

Commercialization of Hydrated Gas

James Mansingh

Jeffrey Melland

Objective Statement

☐ Methane hydrates hold a massive potential for production of natural gas, so we set out to find an economical way to produce hydrated gas and deliver it to market

Intro to Hydrates

□ Methane & water have the ability to form hydrates.

Clathrates

- Methane trapped in a cubic water crystals
- Unstable at standard temperature and pressure
- □ Estimated to produce 150 units of gas

Overview

- Operations
 - Locating
 - Drilling
 - Production
 - Piping
 - Liquefaction
 - Shipping
 - Regasification
 - Sales

Value Chain

\$/MMBtu

→Piping

*/MMBtu Market

(\$/MMBtu)

\$/MMBtu

Locating

Locating

- □ Seismic Surveying
 - Acoustic
- □ Seismic Analysis
 - 2 month project, 3 man team
 - \blacksquare Block = 3 square miles
 - Usually shoot 30-60 blocks at a time
 - Project a 2000 square km area with a depth of 1200ft to 3300ft

Locating cont'

- □ Seismic Survey Costs
 - \$30,000 for shooting a block
 - \$12,000,000 for the 2000 km² area with a depth of 400m-1000m
 - \$3,000,000 for reprocessing cost and time for the seismic survey
 - \blacksquare Total Cost = \$15,000,000

Drilling

- Drilling and Measurements
 - Directional drilling and basic logs to locate promising zones

Drilling

- ReservoirEvaluation
 - In depth logs of promising areas
 - Perforations into methane hydrated areas

Drilling

□ WellStimulation

Pressurized
 solution
 addition into
 the formation
 to stimulate
 backflow of
 desired
 product

- Drilling and Measurements
 - 17 day projects
 - 90fph thru basic formation
 - 10fph thru hydrate formation
- □ Reservoir Evaluation
 - 2 separate day projects
 - Log 1200ft to 3300ft
 - HILT with FMI and Sonic
 - Two 3ft perforations at 2100ft & 2200ft
- □ Well Stimulation
 - 3 separate fracturing day projects, 1 casing job, 1 cementing job
 - 70 miles each way to get to location

Drilling Cont'

- □ Basis for a well
 - 25 day project
- □ Initial investment
 - \$20.5 million
- □ Yearly operating cost
 - \$8.2 million

- Drilling and Measurements
 - \$895,500
- □ Reservoir Evaluation
 - \$14,700
- □ Well Stimulation
 - \$5,840,000
- □ Well Completions
 - \$68,300

Production

- □ Assumptions
 - 165 scm gas per cubic meter of hydrate
 - Formation behaves as a tank
 - Formation is homogenous and isotropic
 - No intermediate phases
 - Isothermal process
 - Rock expansion is negligible
 - 300 m vertical fractures in 2 directions, 180° separation
 - Negligible pressure gradient along fractures
 - Hydrate formation is on average 70 m deep

Production cont'

□ Kinetics

- Dissociation is faster than diffusion under down hole conditions
- Flow through the formation is much slower
- Focus on flow through formation
- Linear Pressure gradient

$$\frac{dx}{dt} = K_0 e^{\frac{-E}{RT_s}} \left(f_{eH} - f_{\infty} \right)$$

$$G_f = \frac{V_f}{Z\Re T} \left(\frac{P_{eH} + P_{wf}}{2}\right) \quad \frac{Q_g}{A} = k\nabla P$$

$$G_{eH} = 165V_{eH}$$
 G_{p}
 $G_{fg} + G_{P} = G_{eH}$
 Q_{g}

 $\nabla P = \frac{dP}{dx} = C$ $C = \frac{P_{eH} - P_{wf}}{X}$ $P(x) = \frac{x(P_{eH} - P_{wf})}{X} + P_{wf}$

P = 5200 kPa

$$Q_{g} = \frac{dG_{P}}{dt}$$

$$X \quad \Delta t = \frac{\Delta G_{P}}{Q_{g}}$$

P = 1600 kPa

Hydrated gas

Gas flow

Production

□ Rates may seem high, but an analysis of the velocity of the hydrate boundary shows that a max velocity of 3mm/min at the beginning of dissociation, slows to 0.24 mm/min at the end of a year.

