Refinery Modeling

Aaron Smith, Michael Frow, Joe Quddus, Donovan Howell, Thomas Reed, Clark Landrum, Brian Clifton May 2, 2006

The Big Black Box

Crude B

The

Demand

Crude A

Big

Crude C

Black

Profit

Costs

Box

Hydrotreating

- Removal of sulfur, nitrogen, and aromatics.
- Government regulations are leading to increased sulfur removal requirements.

Typical Processing Conditions

	Space velocity	H ₂ /HC	H ₂ Pressure (psia)	Temperature (°C)
Naptha	1.0-5.0	300	200	290
Middle Distillate	1.0-4.0	800	400	330
Light Gas Oil	0.7-1.5	1500	700	425
Heavy Gas Oil	0.75-2.0	2000	800	355

Hydrotreating

- Cracking is assumed to be insignificant.
 - Therefore, properties such as density and molecular weight are assumed to be constant.

Hydrotreating

- Cracking is assumed to be insignificant.
 - Therefore, properties such as density and molecular weight are assumed to be constant.

Hydrotreating Model

- For MoCo catalyst reaction rates are:
 - $Rate_s = k_s C_s^2 C_{H2}^{.75}$
 - $Rate_n = k_n C_n^{1.4} C_{H2}^{.6}$
 - $-Rate_{ar} = k_{ar}C_{ar}C_{H2}$

http://www.chem.wwu.edu/dept/facstaff/bussell/research/images/thio-HDS.jpg

Delayed Coking

- Used to process bottoms from the vacuum distillate.
- Breaks down this portion into usable napthas, gas, and gas oil.

Delayed Coking

- Coke Products
 - Shot Coke
 - Sponge Coke
 - Needle Coke

Delayed Coking Model

- Most important parameter is the Conradson Carbon Residue.
 - Coke = 1.6 x CCR
 - $Gas = 7.8 + .144 \times CCR$
 - $Naptha = 11.29 + .343 \times CCR$
 - Gas oil = 100 Coke Gas Naptha
- This is an estimate from Gary and Handwerk

Effect of Pressure on Product

	CCR (wt%)	18.1	
	Correlation	15 psig	35 psig
Coke	29	27.2	30.2
Gas Yield	10.4	9.1	9.9
Naptha Yield	17.5	12.5	15
Gas Oil Yield	43.1	51.2	44.9

Delayed Coking Model

- Modified Equations
 - $-Gas = (7.4 + (.1 \times CCR)) + (.8 \times (P-15)/20)$
 - Naptha = $(10.29 + (.2 \times CCR)) + (2.5 \times (P-15)/20)$
 - $Coke = (1.5 \times CCR) + (3 \times (P-15)/20)$
 - Gas oil = 100 Gas Naptha Coke

New Correlation

	CCR (wt%)	18.1		
	Correlation (15 psig)	Correlation (35 psig)	15 psig	35 psig
Coke	27.2	30.2	27.2	30.2
Gas Yield	9.2	10.0	9.1	9.9
Naptha Yield	13.9	16.4	12.5	15
Gas Oil Yield	49.7	43.4	51.2	44.9

 Simplified reactions and equations from Case Study 108 by Rase

- (1) Napthenes \longleftrightarrow aromatics + 3 * H_2
- (2)Paraffins \longleftrightarrow napthenes $+H_2$
- (3) Hydrocracking _of _ paraffins
- (4) Hydrocracking _of _napthenes

$$(1)C_nH_{2n}\longleftrightarrow C_nH_{2n-6}+3H_2$$

$$(2)C_nH_{2n+2}\longleftrightarrow C_nH_{2n}+H_2$$

$$(3)C_nH_{2n+2} + \left(\frac{n-3}{3}\right)H_2 \longrightarrow \frac{n}{15}C_1 + \frac{n}{15}C_2 + \frac{n}{15}C_3 + \frac{n}{15}C_4 + \frac{n}{15}C_5$$

$$(4)C_nH_{2n} + \frac{n}{3}H_2 \longrightarrow \frac{n}{15}C_1 + \frac{n}{15}C_2 + \frac{n}{15}C_3 + \frac{n}{15}C_4 + \frac{n}{15}C_5$$

$$\hat{k}_{P1} = \exp\left(23.21 - \frac{34750}{T}\right), [=] \frac{moles}{(hr)(lb_cat.)(atm)}$$

$$K_{P1} = \frac{P_A * P_H^3}{P_N} = \exp\left(46.15 - \frac{46045}{T}\right), [=]atm^3$$

$$\hat{k}_{P2} = \exp\left(35.98 - \frac{59600}{T}\right), [=] \frac{moles}{(hr)(lb_cat.)(atm)^2}$$

$$K_{P2} = \frac{P_P}{P_N * P_H} = \exp\left(\frac{8000}{T} - 7.12\right), [=]atm^{-1}$$

$$\hat{k}_{P3} = \hat{k}_{P4} = \exp\left(42.97 - \frac{62300}{T}\right), [=] \frac{moles}{(hr)(lb_cat.)}$$

$$-\widehat{r_{1}} = \widehat{k_{P1}} \left(P_{N} - \frac{P_{A} * P_{H}^{3}}{K_{P1}} \right) [=] \frac{moles_napthene_converted_to_aromatics}{(hr)(lb_cat.)}$$

$$-\widehat{r_{2}} = \widehat{k}_{P2} \left(P_{N} * P_{H} - \frac{P_{P}}{K_{P2}} \right) [=] \frac{moles_napthene_converted_to_paraffins}{(hr)(lb_cat.)}$$

$$-\widehat{r_{3}} = \widehat{k}_{P3} \left(\frac{P_{P}}{P} \right) [=] \frac{moles_paraffins_converted_by_hydrocracking}{(hr)(lb_cat.)}$$

$$-\widehat{r_{3}} = \widehat{k}_{P3} \left(\frac{P_{P}}{P}\right) [=] \frac{moles_paraffins_converted_by_hydrocracking}{(hr)(lb_cat.)}$$

$$-\widehat{r}_{4} = \widehat{k}_{P4} \left(\frac{P_{N}}{P}\right) [=] \frac{moles_napthenes_converted_by_hydrocracking}{(hr)(lb_cat.)}$$

Figure 7.32

Simplified flow diagram of the Shell/UOP process. S: solvent (sulfolane). A: aromatics. NA: non-aromatics.

