Municipal Solid Waste: A Solution to the Growing Problem

Jessica Beard
Brant Bennett
Jason Black
Adam Bymaster
Alex Ibanez
Purpose

- Investigate and select an alternative method of MSW disposal
- Design a waste processing plant
- Advance the previous deterministic model to optimize a construction and expansion timeline
- Select a feasible investment strategy
Today’s Agenda

1. MSW in the United States
 - City selection
 - Waste disposal methods
2. Pyrolysis Processing Plant
3. Producing Hydrogen from Synthetic Gas
 - Other possible end products
4. MSW Processing Plant Capital Costs
5. Deterministic Model
6. Results
7. Ownership
Background

- Municipal Solid Waste in the United States
 - Composition
 - Waste Disposal

MSW Production and Disposal, 1960-2001

- MSW Produced
- MSW Disposed
Waste Disposal in the U.S.

- Close to 210 million tons of MSW per year
- Methods
 - Landfilling
 - Incineration
 - Pyrolysis
 - Recycling
City Selection

• Cities Considered:
 – New York City, New York
 – Los Angeles, California
 – Detroit, Michigan
 – Hilo, Hawaii

• Basis of Analysis
 – Amount of MSW produced
 – Population and Population growth
 – Cost of current disposal method
Municipal Solid Waste Produced

- Total MSW Generation
- Recycling Rates
- Waste Disposal Methods
 - NYC—Transporting MSW
 - Detroit—Incineration and Landfilling
 - Hilo—Transporting MSW and Landfilling
 - Los Angeles—Landfilling

![Bar Chart: Municipal Solid Waste Produced](chart.png)

- New York City
- Los Angeles
- Detroit
- Hilo
Population

- Metropolitan Area Populations
- NYC has largest metropolitan population
- Hilo has a population under a million
• Hilo has the largest population growth but very small population
• New York also has large population growth
• Detroit has smallest population growth
Price to Dispose of MSW

- Average Prices
- New York Fresh Kills Landfill Closed—Transporting Waste Out of State
- Cost of Incineration High
- Hilo Running Out of Space
- West Coast Has More Space than East Coast
Location Choice...

- **New York City:**
 - Price to Dispose of MSW: $63.30
 - Population of Metropolitan Area: 22 million
 - Amount of MSW in Metro: 46,000 tons/day
 - Landfilling in NYC
 - Prevention of landfilling in high density NYC
 - 9 private and 23 public landfills—capacity of 60 million tons
 - 17 companies with three year base contracts and two 1 year extensions
Disposal Methods

• Methods Considered
 – Landfilling
 – Incineration
 – Pyrolysis

• Basis of Analysis
 – Cost to build and operate
 – Environmental Concerns
 – Production of Products
Landfilling

• Advantages
 – Small Capital Investment
 – Little Maintenance
 – Cheaper Disposal Fees

• Disadvantages
 – Environmental Pollution
 • Methane Carbon Dioxide
 • Leachate
 – Property Decrease in Value

Source: http://www.zerowasteamerica.org/Landfills.htm
Incineration

- **Advantages**
 - Minimizes Landfill Volume
 - Recovery of Energy

- **Disadvantages**
 - High Building and Operation Costs
 - Air Emissions
 - Toxic Ash

Source: http://www.meniscusclients.com/portfolio/cwa/tech_info.htm
Pyrolysis

• Advantages
 – Minimizes Landfill Volume
 – Recovery of Energy
 – Production of Synthetic Gas

• Disadvantages
 – Air Emissions—
 – Leachate
 – Slag—Landfilled or used in road foundations
Method Choice...

• Pyrolysis
 – Land Constraints in NYC
 – Production of Syngas
 • Mixture of CO, CO₂ and H₂
 • Can lead to production of synthetic fuels, hydrogen, ammonia, alcohols, aldehydes, carboxylic acids
Pyrolysis Process

• Why Separate Before Pyrolysis?
 – Enhance Profit / Reduce Costs
 • Sell Recyclable Metals; Low Heat Value
 • Reduce Wear and Tear on Equipment
 • Easier Than Separation After Pyrolysis
 – Control Refuse Properties
 • Slag Seals Refuse if Proper Proportions
Front End Separation

Waste Energy
13.9x10^9 Btu/D

Purox Feed Energy
13.8x10^9 Btu/D

2 EQPT LINES - PER LINE:
16 HPD
6 DPW
60 TPH

180,000 CFM

BAGHOUSE DUST COLLECTION

new york municipal solid waste
Purox Pyrolysis Facility

- RAM Feed
- Purox Reactor
- Off Gas
- 40% Water

New York Municipal Solid Waste
Wastewater Plant

O₂ FEED
40 TPD

WASTE WATER
480 TPD

SURFACE AERATORS

50,000 mg/L BOD
Oxygen Plant
Oxygen Plant (cont.)

