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Problem Statement

• Develop a marketable oxygen 
generator for local onsite 
production in medical facilities

• This system should compete with 
current distribution prices
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Recommendation

• Two adsorption system, 
incorporating both N2 and Argon 
pressure swing adsorption, is the 
recommended system

• Onsite cryogenic distillation is not 
profitable
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What We Need 

• Hospital Need - Oxygen
– 3000 liquid gallons per month 

(relatively small)

– 1.24 lb-mol/hr

– 99.2% Purity- FDA Standards
• Dry

• Remove impurities 
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Process Selection 

• Criteria
– Safety: NFPA 50 and NFPA 99

– Purity: USP Standards

– Space of system

– Cost of Equipment and 
Operations
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Optimization

• Criteria for optimization
– Needs of hospital i.e. supply and 

storage
– Low maintenance/high convenience
– Process location and space 

availability
– Economics

• Tools for optimization
• Pro/II 

• Microsoft Excel
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Options

• Membrane
– High purity; 

still does not 
achieve 
needed purity

Hollow fiber membrane
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Options

• Electrolysis
– Process cost is expensive; electricity 

cost alone is more than twice the cost 
of buying

• Gibbs Free Energy
• ∆G = ∆H-T∆S
• 450 kJ/mol O2

�$38,000/yr energy 
costs vs. $19,000
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Options

• Chemical
– Utilization of a chemical 

reaction; unwanted product 
waste

)(2)()()( 222 aqHFgOlOHgF +→+
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Options

• Liquefaction
– Can be used to achieve purity of 

99.2%    

• Pressure swing adsorption
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General Theory

• What is cryogenics?
– Nitrogen boils at -320 oF 

– Argon boils at -303 oF 

– Oxygen boils at -297 oF

• Carl von Linde, 1985
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General Theory

Linde Process 
• Simplest liquefaction 

cycle

• Compressor, heat 
exchangers, J-T valve

• Valve Operation below 
inversion T and P

LOX

Air 

Feed

Nitrogen 

Exhaust
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General Theory

Claude Process

• Modern high volume 
Cryo-plants

• Compressor, HX, 
Expansion Turbine

• Below inversion T 
and P spec. not 
required

• Hybrid of both the 
Brayton and Linde 
Cycle
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General Theory

Pressure Swing Adsorption
• A separation process through 

which a bed packed with 
molecular sieve or zeolite 
adsorbents are used to selectively 
adsorb a desired substance from a 
pressurized feed stream
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General Theory

• Two equal beds operate in 
alternating modes: 

1) adsorption

2) desorption
– this allows for continuous operation

• While one column is in mode 1 the 
other will always be in mode 2
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Three Options Considered 

1. Air Feed into Cryogenic 
Distillation 



20

Three Options Considered

2. Air Feed into an N2 Adsorber 
followed by a Cryogenic 
Distillation
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Three Options Considered

3. Air Feed into an N2 adsorber 
followed by Argon removal
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Air Feed into Cryogenic Distillation

Feed

78% N2

21% O2

1% Argon

Compressor

Discharge Pressure 
3000 psi

Product

1.24 lb-mol/hr

99.2 % O2
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Air Feed into Cryogenic Distillation

• Required Flow Rate 
(for 1.24 lb-mol/hr 02) 

95,000 ft3/hr

• Requires unfeasible energy to 
compress 

Nearly 1,400 kW ���� $700,000/yr
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Air Feed, N2 Adsorber, 
Cryogenic Distillation

• Two Designs
– With and Without Expander

• Results and conclusions
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Air Feed, N2 Adsorber, 
Cryogenic Distillation

• First 
Design

Feed
21,000 ft3/hr

95% O2

5% Argon

Compressor

Discharge Pressure 

175 psi

Product

1.24 lb-mol/hr

99.2 % O2

Expander

Expands to atmospheric
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Air Feed, N2 Adsorber, 
Cryogenic Distillation

Column $5,300 
Cold Box $34 
Compressor $105,000 
Heat Exchangers $14,560 
Expander $105,000 

Pressure Swing Adsorber - O2/N2 $3,530 

Pressure Swing  Adsorber - Purifier $1,900 
Piping $1,900 

Total Equipment Cost $237,000 
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Air Feed, N2 Adsorber, 
Cryogenic Distillation