Production cont'

Production cont'

Production

Production

Production - conclusions

- □ Control gas production initially at 10.5 MM scm/day
- □ Rate drops off to about 2.25 MM scm/day after the first month
- Expected production for the first month is 1,770,000 scm per foot of formation
- □ Expect to continue significant gas production for entire project.

Production - conclusions

- □ 22% of gas from hydrates is left down hole
- □ Exposing as much hydrate surface as possible is best way to produce gas
- Wells produce significant gas over an extended period
- □ The monthly rate is fairly accurately modeled by a power regression, this was used after the first 70 months

Piping

- □ Challenges
 - Provide a force to push the gas through the pipe
 - Preventing methane and water from reforming into a hydrate in the pipe
 - Excess water causing erosion damage to pipeline
- □ Solutions
 - Use Bernoulli's formula to solve for minimal compressor power required to move gas, simulated in ProII
 - Remove water from gas via a dehydration station
 - Maintain gas above 4C to prevent refreezing

Piping

- □ Local Mountain Pipeline Assumptions for Calculations
 - 4 miles of pipe required to reach bottom of mountain
 - 8" pipe from well site
 - 12" pipe header into compressor station
- □ Compressor/TEG Assumptions for Calculations
 - Producing an average 10.5 million cubic feet of gas per day
 - Use Centrifugal pumps rated 6000kw and 75kWfor commercial industry
- □ Pipeline Assumptions for Calculations
 - Roughly 50 miles from the first compressor station to LNG Plant
 - Temperature above 4C and pressure above 1000kPa
 - 36" main pipeline to the LNG Plant

- □ TEG Dehydration Station
 - **\$450,000**
- Compressor Costs
 - \$3.6 million for a 6000kW compressor (9 total)
 - \$0.3 million for a 560kW compressor (6 total)
 - \blacksquare Total compressor cost = \$11.5 million
- Piping Costs
 - \$60 million for 36" pipe going 50 miles

Piping cont'

- Equipment Costs
 - \$94 million
- □ Initial investment
 - \$270 million
- □ Yearly operating cost
 - \$87 million

Liquefaction cascade

Liquefaction

- □ Heat exchangers
 - 266 at 200 m² each (52,200 m² required)
 - \$14.8 million
- □ 4 compressors
 - 53 at 6000 kW each (309 MW required)
 - \$68.4 million
- □ Flash drum \$250,000
- □ Storage tank \$12,200

Liquefaction

- □ 1.25 billion kg/year capacity
- □ \$500 million investment
- □ \$270 million yearly operating costs
 - \$140 million per year for electricity
 - \$60 million for depreciation
 - Taxes, insurance, repairs personnel, etc...

Shipping

- □ LNG will be transported from Kamchatka to Japan via one LNG ship
- □ Assumptions
 - 8 day sea voyage one way trip
 - 6 days for loading, unloading and in port maintenance operations
 - 22 day round trip voyage
 - 15 nm average speed of LNG ship

- □ Costs
 - Round trip \$1.5 million
 - Daily operational cost is a function of building costs, financing and operating the ship
 - One LNG ships in operation will cost \$65,000 per day

Shipping cont'

- □ 3 Ships Costs
 - \$150 million each
- □ Initial investment
 - \$58.1 million
- □ Yearly Operating Costs
 - \$71.2 million

Regasification

- □ Challenges
 - Phase change of LNG to gas methane
 - Achieve regasification with minimal power requirements
- □ Solutions
 - Use seawater as heat source
 - Use propane as a medium b/w seawater and LNG to harness expansion power of a gas and generate power

Regasification

Regasification cont'

Q=	-3155,863	HP
h =	58.4	ft
P=	14,70003641	psi
volumetric flowrate " discharge pressure =	353,5716666	kPa-m^3/s
Power in kW =	-2353,327039	kW
cost of expander (max value at 1000kW) =	\$157,862	
Number of Expanders needed =	1	approximately = 3
cost (horizontal pump @ 174 kPa-m^3/s) =	\$473,586.00	
 Selling price of Expanders energy in kW = 	-\$188.27	per hour
	-\$4,518.39	per day
	-\$1,649,211.59	per year

Regasification cont'

- Equipment Costs
 - \$14 million
- □ Initial Investment
 - \$84 million
- □ Yearly Operating Costs
 - \$17 million

