft)                  | 1320 |
| Residence Time (hr)               | 0.05 |

### **DC Reactor Modeling Results**

| DC | CR | ea | ct | or | Kiı | net | tic | Re | esu | ilts |  |
|----|----|----|----|----|-----|-----|-----|----|-----|------|--|
|    |    |    |    |    |     |     |     |    |     |      |  |

#### **DC Reactor Parameters**

|                        | Modeling<br>Results | Literature<br>Values |
|------------------------|---------------------|----------------------|
| Conversion of ethylene | 99.93%              | 99.94%               |
| Selectivity<br>to EDC  | 99.8%               | 99.4%                |

| Reactor Temperature (°C)          | 120   |
|-----------------------------------|-------|
| Reactor Pressure (psig)           | 15    |
| Reactor Volume (ft <sup>3</sup> ) | 90    |
| Tube Diameter (in)                | 2     |
| Tube Length (ft)                  | 115   |
| Residence Time (hr)               | 0.018 |

### **EDC Purification P&ID**

#### VEREFERE BACKSDUCTION





#### **EDC Pyrolysis Reactor Modeling Results**

- •Conversion of EDC per pass is maintained at 50-55%
- •Increasing cracking severity beyond this level results in insignificant increase in conversion and a decrease in selectivity to VCM.
- •Conversion can be increased by the addition of CCl<sub>4</sub>
- Modeling results produced conversion equal to 60%
- •Major by products of EDC pyrolysis: Acetylene, benzene, 1-3 butadiene, vinyl acetylene, chloroprene.



### **Pro II Simulation PFD**



#### Heat Integration

Pinch Design Method
Optimization method that reduces energy cost
Utilizes process to process heat transfer
Optimal pinch temperature→ 316°F

#### Heat Integration

#### **Grand Composite Curve**



#### Heat Integration Results

Hot Utility 401→ 308 MM Btu/hr
Cold Utility 251→ 158 MM Btu/hr

Energy Reduction Results in a savings of \$2.4 Million/year!

# Waste Stream Treatment

### **Location of Waste Streams**

### EDC Purification/Pyrolysis

#### Oxychlorination Reaction Section

### Direct Chloriantion Caustic Scrubber

### **Contents of Waste**

# Liquid Waste Ethylene





### **Types of Waste Treatment**

Condenser
 Catalytic Incinerator
 Absorber/Scrubber
 Thermal Incinerator
 Flare

### Waste Treatment Selected

### Multiple Treatment Process Selected

Consists of thermal incineration, absorption column, and caustic scrubbing unit



### **Products of Waste Treatment**

 Water and HCl (solution)
 Water, NaCl, and Sodium Hypochlorite (solution)

Carbon Dioxide and Nitrous Oxides

### **Incineration Unit Design**

Auxiliary Fuel Flowrate Needed ( $Q_f$ )  $Q_f = Q_w (X/Y)$  where,  $X = 1.1C_{po}(T_c - T_r) - C_{pi}(T_i - T_r) - h_w$  $Y = h_f - 1.1C_{po}(T_c - T_r)$ 

 $Q_f = 331 \text{ lb/hr}$ 

### **Absorption Column Design**

Amount of Solvent (Water)

$$L = G^*(Y_i - Y_o)/(X_o - X_i)$$

L = 154,000 lbs/hr  $O_T = \frac{Column Diameter (D_t)}{4VM_v}$   $D_T = \frac{4VM_v}{fU_f \pi (1 - A_d / A) \rho_v}$ 



# Absorption Column Design Cont'd Number of Theoretical Stages (N<sub>OG</sub>) $N_{OG} = \frac{\ln\{[(A-1)/A][(Y_i - KX_i)/(Y_o - KX_i)] + (1/A)\}}{(A-1)/A}$