Paraffins & Napthenes - Blending

7.32

Simplified flow diagram of the Shell/UOP process. S: solvent (sulfolane). A: aromatics. NA: non-aromatics.

FIG. 2.7 Fractionation of high-purity aromatics

FIG. 2.11 Xylenes processing complex

Reaction driven by equilibrium

$$m-Xylene \longleftrightarrow o-Xylene \longleftrightarrow p-Xylene \longleftrightarrow EthylBenzene$$

 Temperature dependence of equilibrium modeled in Kirk-Othmer Encyclopedia of Chemical Technology

Figure 7.9

Aromatics extraction unit using furfural. Flow scheme (Source: Mobil).

- Furfural Extraction Averaged K Values
 - Benzene from Cyclohexane
 - Benzene from Iso-octane
 - 1,6-diphenylhexane from Docosane
 - Temperature (°R) dependence of K correlated from this

$$E = K * \frac{S}{F}$$
 % Extracted = $1 - \frac{1}{\sum_{n=0}^{N} E^{n}}$
 $K = T^{2}(-2E5) + 0.0259 * T - 7.371$

 Correlations developed from Institut Français du Pétrole data

93 wt% Furfual Solvent			
Solvent to Feed Ratio	Raffinate Yield	Raffinate Specific Gravity	
0	100%	0.925	
3	75%	0.900	
6	63%	0.895	
9	53%	0.892	
12	47%	0.891	

RaffinateYield\% =
$$\left(\frac{S}{F}\right)$$
 * $\left(-0.0426\right)$ + 0.9318

RaffinateS.G. =
$$\left(\frac{S}{F}\right)^2 * (0.0004) - \left(\frac{S}{F}\right) * (0.0073) + 0.9229$$

 Carbon chains cracking into smaller chains of varying carbon numbers

• S_i forms all components with carbons less than i-1

- S_i forms all components with carbons less than i-1
- S_i is formed from all components with carbons greater than i+1

First order kinetics with molar concentrations

$$rs_i = \sum_{k=i+2}^{n} K_{k,i} Cs_k - Cs_i \sum_{j=1}^{i-2} K_{i,j}$$

$$ro_i = \sum_{j=i+1}^n K_{j,j-i} Cs_j$$

$$\frac{dCs_i}{dz} = \frac{1}{4}\pi\phi^2 \frac{\rho}{F} rs_i$$

$$\frac{dCo_i}{dz} = \frac{1}{4}\pi\phi^2 \frac{\rho}{F} ro_i$$

• Rate Constant dependent on molecular weight

$$K_{i,j} = A_{i,j} e^{-B_{i,j}/RT}$$

$$B_{i,j} = b_0 + b_1 \cdot PM_i + b_2 \cdot PM_j$$

$$A_{i,j} = \left(a_0 + a_1 \cdot PM_i + a_2 \cdot [PM_i]^2\right) e^{-\frac{1}{2} \left(\frac{PM_j - PM_i}{a_4}\right)^2}$$

а	b
1.51E+12	42894
1.90E+08	-4.5
2.06E+06	3
146.95	
11.35	

- Model inputs
 - Temperature and mass flow rate
- Model Product form
 - Weight percents
 - Components are lumped into 4 categories
 - Gas: C1-C4
 - Gasoline: C5-C10
 - Gas Oil: C11-C21
 - Residue: C22-C45

- Main reactants: n-Butane, n-Pentane, n-Hexane
- Typically catalyzed-gas phase reaction
- Low temperature favors isomer formation
- Seven rate laws
 - Only one of n-Pentanes isomers forms

n-Butane

$$r_{n-C4} = -K_1 \cdot \frac{P_{n-C_4}}{P_{H_2}} + K_2 \cdot \frac{P_{iso-C_4}}{P_{H_2}}$$

n-Pentane

$$r_{n-C5} = -\left[K_2 \cdot \left(\frac{C_{n-C5}}{[H_2]}\right)^{0.125} - 0.0000197 \cdot t\right] \left[K_{eq} \cdot C_{n-C5} - \left(K_{eq} + 1\right) \cdot C_{i-C5}\right]$$

n-Hexane

$$r_i = -\left(\sum_{j=1}^{5} K_{j,i}\right) \cdot C_i + \sum_{j=1}^{5} K_{i,j} C_j$$

- Model inputs
 - Temperature, mass flow rate, and H₂/HC ratio
- Model Product form
 - Weight percents of the individual isomers

Hydrocracking

 Convert higher boiling point petroleum fractions into lighter fuel products

Hydrocracking

- Complementary Reactions
 - Cracking reactions
 - Provides olefins for hydrogenation

$$R-C-C-R + heat \rightarrow R-C=C + C-R$$

- Hydrogenation reactions
 - Provides heat for cracking

$$R-C=C + H_2 \rightarrow R-C-C + heat$$

Hydrocracking

- Feedstocks- Heavy distillate stocks, aromatics, cycle oils, and coker oils
- Catalysts- zeolites
- Operating conditions-