Decisions

- □ 1 LNG Ship
 - 3.5 scm/day
 - TCI \$690 million
 - Expected ROI 7% per year
 - Final Cash Position of \$1.74 billion
- □ 2 LNG Ship
 - 7.0 scm/day
 - TCI \$1.25 billion

- Expected ROI 12% per year
- Final Cash Position of \$4.17 billion
- □ 3 LNG Ship
 - 10.5 scm/day
 - TCI \$1.9 billion
 - Expected ROI 12% per year
 - Final Cash Position of \$5.8 billion

Regret

□ Regret analysis is the analysis of unrealized profit associated with production choices

Regret

	lowest	low	expected	high	highest	Average
1 Ship	\$	\$	\$	\$	\$	\$
	(1,189.42)	(479.07)	732.96	2,597.31	3,220.50	976.46
2 Ship	\$	\$	\$	\$	\$	\$
	(1,605.89)	(186.40)	2,237.76	5,952.30	6,704.74	2,620.50
3 Ship	\$	\$	\$	\$	\$	\$
	(2,311.69)	(193.75)	3,401.06	9,113.69	11,154.77	4,232.82
highest	\$	\$	\$	\$	\$	\$
	(1,189.42)	(186.40)	3,401.06	9,113.69	11,154.77	4,232.82

Regret

	lowest	low	expected	high	highest	Maximum regret
1	\$	\$	\$	\$	\$	\$
Ship		292.67	2,668.10	6,516.38	7,934.27	7,934.27
2	\$	\$	\$	\$	\$	\$
Ship	416.47		1,163.30	3,161.39	4,450.02	4,450.02
3	\$	\$	\$	\$	\$	\$
Ship	1,122.27	7.35	-	-		1,122.27

minimax \$ regret 1,122.27

Risk

Distribution for NPW 3 ships/M51

Pipeline to China vs. LNG Conversion

- □ LNG Costs
 - (Using 3 ships)
 - FCI \$1.3 billion
 - WC \$318 million
 - TCI \$1.7 billion

- □ Gas Costs
 - (Using 32" pipe)
 - FCI \$1.8 billion
 - WC \$798 million
 - TCI \$2.6 billion
- □ Difference in Gas vs. LNG
 - FCI \$404 million
 - WC \$480 million
 - TCI \$883 million
 - TPC \$260 million

Pipeline to China vs. LNG Conversion

Total Capital Investment (\$Million)

288	

□ TCI	\$1,700	% of TCI
Locating	\$15	0.88%
Drilling	\$21	1.80%
Piping	\$270	19.11%
Liquefaction	\$1,252	59.59%
Delivery	\$58	15.70%
Regasification	\$84	3.79%

Total Capital Investment (\$Million)

Total Production Cost (\$Million)

200

□ TPC	\$453	% of TPC
Drilling	\$8.2	1.80%
Piping	\$87	19.11%
Liquefaction	\$270	59.59%
Delivery	\$71	15.70%
Regasification	\$17	3.79%

Total Production Cost (\$Million)

Value Chain

\$0.06/MMBtu

→Piping

\$3.36/MMBtu \$0.13/MMBtu **Varket**

(\$7.00/MMBtu)

\$0.7/MMBtu

\$0.53/MMBtu

\$2.00/MMBtu

Value Chain

Profit

(\$3.64/MMBtu)

Cumulative Cash Position \$9 gas

time (years)

Cumulative Cash Position \$8 gas

time (years)

Cumulative Cash Position \$7 gas

time (years)

Net Present Worth

- □ \$7 gas
 - Expected NPW of \$3.4 billion
 - 12% ROI per year
 - 180% ROI over all
- □ \$8 gas
 - Expected NPW of \$4.5 billion
 - 16% ROI per year
 - 240% ROI over all
- □ \$9 gas
 - Expected NPW of \$3.4 billion
 - 20% ROI per year
 - 300% ROI over all

Questions?

References

- □ Sloan, E. Dendy Jr., <u>Clathrate Hydrates of Natural Gases</u>, 1998
- □ Carroll, John J., Natural Gas Hydrates: A guide for Engineers, 2003
- □ Foss, Michelle Michot, <u>Introduction to LNG</u>, 2003
- □ Jung, Yonghun, <u>Economic Feasibility of Natural Gas Pipeline Projects in the Northeast Asia</u>, 2002
- □ Mandil, Claude, <u>The Global Outlook for LNG</u>, 2004