### • Overall Height of a Transfer Unit ( $H_{OG}$ ) • $H_{OG} = G/K_yaS$



# Absorption Column Design Cont'd

### Packing Height







### Waste Water Treatment

### Waste Water Streams

|                  | DC Caustic Scrubber | Water Wash Drum |  |
|------------------|---------------------|-----------------|--|
|                  | (L/hr)              | (L/hr)          |  |
| Water            | 280                 | 41,000          |  |
| NaCl             | 48                  | 0               |  |
| HCI              |                     | 200             |  |
| Chloral          | -                   | 26              |  |
| EDC              | _                   | 680             |  |
| CCl <sub>4</sub> | -                   | 180             |  |
| TCE              | -                   | 170             |  |

## Limits and Treatment Options

|                      | EPA Limit<br>(mg/L) | Treatment Options                |
|----------------------|---------------------|----------------------------------|
| <br>HCI              | 5                   | -GAC                             |
| <br>Chloral          | 1                   | -Incinerator w/Afterburner -GAC  |
| <br>EDC              | .005                | -GAC –Boiling                    |
| <br>CCl <sub>4</sub> | .005                | -GAC –Fluidized Bed Incineration |
| <br>TCE              | .005                | -Incineration -GAC               |

## **Granular Activated Carbon**

EPA Recommended Control Technology
 Ability to remove > 99% of contaminants
 Simple design and operation
 No hazardous waste byproducts
 Ability to operate at low temperatures and pressures

## **GAC** Operation



## **Column Specifications**

| Carbon Mass            | 21000 lb            |
|------------------------|---------------------|
| Adsorber Volume        | 170 ft <sup>3</sup> |
| Adsorber Area          | 36 ft <sup>2</sup>  |
| Velocity               | 7 ft/min            |
| Contact Time           | 27 min              |
| Equilibrium Saturation | 19 days             |



## HAZOP Studies- Safety Concern

 Purpose: Reduce risk at workplace
 Identify risks, prevent and reduce impact
 Subdivide into small sections

 Deviations, Causes, Consequences, Safe Guard and Actions



## Plant Location Location Factors



0

Taft, LA

- Sales Tax
- Property Tax Corpus Christi, TX

## **Factor Rating Maximization**

| Factor       | Weight % | LA          | ТХ          |
|--------------|----------|-------------|-------------|
| Raw Material |          |             |             |
| Distance     | 30       | 3 miles     | 17 miles    |
| Abundance    | 25       | 4           | 2           |
| Total Tax    | 20       | 32%         | 40%         |
| Wages        | 12       | 0.95        | 1.03        |
| Utilities    | 8        | \$2.7/MMBtu | \$2.5/MMBtu |
| Land Cost    | 5        | \$1270/acre | \$640/acre  |

## **Factor Rating Maximization**

# Weight % x Value % = Factor Rating Taft, LA 0.64 Corpus Christi, TX 0.96



### Forecasting



## Forecasting

| Year      | Ethylene<br>(\$/ton) | Chlorine<br>(\$/ton) | Oxygen<br>(\$/ft³) | VCM<br>(\$/ton) |
|-----------|----------------------|----------------------|--------------------|-----------------|
| 2004      | 492.5                | 212.2                | 0.001445           | 499.2           |
| 2005      | 499.4                | 214.1                | 0.001436           | 506.2           |
| 2006      | 506.2                | 216.1                | 0.001427           | 513.2           |
| 2007      | 513.1                | 218.0                | 0.001418           | 520.2           |
| 2008      | 519.9                | 219.9                | 0.001409           | 527.2           |
| 2009      | 526.7                | 221.8                | 0.001400           | 529.2           |
| 2010      | 533.6                | 223.8                | 0.001391           | 535.2           |
| 2011      | 540.4                | 225.7                | 0.001382           | 543.21          |
| Std. Dev. | 24.17                | 10.56                | 0.000102           | 26.15           |



#### Where

- TCI= total capital investment
- CF = cash flow
  - = interest rate = 0.05
- $V_s = savage value$
- $I_w = working capital$

## **Economic Analysis**

| Plant<br>Capacity | 4.09<br>billion lb/yr | 6.44<br>billion lb/yr | 10.5<br>billion lb/yr |
|-------------------|-----------------------|-----------------------|-----------------------|
| TCI               | \$47,110,000          | \$68,886,000          | \$77,154,000          |
| NPW               | \$133,739,000         | \$284,828,000         | \$161,759,000         |
| ROI               | 0.24                  | 0.25                  | 0.20                  |

## **Risk Analysis**

#### Monte-Carlo simulation

- Mean and Standard Deviation
- Random Number Generation
- NPW
- Risk Measurement
- Probability

# Decision: Plant Capacity

Detailed Economic Analysis

## Monte Carlo

Assume normal distribution

Perform random walks Norminv(Rand(), Mean, Std. Dev.)