	Residuum	Distillate
Hydrogen Consumption (SCFB)	1200-1600	1000-2400
LHSV (hr ⁻¹)	0.2-1	0.5-10
Temperature (℉)	750 -800	500-900
Pressure (psi)	2000-3000	500-3000

Hydrocracking Model Development

- Correlated data from "Oil and Gas Journal" W.L. Nelson
- Graphical correlated data was made continuous for hydrogen feed rate, Kw and API of the feed
- 3 inputs
- 5 outputs

Hydrocracking Model

Hydrocracking Model

Hydrocracking Model

Hydrocracking Model

Vol% of light naptha

		%PI							
Hydrogen F	Rate(SCFB)	7.5	10	12.5	15	17.5	20	22.5	25
2500	$K_{w} = 12.1$	9.25	11	13	16	21	30	45	80
diff. from	$K_{w} = 10.9$	0.75	1	1	1.25	1.75	2.5	5	7.5
		8.11%	9.09%	7.69%	7.81%	8.33%	8.33%	11.11%	9.38%
1500	$K_{w}=12.1$	3.4	4	4.8	5.8	7.3	9.1	11.25	14.25
diff. from	$K_{w} = 10.9$	0.35	0.45	0.5	0.55	0.7	1	1.5	1.75
		10.29%	11.25%	10.42%	9.48%	9.59%	10.99%	13.33%	12.28%
500	$K_{w}=12.1$	1.4	1.55	1.7	2	2.3	2.8	3.4	4.2
diff. from	$K_{w} = 10.9$	0.1	0.17	0.2	0.2	0.25	0.3	0.35	0.4
		7.14%	10.97%	11.76%	10.00%	10.87%	10.71%	10.29%	9.52%

Hydrocracking Model

Hydrocracking Equations

$$vol\% p_1 = (1.00833K_w - 0.00833)Ae^{B\bullet H}$$

 $vol\% p_2 = (-0.7691 \cdot K_w + 11.739)(vol\% p_1)$
 $vol\% p_3 = 0.337(vol\% p_1)$
 $vol\% p_4 = 0.186(vol\% p_1)$
 $vol\% p_5 = 1 + 0.09(vol\% p_1)$

Hydrocracking Model

%PI	Hydrogen (SCFB)	K_{w}	vol% p ₁		vol% p ₂	
15	2500	12.1	16.4	9%	39.9	1%
actual			15.0	970	40.5	1 /0
20	750	10.9	3.3	7%	11.0	9%
actual			3.5	1 70	10.0	9 /0
30	1250	10.9	16.3	25%	54.7	27%
actual			13.0	23/0	43.0	21/0

Solvent Dewaxing

 Separate high pour point waxes from lubricating oils

Solvent Dewaxing

- Feedstocks
 - Distillate and residual stocks heavy gas oils
 - Solvents Ketones (MEK) and Propane
- Operating conditions
 - Solvent to oil ratio 1:1 to 4:1
 - Desired pour point of product

Dewaxing Model Development

- Correlation from "Energy and Fuels" Krishna et. al.
- 3 experimentally determined parameters
- 3 inputs
- 2 outputs

$$PPT = A0\log(100/PC) + A1/CL + A2$$

$$OilYield(wt\%) = \frac{(100 - PC(feed))}{(100 - PC(product))}$$

Dewaxing Model Error

	BC2	NC6	NC7	NC8	NC9	NC10
$\mathcal C$	375-500	375-400	400-425	425-450	450-475	475-500
wax wt%	46.8	44.88	47.28	48.41	48.72	47.05
CL	26.89	24.13	25.13	27.14	29.05	31
PPT act.	48	39	45	48	51	57
PPT pred.	48.0	41.0	44.0	48.9	52.8	55.9
error %	0.1%	5.0%	2.3%	1.8%	3.5%	1.9%

dewaxing mode	el Des	sired PPT=	10			
PPT low	9.99	9.50	9.77	9.82	9.65	9.81
PPT high	10.01	10.50	10.23	10.18	10.35	10.19
wax wt% low	0.368	0.819	0.608	0.336	0.202	0.133
wax wt% high	0.369	0.931	0.643	0.352	0.220	0.139
yield low	0.5340	0.5558	0.5304	0.5176	0.5138	0.5302
yield high	0.5340	0.5564	0.5306	0.5177	0.5139	0.5302
error %	0.001%	0.112%	0.036%	0.016%	0.019%	0.006%

Alkylation PFD

Exxon-Mobil Autorefrigeration H₂SO₄ alkylation

Alkylation

*Lots of side reactions

Alkylation

$$F = \frac{I_E(I/O)_F}{100(SV)_O}$$

 $(I/O)_F$ = volumetric isobutane/olefin ratio in feed

 $I_{\scriptscriptstyle F}=\,$ isobutane in reactor effluent, liquid volume %

 $(SV)_O$ = olefin space velocity, v/hr/v

F= Factor defined by A.V. Mrstik

Figure 7. Sulfuric Acid Alkylate Octanes, ASTM Research (CRC-F-1)

"Progress in Petroleum Technology" AV Mrstik et al. ACS Publications

Polymerization

- Converts Propylenes and butylenes into saturated carbon chains
- 1st used Catalytic Solid Phosphoric Acid (SPA) on silica fell out of popularity in 1960s.
- Now experimenting with Zeolites.

- Polymerization reaction is highly exothermic and temperature is controlled either by injecting cold propane quench or by generating steam.
- Propane is also recycled to help control temperature

 Converts propylenes and butylenes into saturated carbon chains by means of zeolite catalysis (ZSM-5)

Figure 1. ZSM-5 Catalyst.