Operating Cost

Compressor Power $35,300 
Water $900 
Total $36,200 
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Air Feed, N2 Adsorber, 
Cryogenic Distillation

• Second Design Compressor

Discharge Pressure 

2000 psi

Feed (to cryo
process)

8,000 ft3/hr
95% O2

5% Argon
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$10,600Column:

$100Cold Box:

$200,000*Compressor:

$4,000Heat Exchanger:

$3,500Adsorber (O2/N2):

$2,000Adsorber (Purifier):

$2,300Piping:

$222,500Total Capital Cost

Equipment Costs

* RIX Industries, Rick Turnquist Sales Engineer

Air Feed, N2 Adsorber, 
Cryogenic Distillation
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• OG&E Electricity: $0.058/kWh

• OKC Water:  $0.255/1000 ft3

– 3000 ft3/hr 

$75,000Total

$5000Water

$70,000Compressor Power (130 kW)

$/yrTotal Operating Cost

Air Feed, N2 Adsorber, 
Cryogenic Distillation



32

Cost Comparison

• Competitor
– Delivered: $19,000 per year

• Proposed first design
– Total cost per year: $60,000

• Operating cost: $36,000 per year 

• Proposed second design
– Total cost per year: $97,250

• Operating cost: $75,000 per year 
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How Does a Plant Do It?

• Disregarding capital costs

Refrigerant Cycle
Methane Refrigeration

Compressor

Discharge Pressure 

1000 psi

Feed
1,800 ft3/hr

95% O2

5% Argon
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How Does a Plant Do It?

• 20 kW energy

• Results in only $10,500/year 
energy costs

• Compared to $19,000/yr 
distribution price
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Cryogenic Distillation Conclusions

• The process is possible

• Energy costs are appeased by 
design incorporating more 
equipment 

• Capital cost increase due to more 
equipment inhibits typical 
hospitals from making such large 
investments

– Meaning � NO SAVINGS
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Air Feed, N2 Adsorber, 
Argon Adsorber

• Due to the infeasibility of the 
designed cryogenic system, a 
system utilizing Pressure 
swing adsorption to remove 
both N2 and Argon removal 
was designed and examined
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Air Feed, N2 Adsorber, 
Argon Adsorber– PFD

Feed
4000 ft3/hr

78% N2

21% O2
1% Argon

Exhaust Argon

Vacuum Pump

99% O2
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Nitrogen Removal 

Langmuir isotherm for multi-component 
adsorption

• qi  = loading (mol/kg) on the adsorbent
• Qmax = maximum loading (mol/kg) on the 

adsorbent
• N = the total number of components
• Pi = the partial pressure of component i

• Qmax and bi are given  for adsorbent Oxysiv 5
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Nitrogen Removal

BxFxFF LMLqtcQ /=
QF: volumetric feed flowrate
cF  : solute feed concentration
tx   : time of the front at position Lx 

M : adsorbent mass in bed
Lx : distance traveled by the front
Lb : length of the bed

qF : loading per mass of adsorbent

(Equilibrium driven: mass transfer effects negligible)
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Nitrogen Removal 

• Column specifications (per 
column)
– Height: 7.2 ft

– Column diameter:1ft

– Column volume: 5.6 ft3

– Adsorbent weight (Oxysiv 5): 
109 kg (240 lbs.)
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Argon Removal

Options
• Equilibrium PSA

• Rate based PSA
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Argon Removal

• Equilibrium PSA
– Operates similar to N2 

removal system

– O2 and Ar have similar 
physical properties and 
adsorption isotherms

– Nearly equal amounts 
adsorbed resulting in lower 
yields



43

Argon Removal

Langmuir-Freundlich isotherms for O2 and Ar 
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Argon Removal

• Kinetic (rate based) separation
– O2 adsorbs at a much higher rate than 

Ar 

– Obtains 99% purity stream by the 
adsorption oxygen

– BF-CMS (adsorbent) produces 
.01157 kg product/kg of adsorbent 

– 52.22% yield

Rege and Yang Kinetic Separation of Oxygen and Argon Using Molecular Sieve Carbon F
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Argon Removal