- Air Separation
 - 78.1% N₂, 20.9% O₂, 0.934% Ar, 0.035% CO₂
- 280 TPD O₂ = 1 Purox Reactor
- Equipment: Compressor, Heat Exchanger, Distillation Columns
Oxygen Plant (cont.)

• Purpose:
 – Eliminate Nitrous Oxides
 • Environmental aspects
 – Increases concentration of reactants
 – Raise reactor temperature to effectively destroy toxins
End Product Possibilities

- Hydrogen
- Ammonia
- Polycarbonates
- Synthetic Fuel
- Methanol
- Dimethyl Ether
- Acetic Acid
End Product Possibilities

• Hydrogen

 Uses: fuel cells, alternative fuels, petroleum industry applications

(1) $\text{CH}_4 + 2 \text{H}_2\text{O} \leftrightarrow 4 \text{H}_2 + \text{CO}_2$

(2) $\text{CO} + \text{H}_2\text{O} \leftrightarrow \text{CO}_2 + \text{H}_2$

Sale Price: $2500/\text{ton}$
End Product Possibilities

• Ammonia

 Uses: fertilizers, refrigeration, processing

 \[N_2 + H_2 \rightarrow 2 \text{NH}_3 \]

 Sale Price: $200/ton
 -using \(H_2 \) ($2500/ton) and \(N_2 \) ($160/ton)
End Product Possibilities

- Polycarbonates
 Uses: drink bottles, CD/DVD substrates, audio/video cassettes

 \[(1) \text{CO}_2 + \text{H}_2 \rightarrow \text{CO} + \text{H}_2\text{O}\]
 \[(2) 2 \text{NaCl} + \text{CO} \rightarrow 2 \text{Na} + \text{Phosgene}\]
 \[(3) \text{Phosgene} + \text{bisphenyl-}A \rightarrow \text{Polycarbonate} + 2 \text{HCl}\]

Sale Price: $66/ton (HCl $72/ton)
- using H₂ ($2500/ton)
- using bisphenyl-A ($2000/ton) and NaCl ($46/ton)
End Product Possibilities

• **Synthetic Fuel**

 Uses: diesel fuel, waxes

 \[\text{CO} + 2 \text{H}_2 \rightarrow \text{CH}_2 + \text{H}_2\text{O} \]

 Sale Price: $630/ton
 - using \(\text{H}_2 \) ($2500/ton)
End Product Possibilities

- Methanol

Potential Uses: MTBE, DME,

(1) $\text{CO} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + \text{H}_2$
(2) $\text{CO} + 2\text{H}_2 \rightarrow \text{CH}_3\text{OH}$
(3) $\text{CO}_2 + 3\text{H}_2 \rightarrow \text{CH}_3\text{OH} + \text{H}_2\text{O}$

Sale Price: $254/\text{ton}$
- using H_2 ($2500/\text{ton}$)
End Product Possibilities

- **Dimethyl Ether**

 Uses: alternative fuel (developing countries)

 (1) $3 \text{CO} + 3 \text{H}_2 \rightarrow \text{CH}_3\text{OCH}_3 + \text{CO}_2$

 (2) $2 \text{CO} + 4 \text{H}_2 \rightarrow \text{CH}_3\text{OCH}_3 + \text{H}_2\text{O}$

 Sale Price: $109/\text{ton}$

 - using H_2 ($2500/\text{ton}$)
End Product Possibilities

- **Acetic Acid**

 Uses: photo film, vinyl acetate, vinegar

 \[
 \text{CH}_3\text{OH} + \text{CO} \rightarrow \text{CH}_3\text{COOH}
 \]

 Sale Price: $800/ton
 - results from CH\(_3\)OH that results from H\(_2\) ($2500/ton)
End Product Comparison