 Converts propylenes and butylenes into saturated carbon chains by means of zeolite catalysis (ZSM-5)

 Converts propylenes and butylenes into saturated carbon chains by means of zeolite catalysis (ZSM-5)

<u>Charge</u>

- 17wt.% Propylene
- 10.7 wt.% Propane
- 36.1 wt.% 1-butene
- 27.2 wt.% isobutane

Temperature = 550K

Total Pressure = 5430 kPa

Propylene partial pressure = 7~3470kPa.
*Depending on desired

*Depending on desired chain length

Charge

- 17wt.% Propylene
- 10.7 wt.% Propane
- 36.1 wt.% 1-butene
- 27.2 wt.% isobutane

Temperature = 550K

Total Pressure = 5430 kPa

Propylene partial pressure = 7~3470kPa.
*Depending on desired chain length

Polymerization

+ PBR-gas phase

- Solid catalysis
- + Produce either diesel or gasoline range chains
- Typical octane number = 92 (RON)

VS

Alkylation

- CSTR- liquid phase
- + Liquid catalysis
- Requires very vigorous agitation
- Typically .1lb_m acid consumed per gallon product

++Typical octane number = 96(RON)

Propane Deasphalting - PFD

Typical Propane Deasphalting

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322000000300012&Ing=pt&nrm=iso

Propane Deasphalting

Types

- Sub Critical. (below 369K) Modeled first by Robert E. Wilson in 1936. Hildebrand solubility parameters now used.
- 2. <u>Super Critical.</u> (above 369K) Now popular. High selectivity. No good model.

Both remove greater than 99% asphalt

Sub Critical Propane Deasphalting

Hildebrand solubility

$$\delta = \left(\frac{\Delta H - R_g T}{V}\right)^{\frac{1}{2}}$$

 δ = Solubility Parameter [J/mol]

 ΔH = Heat of vaporization [J/mol]

 $R_{_{g}}$ = Universal gas Constant [8.314J/mol/K]

T = Temperature [K]

V = molar volume [L/mol]

BOTHERM AT 180'F

SYSTEM PROPANE OIL ASPHALT

Super Critical Propane Deasphalting

Models typically break down near the critical point. Including Redlick-Kwong, Soave-Redlick-Kwong and Perturbed-Hard-Chain (PHC). Therefore correlations have to be used.

Typically operate at
T=400K
Pressure=55 bar
Ratio= 4:1 propane to oil
mixture

- Pretreated feedstock is fed into the bottom of the riser tube where it meets very hot regenerated catalyst.
- The feed vaporizes and is cracked as it passes up the riser.

- •Different yields of products will occur depending on:
 - Temperature
 - Inlet Feed Properties
- •Top of the riser, the catalyst separates from the mixture and is steam stripped
- •The final product exits the top of the reactor

- One product from catalytic cracking is "**coke**" or carbon that forms on the surface of the catalyst.
- •To reactivate catalyst, it must be regenerated.

- Catalysis is <u>regenerated</u> by entering a combustion chamber and mixed with superheated air
- Energy released from regenerating the catalysis is then coupled with the inlet feed at the bottom of the riser
 - Cracking

$$A = gas \ oil$$
 $B = gasoline$
 $C = LPG$
 $D = dry \ gas$
 $E = coke$

$$r_A = -(k_{A-B} + k_{A-C} + k_{A-D} + k_{A-E})y_A^2\Phi$$

$$A = gas \ oil$$
 $B = gasoline$
 $C = LPG$
 $D = dry \ gas$
 $E = coke$

$$r_{B} = (k_{A-B}y_{A}^{2} - k_{B-C}y_{B} - k_{B-D}y_{B} - k_{B-E}y_{B})\Phi$$

$$A = gas \ oil$$
 $B = gasoline$
 $C = LPG$
 $D = dry \ gas$
 $E = coke$

$$r_{C} = (k_{A-C}y_{A}^{2} + k_{B-C}y_{B} - k_{C-D}y_{C})\Phi$$

$$A = gas \ oil$$

$$B = gasoline$$

$$C = LPG$$

$$D = dry gas$$

$$E = coke$$

$$\Phi = e^{-k_d t_c}$$

$$A = gas \ oil$$
 $B = gasoline$
 $C = LPG$
 $D = dry \ gas$
 $E = coke$

$$\Phi = e^{-k_d t_c}$$

- 8 kinetic constants
- One catalyst deactivation
- Gas Oil considered as a second order reaction

- Assumptions
 - One-dimensional tubular reactor
 - No radial and axial dispersion
 - Cracking only takes place in the riser
 - Dispersion/Adsorption inside catalyst is negligible
 - Coke deposited does not affect the fluid flow

Change

- Temperature
- Inlet Feed

Kinetic Pa	rameters for eacl	h Feedstock at 50	0 °C
	Α	В	С
k _d	1481.85	1785	1905.24
\mathbf{k}_{ab}	3370.6	3171	2907.18
k _{ac}	510.88	491.74	477.02
\mathbf{k}_{ad}	10.76	75.3	86.06
\mathbf{k}_{ae}	390.03	442.96	540.67
k bc	181.8	154.98	101.33
k _{bd}	20.89	25.46	29.38
k be	0.75	0.915	1.06
k _{od}	286.58	323.83	353.92

Mass Balance:

$$\frac{dy_i}{dz} = \frac{1}{WHSV} \left(\frac{\rho_L}{\rho_C}\right) * r_i$$

Change

- Temperature
- Inlet Feed

TEMPERATURE:

480, 500, 520 °C

Kinetic Pa	rameters for each	h Feedstock at 50	0 °C
	Α	В	С
\mathbf{k}_{d}	1481.85	1785	1905.24
\mathbf{k}_{ab}	3370.6	3171	2907.18
k ac	510.88	491.74	477.02
\mathbf{k}_{ad}	10.76	75.3	86.06
\mathbf{k}_{ae}	390.03	442.96	540.67
k bc	181.8	154.98	101.33
k bd	20.89	25.46	29.38
k be	0.75	0.915	1.06
k _{ed}	286.58	323.83	353.92

Mass Balance:

$$\frac{dy_i}{dz} = \frac{1}{WHSV} \left(\frac{\rho_L}{\rho_C}\right) * r_i$$

- Constant C/O Ratio of 5
- Varying space velocity (WHSV)
 - 6 48 h⁻¹
- Gas Oil Conversion ~ 70 %
- Gasoline ~ 50%
- LPG ~ 12 %

Blending

- Final products are created by blending streams from refinery units
- 35 streams from 13 units are blended
- 30 streams are used in gasoline
- 5 streams are other products
 - Propane gas, lube oil, asphalt, wax, and coke

Blending Indexes

- Most properties do not blend linearly
- Empirical blending indexes are used to linearize the blending behavior

$$BI_{mix} = \sum_{i} x_{i} BI_{i}$$

Where *BI* is the Blending Index

 x_i is the volume fraction of component i

Blending Indexes

Reid Vapor Pressure $VPBI = (RVP)^{1.25}$

Viscosity Index $BI_{\nu} = \frac{\log_{10} \nu}{3 + \log_{10} \nu}$

Pour Point $BI_p = T_p^{\left(\frac{1}{0.08}\right)}$

Cloud Point $BI_{CL} = T_{CL}^{\left(\frac{1}{0.05}\right)}$

Flash Point $\log_{10} BI_F = -6.1188 + \frac{2414}{T_F - 42.6}$

Aniline Point $BI_{AP} = 1.124 [\exp(0.00657AP)]$

Gasoline Blending

- Specifications:
 - Octane (normal 87, premium 91)
 - Reid Vapor Pressure (EPA mandated)
 - Maximum additive amounts
- Inputs:
 - Market conditions (Price, Demand)
 - Incoming streams from refinery units
- Objective: Maximize Profit

Gasoline Blending

- Vapor pressure blending can be improved by using thermodynamically based methods
- Raoult's Law

$$P = \sum x_i P_i^*$$

Blending

- Other possible products
 - Fuel oils
 - Lube oils
 - Diesel fuel
- Blending requires data for aniline point, pour point, cloud point, flash point, and diesel index

- Addresses the planning of short-term crude oil purchasing and processing
- Does not address risk or uncertainty
- Determine purchasing schedule to meet:
 - Specification (Octane, n-Butane, etc.)
 - Demand with HIGHEST profit
- Decision Variables:
 - Crude oil purchase
 - Processing variables
 - Temperatures, Pressures, Blending mixtures

On/Off	Name	Model	Flowrate [IN]	Input	Input	Output	Output	Flowrate	Yariables	Varia
On	Aaron	Hydrotreating	5418.9	Aromatics (wt%)	0.107	Treated Non- Aromatics (wt%	0.89	4841.6	Temperature	37
		Naptha		Nitrogen (wt %)	0.001	Treated Aromatics (wt%)	0.11	577.3	Pressure	3447
				Sulfur (wt %)	0.010				Ratio Hyrdogen:Oil	20
				Basic Nitrogen (wt%)	0.001					
				MW	133					
		Hydrotreating	3852.4	Aromatics (wt%)	0.177	Treated Non- Aromatics (wt%	0.82	3174.7	Temperature	37
		Middle Distillate		Nitrogen (wt %)	0.001	Treated Aromatics (wt%)	0.18	677.7	Pressure	344
				Sulfur (wt %)	0.020	` , ,			Ratio Hyrdogen:Oil	20
				Basic Nitrogen (wt%)	0.001				, , , , , , , , , , , , , , , , , , , ,	
				MV	159					
		Hydrotreating	6559.9	Aromatics (wt%)	0.313	Treated Non- Aromatics (wt%	0.69	4509.7	Temperature	36
		Heavy Atm. Gas Oil		Nitrogen (wt %)	0.018	Treated Aromatics (wt%)	0.31	2050.3	Pressure	3447
		a s g . m.m. oraz o m		Sulfur (wt %)	0.085	asar namanos (nva)	0.01	2500.0	Ratio Hyrdogen:Oil	20
				Basic Nitrogen (wt%)	0.018				. ratio rigidogenton	
				MW	208					
				1-1W	200					
On		Delayed Coking	1155.1	Carbon Residue	29.1	Gas < C4 (wt%)	0.11	128.3	Pressure	35
- "		Tresages Crowning	1100.1	Calbon lesidae	20.1	Naptha (wt%)	0.19	214.9	i lessule	
						Gas Oil (wt%)	0.13	273.7		
_						Coke (wt%)	0.47	538.2		
Off	Frow	1,0,0,, 0,, -,0,-4/		Accession (case)			0.47	030.2	Tamarahan	
Off	FIOW	Nylene Isomerization		Aromatics (wt%)		Paraffins + Naptha (wt%)			Temperature	
						Benzene (wt%)				
						Toulene (wt%)				
						Ethyl-Benzene (wt%)				
						Ortho-Xylene (wt%)				
						Para-Xylene (wt%)				
		0.1	4455.4	5 40 4		5 40 4 110		2422		- 40
On		Solvent Extraction	1155.1	Paraffin (wt %)	0.35	Paraffins (wt%)	99%	342.3	Temperature	12
				Naptha (wt %)	0.1	Napthene + Aromatics (wt%)	1%	3.8	Solvent / Feed	2
				Aromatic (wt %)	0.55	Aromatic (wt%)	92%	747.0		
				API	24.0	Paraffins (wt%)	8%	62.0		
		5.10.54	E440.0	B 40 4		11.1	4	70.0	-	
On		Catalytic Reforming	5418.9	Paraffin (wt %)	0.45	Hydrogen (wt%)	1%	79.9	Temperature	95
				Naptha (wt%)	0.45	Gas, C1-C4 (wt%)	8%	452.0	Pressure	3!
				Aromatic (wt%)	0.11	C5 + Reformate (wt%)	90%	4887.0	Recycle Rate	7.
				MV	133					
				'API	52.2					
On	Tom	Hydro Cracking	500	'API	34.8	Light Naptha	0.19	95.6	Hydrogen/BBL	100
				Kw	11.8	Heavy Naptha	0.57	285.1		
						C3 Up	0.05	25.5		
						I-Butane	0.03	14.1		
						n-Butane	0.03	16.3		
						Gas Oil	0.13	63.5		
On		Solvent Delv'an	425	'API	26.3	Wax	0.36	151.0	Temperature	31
		1				De-Wax	0.64	274.0		