Rate based separation design 
equations

• Linear Driving Force Model

• t = time
• De= effective particle diffusivity
• Rp = radius of a particle
• qRp = loading at particle surface 
• = average loading of component on adsorbent bed
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Fractional Uptake vs. time for Oxygen and Argon on Bergbau-Forschung CMS

Argon Removal
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Argon Removal

• Column specifications (per 
column)
– Height: 16.4 ft

– A Column diameter: 2.5ft

– Column volume: 80.7 ft3

– Adsorbent weight (BF-CMS): 
1554 kg (3425.9 lbs)
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Operating conditions

• Nitrogen system
– Inlet flowrate of 4000 ft3/hr
– Feed Air compression to 45 psia
– Breakthrough time of 1 minute 

(cycle time of 2 min)

• Argon system
– 1.24 lbmol/hr product flowrate
– Air compressed to 2 atm
– Desorption takes place at .2 atm
– 99% product oxygen
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Materials

52Silica gel $2 / lb

6850BF-CMS $3 / lb

480Oxysiv 5 adsorbent $5.5 / lb

lblbAdsorbents

26525Frame (Steel) $2 / ft2

24Dryer Canister (Al)

12Low pressure storage tank (Al)

26023Adsorption Columns (Al) $1.5 / ft2

ft2ft2Metal

ArN2
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Equipment Cost Summary

11000Control Computer

2220Check valve

22863-way solenoid valve 

225Fan

1100Vacuum pump

$/itemOther parts

1150Purge

15365Feed

# of items# of items$Compressors

1063.611/2" Sch. 40 Copper

ftft$ / ftPiping

ArN2Price
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System Equipment Costs

$34,200Final Cost with Additions

$150.00High pressure storage tank

$2,500.00Tank fill Compressor

Additional Costs (based on need)

$31,600Final Cost
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Results

• System occupies 20 by 20 ft2 

area

• Yearly energy costs- $8,500 

• Average yearly cost of 
$15,150 over 10 year life of 
machine
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Comparison

• Average yearly distribution 
costs

$19,000

• Average yearly O2n-site 
generator costs

$8,500

• Average Yearly savings

$4,000
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Business Plan for 
Adsorption System

• Open market for this type of 
equipment
– Hospital need

– Dependence on distributors

– Stability of product price

• Oklahoma
– Approximately 350 medical 

facilities
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Business Costs 

$119,500Total

$2,000Clerical Supplies

$17,500Trailer

$90,000Truck

$10,000Tools

Fixed Costs
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$354,850Total

$39,000Fuel

$11,950

$23,900Insurance and Permits

$280,000Salaries

Operating Costs per year

Equipment Maintenance
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• Factors include:
– Convenience

– Maintenance

– Space

– Reliability

– Safety

• H is the product appeal determined on 
the demand factors

Demand Model



58

Demand Model

• β represents product 
preference
– Hc is competitor appeal
– Hd is new design appeal 

92.==
d

c

H

Hβ

0.70Hc=Σwiyc=0.76Hd=Σwiyd=1.00Total=

0.8080.7070.10Safety

0.8080.9090.10Reliability

0.6060.6060.20Space 

0.7070.6060.20Maint./Op. Cost.

0.7070.9090.40Convenience

ycYcyd Yd wiFactor 
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Demand Model

• Consumer demand equation

• Solve for new design demand, dd

β

α

αβ
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Demand Based Sales Prediction

• α – The public 
knowledge of this 
product 

• Varying Salespeople
• Responsibilities

– Schedule 
meeting with 
potential clients

– Repeat visits 
when requested 
or periodically

• Had to increase 
salespeople due to 
demand model 
behavior
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Demand Based Sales Prediction

• Optimized selling price index

• Each selling price influenced demand of 
design

• Optimal selling price found

– 1.9 times material costs

– Upper limit for buy – gives yearly 
20% savings

– Gives total yearly customer cost of 
$15,150
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Economic Analysis

• Sale Factor greater than 1.9 
cost of equipment

• Seven year NPV $3.5 million

• Saturate market in 

• Prediction
– Total sale of 350 Systems
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Conclusion

• Market does exist for on-site 
oxygen production

• On-site cryogenic oxygen 
production not feasible due to 
high capital costs

• Adsorption system is 
economically feasible and is 
recommended
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