Stop the iterations when the data converges

Approximately 1000 trials



## Procedure



#### **Project Risk Curves**



#### Comments

#### Capacity of 4.09 billion lb/yr:

41.7% chance of negative NPW

Capacity of 6.44 billion lb/yr:

31.5% chance of negative NPW

Capacity of 10.5 billion lb/yr: 36.8% chance of negative NPW

#### Probability vs. Net Present Worth



## Decision

#### Plant Capacity of 6.44 billion lb/yr:

- Highest NPW
- Highest ROI
- Lowest risk: 31.5 % of losing money
- High probability of making money

## **Detailed Economic Analysis**

#### Plant Capacity: 6.44 billion lb/yr

#### **Plant Equipment:**

- Four Heat Exchangers
- Four Distillation Towers
- Seven Flash Tanks
- Three Reactors
- Adsorption System
- Incineration Unit
- Total Equipment Cost: \$15.3M

|                                             | Total Capital Investment                                            |                                  |
|---------------------------------------------|---------------------------------------------------------------------|----------------------------------|
| Total Equipment Cost<br>Variables           | Description                                                         | \$15,284,100<br><b>Cost (\$)</b> |
| Equipment Installed                         | 47% of TEC (P&T)                                                    | 7,183,527                        |
| Incineration Unit (install)                 | Flow Rate Correlation                                               | 10,500                           |
| Instrumentation & Control                   | 18% of TEC (P&T)                                                    | 2,751,138                        |
| Piping (installed)                          | 50% of TEC (P&T)                                                    | 7,642,050                        |
| Electrical (installed)                      | 11% of TEC (P&T)                                                    | 1,681,251                        |
| Total<br>Building Cost                      |                                                                     | 19,268,466                       |
| Office                                      | \$45/ft <sup>2</sup> (Brick Building) in 3000 ft <sup>2</sup>       | 135,000                          |
| Process Building (5-Unit)                   | \$15/ ft <sup>2</sup> (Steel Building)in 4600 ft <sup>2</sup> /Unit | 375,000                          |
| Service Building                            | \$45/ ft <sup>2</sup> (Brick Building) in 2000 ft <sup>2</sup>      | 90,000                           |
| Storage Building                            | \$15/ ft <sup>2</sup> (Steel Building)in 4000 ft <sup>2</sup> /Unit | 62,500                           |
| Maintenance Unit/Shop                       | \$45/ ft <sup>2</sup> (Brick Building) in 1500 ft <sup>2</sup>      | 67,500                           |
| Administration/Accounting                   | \$45/ ft <sup>2</sup> (Brick Building) in 2500 ft <sup>2</sup>      | 112,500                          |
| Environment/Research                        | \$45/ ft <sup>2</sup> (Brick Building) in 3000 ft <sup>2</sup>      | 135,000                          |
| Total                                       |                                                                     | 977,500                          |
| Yard Improvement                            |                                                                     |                                  |
| Site Cleaning                               | \$4400/acre (total of 50 acres)                                     | 220,000                          |
| Grading                                     | \$465/acre (total of 10 acres)                                      | 4,650                            |
| Fencing                                     | \$9/ft (total of 9000 ft)                                           | 81,000                           |
| Walkways                                    | \$4.50/ ft <sup>2</sup> (total of 5000 ft <sup>2</sup> )            | 22,500                           |
| Total                                       |                                                                     | 328,150                          |
| Land Cost                                   | \$1270/acre (total of 50 acres)                                     | 63,500                           |
| Total Direct Plant Cost                     |                                                                     | 35,921,716                       |
| Engineering & Supervision                   | 32% of TEC (P&T)                                                    | 4,890,912                        |
| Construction Expenses                       | 41% of TEC (P&T)                                                    | 6,266,481                        |
| Contractor's Fee                            | 21% of TEC (P&T)                                                    | 3,209,661                        |
| Contingency                                 | 42% of TEC (P&T)                                                    | 6,419,322                        |
| Total Indirect Cost                         | Direct Indirect                                                     | 20,786,376                       |
| Fixed Capital Investment                    |                                                                     | 56,708,092                       |
| Working Capital<br>Total Capital Investment | 86% of TEC (P&T)<br>Direct+Indirect+Working Capital                 | 13,144,326<br>69,852,418         |
| i olai Capilai IIIvesliiieill               |                                                                     | 09,002,410                       |