On/Off	Name	Model	Flowrate [IN]	Input	Input	Output	Output	Flowrate	Y ariables
On	Aaron	Hydrotreating	5418.9	Aromatics (wt%)	0.107	Treated Non- Aromatics (wt%	0.89	4841.6	Temperature
		Naptha		Nitrogen (wt %)	0.001	Treated Aromatics (wt%)	0.11	577.3	Pressure
		<u> </u>		Sulfur (wt %)	0.010	1			Ratio Hyrdogen:Oi
				Basic Nitrogen (wt%)	0.001				
				MW .	133				
				†					
		Hydrotreating	3852.4	Aromatics (wt%)	0.177	Treated Non- Aromatics (wt%	0.82	3174.7	Temperature
		Middle Distillate	***************************************	Nitrogen (wt %)	0.001	Treated Aromatics (wt%)	0.18		Pressure
		1-Hadis Elevinos		Sulfur (wt %)	0.020	Treates I II e III e II e II e II e II e II	0.110		Ratio Hyrdogen:0
				Basic Nitrogen (wt%)	0.001				r iddio r igraogeni.c
				MW	159				
				1*IW	100				
		Libration at time	6559.9	Assemblish (u.e.)	0.313	Treated Non- Aromatics (wt%	0.69	4509.7	Temperature
		Hydrotreating	6003.3	Aromatics (w/%)				4509.7	Pressure
		Heavy Atm. Gas Oil		Nitrogen (wt %)	0.018	Treated Aromatics (wt%)	0.31	2050.3	
				Sulfur (wt %)	0.085				Ratio Hyrdogen:C
				Basic Nitrogen (wt%)	0.018				
				MW	208				
			44554	[]		5 511	- 44	40.0.0	_
On		Delayed Coking	1155.1	Carbon Residue	29.1	Gask C4 (wt%)	0.11	128.3	Pressure
						Naptha (wt%)	0.19	214.9	
						Gas Oil (wt%)	0.24	273.7	
						Coke (wt%)	0.47	538.2	
Off	Frow	Xylene Isomerization		Aromatios (wt%)		Paraffins + Naptha (wt%)			Temperature
						Benzene (wt%)			
						Toulene (wt%)			
						Ethyl-Benzene (wt%)			
						Ortho-Xylene (wt%)			
						Para-Xylene (wt%)			
						2 ,,			
On		Solvent Extraction	1155.1	Parafin (wt ::)	0.35	Paraffins (wt%)	99%	342.3	Temperature
				Naptila (wt x)	0.1	Napthene +Aromatics (wt%)	1%	3.8	Solvent / Feed
				Aromatic (vt %)	0.55	Aromatic (wt%)	92%	747.0	
				API	24.0	Paraffins (wt%)	8%	62.0	
				· · · ·	2			7	
On		Catalytic Reforming	5418.9	Paraffin (vt %)	0.45	Hydrogen (wt%)	1%	79.9	Temperature
		=-energy-reversing	0110.0	Naptha (wt%)	0.45	Gas, C1-C4 (wt%)	8%		Pressure
				Aromatic (wt%)	0.11	C5 + Reformate (wt%)	90%		Recycle Rate
				MW	133	CO : / lefolifiace (#C#)	00/4	1001.0	r reagaie r race
				API	52.2				
On	Tom	Make Casakina	500	API	34.8	Light Naptha	0.19	95.6	Hydrogen/BBL
Un	1 10m	Hydro Cracking	500				0.19	285.1	mydrogenrBBL
				Kw	11.8	Heavy Naptha			
						C3 Up	0.05	25.5	
						I-Butane	0.03	14.1	
						n-Butane	0.03	16.3	
						Gas Oil	0.13	63.5	
0-	-	Calvert Reliev	425	wo.	20.0	Van	0.00	151.0	Tamasasas
On		Solvent Delv'an	420	-API	26.3	Wax Da Maria	0.36	151.0	Temperature
	1					De-Wax	0.64	274.0	