- **Sale Price ($/ton)**
- **Price ($/ton MSW)**
- **Revenue ($ MM/yr)**

<table>
<thead>
<tr>
<th>Product</th>
<th>Hydrogen</th>
<th>Ammonia</th>
<th>Synthetic Fuel</th>
<th>Methanol</th>
<th>Polycarbonates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sale Price</td>
<td>2500</td>
<td>200</td>
<td>750</td>
<td>150</td>
<td>50</td>
</tr>
<tr>
<td>Price</td>
<td>100</td>
<td>50</td>
<td>100</td>
<td>25</td>
<td>10</td>
</tr>
<tr>
<td>Revenue</td>
<td>1000</td>
<td>500</td>
<td>1000</td>
<td>500</td>
<td>1000</td>
</tr>
</tbody>
</table>
Product Possibilities

- Ammonia
- Polycarbonates
- Synthetic Fuel
- Methanol
- Dimethyl Ether
- Acetic Acid
- Hydrogen
Synthetic Gas

<table>
<thead>
<tr>
<th>Component</th>
<th>Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂</td>
<td>12.5%</td>
</tr>
<tr>
<td>CO</td>
<td>20.8%</td>
</tr>
<tr>
<td>CH₄</td>
<td>5.7%</td>
</tr>
<tr>
<td>H₂O</td>
<td>47.9%</td>
</tr>
<tr>
<td>CO₂</td>
<td>12.5%</td>
</tr>
<tr>
<td>N₂</td>
<td>0.6%</td>
</tr>
</tbody>
</table>
Hydrogen Plant

Steam Reformation

Water-Gas Shift

CO₂ Removal

Pressure Swing Adsorption

Syngas → H₂O → H₂O → CO₂ → CO, CO₂, CH₄, N₂ → 99.999% Pure H₂
Steam Reformation

- Coal fired furnace
- Heat Load of 140 Million Btu/hr
- Steam:Methane = 8
- 170 tubes, 5-in ID, 40 ft. long
- 380,000 lbs Nickel-Alumina Catalyst

\[
\begin{align*}
\text{CH}_4 + \text{H}_2\text{O} & \rightarrow 3\text{H}_2 + \text{CO} \\
\text{CO} + \text{H}_2\text{O} & \rightarrow \text{CO}_2 + \text{H}_2 \\
\text{OVERALL REACTION:} & \quad \text{CH}_4 + 2\text{H}_2\text{O} \rightarrow \text{CO}_2 + 4\text{H}_2 \\
\Delta HR_X & = 84,000 \text{ Btu/lbmol} \\
T & = 1600 \degree \text{F} \\
P & = 20 \text{ atm}
\end{align*}
\]

33.8 MM Btu/hr
Hydrogen Plant

Syngas:
- 24% H₂
- 39.9% CO
- 10.9% CH₄
- 24% CO₂
- 1.2% N₂

3050 lbmol/hr

Steam Reformation

56% H₂
15.8% CO
0.1% CH₄
26.9% CO₂
0.9% N₂

4380 lbmol/hr

new york municipal solid waste
Water-Gas Shift

- 300,000 lbs Chromia-promoted iron catalyst
- Steam:CO = 8
- 4 X 36ft reactors
 - 100 tubes
 - 3-in ID
- 2 X Heat Exchangers
- Flash Drum

\[
\text{CO + H}_2\text{O} \leftrightarrow \text{CO}_2 + \text{H}_2
\]

36.8 MM Btu/hr

9.8 MM Btu/hr
Hydrogen Plant

Water-Gas Shift

- 56% H₂
- 15.8% CO
- 0.1% CH₄
- 26.9% CO₂
- 0.9% N₂
- 4380 lbmol/hr

- 62.3% H₂
- 1.5% CO
- 0.1% CH₄
- 0.2% H₂O
- 35.2% CO₂
- 0.8% N₂
- 4960 lbmol/hr
CO₂ Removal

