DEVELOPMENT OF AN ARSENIC MITIGATION STRATEGY FOR BANGLADESH

Brian Clifton and Stewart Harwood, University of Oklahoma

Executive Summary

An activated alumina-based arsenic removal device has been developed and optimized for arsenic removal from well water in rural Bangladesh. The cost of implementing this plan is \$4.79 per person, for each of the 80 million people affected. The cost over the ten year lifespan of the project is \$383 million. The activated alumina device is designed to connect directly to the existing pumps used to draw water out of the wells, and to provide clean water at a spigot on the side of the device.

Bangladesh has a population of 140 million people. Since 1993, arsenic contamination has been discovered in the majority of Bangladesh's groundwater wells. The World Health Organization (WHO) standard for arsenic in drinking water is 10 ppb or less. Thirty million people in Bangladesh are currently drinking water with greater than 50 ppb arsenic, and fifty million people are drinking water with levels between 10 and 50 ppb. The figure below illustrates the widespread nature of the problem, by showing the percentage of people in each region of the country drinking toxic levels of arsenic.

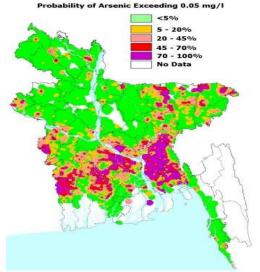


Figure 1: Extent of Arsenic Contamination in Bangladesh

A plan for country-wide arsenic mitigation is proposed, which prioritizes unit placement based on the level of arsenic contamination. Before this plan is implemented on a national level, it is proposed to carry out a pilot project in Gazipur Union, in the Haim Char Sub-District of the Chandpur District. This small region of 5,500 people is at high risk for arsenic poisoning. Both user feedback and performance data would be used to refine the design of the unit before wide scale implementation.

A diagram of the arsenic removal device is shown below, and is followed by a table summarizing the key design aspects of the device.

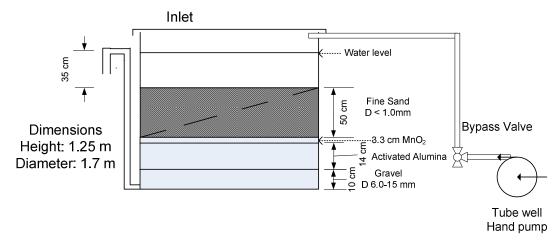


Figure 2: Diagram of Activated Alumina Arsenic Removal Device

Table 1: Properties of the Activated Alumina Arsenic Removal Device

Variable	Optimized Value
Shape	Round
Diameter (cm)	170
Sand size (mm)	0.35
Hydraulic Loading (L/hour)	400
Standing Water Height (cm)	35
Fine Sand Depth (cm)	50
Gravel Depth (cm)	10
MnO ₂ Depth (cm)	3.3
Activated Alumina Depth (cm)	14
Total Unit Height (cm)	125
Total Unit Height (ft)	3.7
Mass of MnO ₂ (kg)	114
Mass of Activated Alumina (kg)	254
Sand Filter Maintenance	Wet harrowing

Activated alumina and reverse osmosis based designs are studied in this report, and compared to two designs developed by other researchers. The activated alumina device minimizes overall cost per person and is easier to use, thus it was chosen to place at each arsenic-contaminated well head. The table below summarizes the key comparisons made.

Table 2: Comparison of Activated Alumina with Other Arsenic Removal Devices

	Activated	Reverse	Iron Oxide Coated	Arsenic BioSand
	Alumina	Osmosis	Sand	Filter
Advantages	Simple,	Simple	One Step Process	User Friendly
	Economical	Operation		
Disadvantages	Large	Rejected	Sand manufacturing	Unconventional;
	diameter-	water;	is complicated	Inconsistent
	5.6 ft	Requires		results
		pressure		
Cost				
Install	\$1140	\$290	N/A	\$40
Maintenance	\$29.33	\$31	N/A	N/A
Cost/Person/Yr		_		
Install	\$4.56	\$29	N/A	\$4.00
Maintenance	\$0.12	\$3.10	N/A	N/A
Arsenic	Sufficient	Sufficient	Sufficient	Inconsistent
Removal				results
Design	Slow sand	Slow sand	Iron Oxide Coated	Slow sand filter
	filter plus	filter	Sand used in slow	plus rusted nails
	MnO ₂ and	followed by	sand filter	
	alumina	membrane		
Lifetime	20 years for	3 years	Replace/regenerate	N/A
	AA & MnO ₂	membrane		
	replacement	replacement		
Maintenance	Regenerate	Membrane	Must Replace Sand	Must Replace
	AA yearly	lasts 3 years		Nails
Manufacture	Very similar	Slow sand	Complicated sand	Addition of nail
	to slow sand	plus RO unit	manufacturing	container
Credibility	Untested;	Trusted,	OU Master Thesis	MIT MBA Report
	technically	design in use	Environmental	
	sound		Engineering	

The manufacturing and distributing of these devices will increase as time progresses, contingent on funding also increasing. At the beginning of the project, only 20 devices per month are manufactured, requiring only \$25,000 per month. At the end of the project, over 6000 devices per month are manufactured, requiring

nearly \$8 million per month. The figure below demonstrates how the required funding per month increases as the project grows in scale.

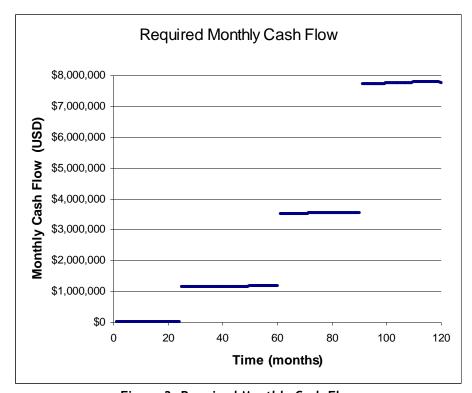


Figure 3: Required Monthly Cash Flow

Arsenic in groundwater is an immediate health risk to approximately 80 million people in Bangladesh. It is recommended that immediate action be taken to begin the mitigation process.