On/Off	Name	Model	Flowrate [IN]	Input	Input	Output	Output	Flowrate	V ariables
On	Aaron	Hydrotreating	5418.9	Aromatics (wt%)	0.107	Treated Non- Aromatics 🚧 🗸	0.89	4841.6	Temperature
		Naptha		Nitrogen (wt %)	0.001	Treated Aromatics (wt%)	0.11	577.3	Pressure
				Sulfur (wt %)	0.010				Ratio Hyrdogen:Oil
				Basic Nitrogen (wt%)	0.001				
				MV	133	/			
						/			
		Hydrotreating	3852.4	Aromatics (wt%)	0.177	Treated Non- Aromatics (wt)	0.82	3174.7	Temperature
	1	Middle Distillate	0002.1	Nitrogen (wt %)	0.001	Treated Aromatics (wt%)	0.18	677.7	Pressure
	1	T- Hadis Elevinos		Sulfur (wt %)	0.020	Treatest nomanes (mas)	0.10		Ratio Hyrdogen:Oil
				Basic Nitrogen (wt%)	0.001				r ratio r igraogentoir
				MW	159	/			
_	 			1×1W	100				
_		Hydrotreating	6559.9	Aromatics (wt%)	0.313	Treated Non- Aromatics (wt%	0.69	4509.7	Temperature
			6003.3		0.018	Treated Aromatics (wt%)	0.83	2050.3	Pressure
		Heavy Atm. Gas Oil		Nitrogen (wt %)		Treated Aromatics (wt%)	0.31	2050.3	
_				Sulfur (wt %)	0.085				Ratio Hyrdogen:Oil
	-			Basic Nitrogen (wt%)	0.018				
				MW	208				
		<u> </u>							
On		Delayed Coking	1155.1	Carbon Residue	29.1	Gask C4 (wt/s)	0.11	128.3	Pressure
						Naptha (wty.)	0.19	214.9	
						Gas Oil (w <mark>f%</mark>)	0.24	273.7	
						Coke (wt/k)	0.47	538.2	
Off	Frow	Xylene Isomerization		Aromatics (wt%)		Paraffins + Naptha (wt%)			Temperature
						Benzere (wt%)			
						Toulene (wt%)			
						Ethul-Benzene (wt%)			
						Ort to-Xylene (wt%)			
						Para-Xylene (wt%)			
	1					i di a rigione (il ura)			
On	1	Solvent Extraction	1155.1	Paraffin (wt %)	0.35	Paraffins (wt%)	99%	342.3	Temperature
	1	E-E-SE-7/1 E-M/7 DE-1/2 E-7/	1100.1	Naptha (wt %)	0.1	Napthene +Aromatics (wt%)	12	3.8	Solvent / Feed
				Aromatic (wt %)	0.55	Aromatic (wt%)	92%	747.0	Convenient
	1			API	24.0	Paraffins (wt%)	8%	62.0	
	1			011	24.0	i araninis (wc/s)	07.	02.0	
On	_	Catalytic Reforming	5418.9	Paraffin (wt %)	0.45	Hydrogen (wt%)	1%	79.9	Temperature
		c-aragine mercuming	3410.3			Gas, C1-C4 (wt%)	8%	452.0	Pressure
				Naptha (wt%)	0.45				
				Aromatic (wt%)	0.11	C5 + Reformate (wt%)	90%	4887.0	Recycle Rate
_	-			MV					
		 		'API	52.2				
On	Tom	Hydro Cracking	500	'API	34.8	Light Naptha	0.19	95.6	Hydrogen/BBL
				Kw	11.8	Heavy Naptha	0.57	285.1	
						C3 Up	0.05	25.5	
						I-Butane	0.03	14.1	
						n-Butane	0.03	16.3	
						Gas Oil	0.13	63.5	
On		Solvent Delv'ax	425	'API	26.3	Wax	0.36	151.0	Temperature
	1					De-Wax	0.64	274.0	

On/Off	Name	Model	Flowrate [IN]	Input	Input	Output	Output	Flowrate	Yariables
On	Aaron	Hydrotreating	5418.9	Aromatics (wt%)	0.107	Treated Non- Aromatics (wt%	0.89	4841.6	Temperature
		Naptha		Nitrogen (wt %)	0.001	Treated Aromatics (wt%)	0.11	577.3	Pressure
		<u> </u>		Sulfur (wt %)	0.010	1			Ratio Hyrdogen:Oil
				Basic Nitrogen (wt%)	0.001				
				MW	133				
		Hydrotreating	3852.4	Aromatics (wt%)	0.177	Treated Non- Aromatics (wt:	0.82	3174.7	Temperature
		Middle Distillate		Nitrogen (wt %)	0.001	Treated Aromatics (wt%)	0.18	677.7	Pressure
				Sulfur (wt %)	0.020	,			Ratio Hyrdogen:Oi
				Basic Nitrogen (wt%)	0.001				riano rigido genilo.
				MW	159				
				1-111	100				
		Hydrotreating	6559.9	Aromatics (wt%)	0.313	Treated Non- Aromatics (wt%	0.69	4509.7	Temperature
		Heavy Atm. Gas Oil	0000.0	Nitrogen (wt %)	0.018	Treated Aromatics (wt%)	0.31	2050.3	Pressure
		cary man. das off		Sulfur (wt %)	0.085	caccar mornados (worg	0.01	2000.0	Ratio Hyrdogen:Oi
				Basic Nitrogen (wt%)	0.018				r iado r igraogentoi
				MW	208				
				1x1W	200				
On		Delayed Coking	1155.1	Carbon Residue	29.1	Gask C4 (wt%)	0.11	128.3	Pressure
		Lierageo Ciconny	1100.1	Calboli Flesidde	20.1	Naptha (wt%)	0.19	214.9	riessule
						Gas Oil (wt%)	0.13	273.7	
						Coke (wt%)	0.47	538.2	
Off	Frow	Xylene Isomerization		Aromatics (wt%)		Paraffins + Naptha (wt%)	0.47	030.2	T
Orr	FIOW	Agrerie iscorrenzacion		Aromatics (wt%)		, , ,			Temperature
						Benzene (wt%) Toulene (wt%)			
						` '			
						Ethyl-Benzene (wt%)			
						Ortho-Xylene (wt%)			
						Para-Xylene (wt%)			
On		Solvent Extraction	1155.1	Paraffin (wt %)	0.35	Paraffins (wt%)	99%	342.3	Temperature
011		SCOVERN EMPSCARCO	1100.1	Naptha (wt %)	0.35	Napthene +Aromatics (wt%)	1%	3,8	Solvent / Feed
					0.55		92%	747.0	Solvelitrreed
				Aromatic (wt %)	24.0	Aromatic (wt%)	8%	62.0	
				AFI	24.0	Paraffins (wt%)	0%	62.0	
On		Catalytic Reforming	5418.9	Paraffin (wt %)	0.45	Hudrogen (wt%)	1%	79.9	Temperature
011		C-acargine reserving	3410.3	Naptha (wt%)	0.45	Gas, C1-C4 (wt%)	8%	452.0	Pressure
				Aromatic (wt%)	0.45	C5 + Reformate (wt%)	90%		Recycle Rate
				MW	133	Co + Meronnate (wt/s)	30%	4001.0	necycle nate
				'API	52.2				
		73.4. 0	F00			1 :- L s B I s L -	0.40	OF C	Linda IDDI
On	Tom	Hydro Cracking	500	'API	34.8	Light Naptha	0.19 0.57	95.6 285.1	Hydrogen/BBL
				Kw	11.8	Heavy Naptha	0.57	25.5	
						C3 Up			
						I-Butane	0.03	14.1	
						n-Butane	0.03	16.3	/
						Gas Oil	0.13	63.5	/
On		Solvent Delv'ax	425	'API	26.3	Wax	0.36	151.0	Temperature
1 311		C-LOYETH LIFT W BN	420	r 11 1	20.0	De-Wax	0.64	274.0	remperature
	ı	A / Crude B / Crud		Blend / Cat Crac		De. May	0.04	217.0	/ HydroCrack