Diagram showing a process flow for CO₂ removal.
Hydrogen Plant

62.3% H₂
1.5% CO
0.1% CH₄
0.2% H₂O
35.2% CO₂
0.8% N₂

4960 lbmol/hr

CO₂ Removal

96.4% H₂
2.3% CO
0.2% CH₄
0.2% H₂O
0% CO₂
1.2% N₂

3203 lbmol/hr

new york municipal solid waste
Pressure Swing Adsorption

$W = 1022.2 \text{ HP}$

$W = 5551.58 \text{ HP}$
Hydrogen Plant

Pressure Swing Adsorption

96.4% H₂
2.3% CO
0.2% CH₄
0.2% H₂O
0% CO₂
1.2% N₂

3203 lbmol/hr

99.99% Pure Hydrogen

3090 lbmol/hr
MSW Processing Plant
Capital Costs

• Based on plant processing 1500 TPD MSW

• Capital Investment
 – Purox Pyrolysis Plant
 – Hydrogen Production Plant

• Production Costs
 – Operating Costs
 – Transportation Costs
Purox Pyrolysis Capital Costs

<table>
<thead>
<tr>
<th>Item</th>
<th>1975</th>
<th>2004</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction</td>
<td>47.1</td>
<td>126.9</td>
</tr>
<tr>
<td>Interest during construction</td>
<td>4.30</td>
<td>11.59</td>
</tr>
<tr>
<td>Startup Costs</td>
<td>2.56</td>
<td>6.90</td>
</tr>
<tr>
<td>Working Capital</td>
<td>1.56</td>
<td>4.21</td>
</tr>
<tr>
<td>TOTAL CAPITAL INVESTMENT</td>
<td>55.5</td>
<td>149.6</td>
</tr>
</tbody>
</table>
Hydrogen Capital Costs

<table>
<thead>
<tr>
<th>Process</th>
<th>Equipment</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steam Reformation</td>
<td>Compressor</td>
<td>$5,727,400</td>
</tr>
<tr>
<td></td>
<td>Steam Reformer</td>
<td>$2,000,000</td>
</tr>
<tr>
<td>Water-Gas Shift</td>
<td>High Temp. Reactor X 4</td>
<td>$1,029,776</td>
</tr>
<tr>
<td></td>
<td>Heat Exchanger</td>
<td>$8,000</td>
</tr>
<tr>
<td></td>
<td>Flash Drum</td>
<td>$112,000</td>
</tr>
<tr>
<td>CO2 Removal</td>
<td>Stripper</td>
<td>$1,694,000</td>
</tr>
<tr>
<td></td>
<td>Turbine</td>
<td>$312,000</td>
</tr>
<tr>
<td></td>
<td>Slump Tank</td>
<td>$26,000</td>
</tr>
<tr>
<td></td>
<td>Compressor X 4</td>
<td>$964,000</td>
</tr>
<tr>
<td></td>
<td>Flash Drum X 3</td>
<td>$126,000</td>
</tr>
<tr>
<td></td>
<td>CO2 Storage Tank</td>
<td>$3,400,000</td>
</tr>
<tr>
<td></td>
<td>Pump</td>
<td>$114,000</td>
</tr>
<tr>
<td></td>
<td>Refrigerator</td>
<td>$485,000</td>
</tr>
<tr>
<td>PSA stuff</td>
<td>PSA</td>
<td>$2,201,000</td>
</tr>
<tr>
<td>Storage/Production</td>
<td>Compressor</td>
<td>$3,000,000</td>
</tr>
<tr>
<td></td>
<td>Heat Exchanger</td>
<td>$1,500</td>
</tr>
<tr>
<td></td>
<td>Storage Tanks X 12</td>
<td>$3,700,000</td>
</tr>
</tbody>
</table>

Total Equipment Costs: $24,900,676
Waste to Hydrogen TCI & Production Costs

- **TCI of Plant**
 - $300 million

- **Production Costs**
 - $56 million/year
 - Utilities, Catalysts, Labor
 - Do not account for transportation costs
Deterministic Model

• Advance the previous deterministic model
• New additions:
 – Refined Plant Investment & Production Costs
 – Allowed plants to expand by incorporating new capital costs
 – Updated contracts and locations
 – Developed new transportation costs

new york municipal solid waste
Refined Plant Investment & Production Costs

Scaled Up TCI

Scaled Up Operating Costs

y = 0.0358x - 3.9913

y = 0.1356x - 20.722
Contracts & Locations

- Updated contracts
 - Many contracts recently expired

- Reconfigured mileage
 - Account for highways and driving times
 - More accurate mileage from transfer location to possible facilities
Plant Transportation Costs

- **MSW Semi-Dump Trucks**
 - Capacity = 15 tons of waste
 - $80,000 each
 - Mileage = 6 miles/gallon
 - Lifetime = 1MM miles

\[
\text{Cost}_{MSW} = \frac{\text{(waste/day)}}{(\text{Capacity}_{MSW} \times \text{(#trips/day))}}
\]