| Employee                     | # of Employee | \$/yr     | Total       |
|------------------------------|---------------|-----------|-------------|
| Plant Chairman               | 1             | \$105,000 | \$105,000   |
| Managers                     |               |           |             |
| Plant Manager                | 1             | \$80,000  | \$80,000    |
| Unit Managers                | 5             | \$73,000  | \$365,000   |
| <b>Operational Engineers</b> |               |           |             |
| Computer Programmer          | 1             | \$62,890  | \$62,890    |
| Computer Engineer            | 2             | \$74,310  | \$148,620   |
| Chemical Engineers           | 5             | \$72,780  | \$363,900   |
| Process Engineers            | 5             | \$73,000  | \$365,000   |
| Electrical Engineers         | 3             | \$68,630  | \$205,890   |
| Environment Engineers        | 3             | \$62,000  | \$186,000   |
| Industrial Engineers         | 3             | \$61,900  | \$185,700   |
| Mechinical Engineers         | 2             | \$63,500  | \$127,000   |
| Maintainance Engineers       | 2             | \$30,000  | \$60,000    |
| Operator                     | 30            | \$68,000  | \$2,040,000 |
| Supervisor                   | 5             | \$70,000  | \$350,000   |
| Administration               |               |           |             |
| Financial Manager            | 1             | \$60,000  | \$60,000    |
| Production Manager           | 1             | \$68,000  | \$68,000    |
| Sales Manager                | 1             | \$60,000  | \$60,000    |
| Accounting                   |               |           |             |
| Budget Analysts              | 2             | \$53,000  | \$106,000   |
| Finantial Analysts           | 1             | \$62,000  | \$62,000    |
| Tax Preparers                | 2             | \$33,000  | \$66,000    |
| Auditor                      | 2             | \$35,000  | \$70,000    |
| Total                        |               |           | \$5,137,000 |

## **Economic Summary**

#### Total Product Cost-\$1.59 billion

#### Net Profit- \$26.2 million

#### NPW- \$265 million



## Environmental Impact vs. Profit

## Waste Reduction Algorithm

- Evaluate effects of design changes on environment
- Reactors can not be varied
  - Exothermic reactions allow heat integration
- Variable design parameters
  - Oxygen usage
  - Furnace temperature

## **Impact Calculations**



- $\mathbf{\bullet} \mathbf{I}_{i} = \Sigma \mathbf{M}_{j} \mathbf{X} \Sigma \mathbf{X}_{kj} \Psi_{k}$ 
  - M<sub>i</sub> = mass flow rate of stream j
  - x<sub>kj</sub> = mass fraction of chemical k in stream j
  - $-\Psi_k$  = characteristic potential impact of chemical k

#### Environmental Impact vs. Profit



## Sequestering CO<sub>2</sub> Emissions

Enhanced oil recovery Brine aquifers injection Located beneath shale layer ◆ 3100 ft FCI is a function of CO<sub>2</sub> flow rate 27.753 \$/(kg/hr) = \$11.4 million OC is a function of CO<sub>2</sub> flow rate and depth 0.0000912 \$/(kg/hr)(ft) = \$183,000/yr

#### VCM Plant Emissions in the United States



## Conclusion

Balanced Process
 Incineration and Carbon Adsorption
 6.4 billion lbs/year
 Taft, LA
 Sequestration of CO<sub>2</sub>