Max Profit

Pongsakdi, Arkadej, et. al, "Financial risk....", Int. J. Production Economics, accepted 20 April 2005

$$= \sum_{t \in T} \sum_{c \in C_p} MANU_{c,t} * cp_{c,t} - \sum_{t \in T} \sum_{c \in C_o} AC_{c,t} * co_{c,t} - \sum_{t \in T} \sum_{c \in C_p} AL_{c,t} * cl_{c,t}$$

Max Profit

Pongsakdi, Arkadej, et. al, "Financial risk....", Int. J. Production Economics, accepted 20 April 2005

Product Sales

$$= \sum_{t \in T} \sum_{c \in C_p} MANU_{c,t} * cp_{c,t} - \sum_{t \in T} \sum_{c \in C_o} AC_{c,t} * co_{c,t} - \sum_{t \in T} \sum_{c \in C_p} AL_{c,t} * cl_{c,t}$$

Amount of product produced in that time period *multiplied* by unit sale price of product c

Max Profit

Pongsakdi, Arkadej, et. al, "Financial risk....", Int. J. Production Economics, accepted 20 April 2005

Product Sales

Crude Oil Costs

$$= \sum_{t \in T} \sum_{c \in C_p} MANU_{c,t} * cp_{c,t}$$

$$= \sum_{t \in T} \sum_{c \in C_p} MANU_{c,t} * cp_{c,t} - \sum_{t \in T} \sum_{c \in C_o} AC_{c,t} * co_{c,t} - \sum_{t \in T} \sum_{c \in C_p} AL_{c,t} * cl_{c,t}$$

Amount of crude oil refined in that time period *multiplied* by unit purchase price of crude oil

Max Profit

Pongsakdi, Arkadej, et. al, "Financial risk....", Int. J. Production Economics, accepted 20 April 2005

Product Sales

Crude Oil Costs

Discounted Expense

$$= \sum_{t \in T} \sum_{c \in C_p} MANU_{c,t} * cp_{c,t} - \sum_{t \in T} \sum_{c \in C_o} AC_{c,t} * co_{c,t} - \sum_{t \in T} \sum_{c \in C_p} AL_{c,t} * cl_{c,t}$$

$$\sum_{t \in T} \sum_{c \in C_o} AC_{c,t} * co_{c,t}$$

$$\sum_{t \in T} \sum_{c \in C_p} AL_{c,t} * cl_{c,t}$$

Amount of crude oil refined in that time period *multiplied* by unit purchase price of crude oil

Amount of product volume that cannot satisfy demand multiplied by discounted price

Modeling

 A Visual Basic macro in Excel was used to help Solver find the optimal crude selection

Model Inputs

Inputs:

- Crude A: \$71.88 / barrel (Australia)
- Crude B: \$72.00 / barrel (Kazakhstan)
- Crude C: \$71.20 / barrel (Saudi Arabia)
- Regular Gasoline:
 - \$2.75 / gal (\$2.12)
 - Demand: 310,000 bbl/month
- Premium Gasoline:
 - \$3.00 / gal (\$2.31)
 - Demand: 124,000 bbl/month

Energy Information Administration, U.S. Department of Energy http://www.eia.doe.gov/oil_gas/petroleum/info_glance/petroleum.html

Model Results

- Outputs:
 - Maximum Profit: \$21 per barrel
 - Crude Selection:
 - Crude A: 150,000 bbl/month
 - Crude B: 150,000 bbl/month
 - Crude C: 300,000 bbl/month
 - Demand exactly met

Future Work

- Include storage of crude and products
- Include risk and uncertainty
- Demand changing over time
- Wider variety of products: diesel, solvents, fuel oils, lube oils, etc.

Questions?