- **H}_2\text{ Tanker Trucks**
 - Capacity = 4.5 tons hydrogen
 - Tube Trailer = $340,000
 - Truck Cab = $110,000

\[
\text{Cost}_{H}_2\text{truck} = \frac{\text{(H}_2\text{tons/day)}}{(\text{Capacity}_{H}_2\text{trucks} \times \text{(#trips/day))}}
\]
Private Enterprise

• **Private**
 – Model will determine profitability based on NPW
 – Determine if ROI is greater than 10%
 – Raise money through investors
• **Public as an alternative**
 – Raise money through municipal bonds
 – Model will determine minimum disposal fee without process losing money
Mathematical Model

• Pre-determined Factors
 – Process: Pyrolysis
 – Final Product: Hydrogen

• Implement deterministic, stochastic mathematical model for logistic planning
Deterministic Model

- Pyrolysis- TCI & Operating Cost
- Material Balances, Objectives, & Constraints
- Hydrogen- TCI

Ownership
- Private
- Public

Processing/Production Plant
- Size/Capacity
- Expansions at time t, plant j

Location

Transportation
- Transfer of wastes from transfer station to plant
- Transfer of products to consumers

Consumers
Importance of Model

- Aid in planning of process
 - Implement and control the most efficient and cost-effective flow of materials in relation to time
 - Account for current MSW disposal contracts
 - Encompass transport of MSW and final products
 - Execute the right number, location, and capacity of plants
 - Incorporate expansions in relation to time, money, and the amount of trash
Private: Annual Waste Processed compared to Waste Available

- By 2014, 86% of MSW is processed.
- Over a 20-year span, 78% of MSW available is processed.
- 197 MSW Semi-Trucks

![Graph showing annual waste processed compared to waste available.](chart.png)
Private: Waste Processed/Expansions at Each Plant

- Amount of Waste Processed (tons/day)
- Year:
 - Oxford, NJ
 - Hempstead, NY
 - Islip, NY
 - Babylon, NY
 - Huntington, NY
 - Charlespoint, NY

Graph Details:
- Y-axis: Amount of Waste Processed (tons/day)
- Color Legend:
 - Green: Oxford, NJ
 - Red: Hempstead, NY
 - Yellow: Babylon, NY
 - Blue: Huntington, NY
 - Orange: Charlespoint, NY
- Total Capital Investment (20 years) = $2.0 MMM
- NPW (20 years) = $198 MM
- Return on Investment = 12.5%
- 508 Hydrogen Tankers
- Disposal Fee $45/ton
- Saves City of New York over $54MM/y
Investment Strategy

- Private Feasible
 - Total Capital Investment (20 years) = $2.0 MMM
 - NPW (20 years) = $198 MM
 - Return on Investment = 12.5%
Public as an Alternative
Public: Cumulative Cash

Year:
- $1.50
- $1.00
- $0.50
- $0.00
- $0.50
- $1.00
- $1.50
- $2.00
- $2.50
- $3.00
- $3.50

Year:
- 2007
- 2012
- 2017
- 2022
- 2027

New York Municipal Solid Waste

CEMS
Public: Cumulative Cash with Bonds

Year:
- 2007
- 2012
- 2017
- 2022
- 2027

Cash Savings ($MM/year):
- $3.00
- $2.50
- $2.00
- $1.50
- $1.00
- $0.50
- $0.00
- -$0.50
- -$1.00

B1, B2, B3 markers.
Public: Bonds

All bonds are 10 year bonds at 4% interest

- Total Amount In Bonds = $1.14 MMM
- Total Interest Paid = $5.5MM
 - Amount issued in 2007 = $974 MM
 - Pay off amount (w/interest) = $1.44 MMM
- Bond 1
- Bond 2
 - Amount issued in 2011 = $136 MM
 - Pay off amount (w/interest) = $201 MM
- Bond 3
 - Amount issued in 2014 = $30 MM
 - Pay off amount (w/interest) = $44 MM
Public: Annual Waste Processed compared to Waste Available

- By 2015, 84% of MSW is processed
- Lifetime: 69% waste processed
- No tax
- Fee charged to city $35/ton saves city $75 MM/y
- TCI = $1.9 MMM
Questions