Technological & Financial Analysis of a Carbohydrate Vaccine for Tuberculosis

Presented by:
Melissa Martin
Erica Clemente-Harl
Tuberculosis

Currently:
- Leading cause of death in developing world
- 2 billion infected
- 8 million/year - active TB
- 3 million/year die
- 10-15 million latent in U.S.

Projected:
- 37,800,000 of current HIV patients will become active and die in the U.S.
- New Cases: 1 billion 2020
- 36 million deaths from new infections

Vaccine Needed!
What is Tuberculosis?

- *Mycobacterium tuberculosis*
- Infection by inhalation
- Contagious when active
- Symptoms: weight loss, fever, appetite loss, cough, chest pain, bloody sputum
- Patients will die within weeks to months without treatment
New Drugs: Significance

- Drastic effect on population
 - Lower death rates
 - Extend life expectancy
 - Eradicate disease (small pox 1967-73)
- Financial gain
- Personal motivations

Romantic view!
New Drugs: Reality

- Average cost over $400 million from research to consumer
- Strictest protocols for drug approval in U.S.
 - Food & Drug Administration
 - Lengthy and tedious process
 - average = 15 years
 - Success rate: 5/5,000 potential drugs
A Researcher’s Concerns

- Will my procedure work?
- How accurate is my theory?
- How can I increase the product yield?
- Can this process be scaled up?
An Investor’s Concerns

- Amount to invest in research?
- How long will it take?
- Risk of losing money?
- How much can I lose?
- Expected profit?
- What timeframe?
- Failure at any FDA Phase?
- Product price?
- What is the market?
- Advertisement campaign?

We can provide simultaneous answers to these questions!
Project Overview

- Proposal

 Carbohydrate-based tuberculosis vaccine

- Acknowledgment of technical uncertainties

- Success estimate

- Two directions
 - How to develop vaccine
 - Decisions to be made
Vaccines

- Definition: weakened or killed pathogens or parts of polysaccharides and/or proteins that stimulate immune response

- Benefits of using parts of the organism
 - Will not cause infection with organism
 - Stimulates antibody production in body
Antibody Stimulation Goal

- Antigen recognition
- Engulfing
- Cell death & degradation
- Fragments displayed on cell surface
- Proliferation and activation of T cells
- Antibody circulation
M. Tuberculosis Cell Wall

- Cell growth
- Polysaccharide recovery
- Cleaving
- Conjugation to carrier protein
Bacterial Growth

- *Mycobacterium tuberculosis* ATCC 25177
- Inoculated in Lowenstein-Jensen (LJ) plates
 - Generation time = 6 - 8 weeks
- Transfer to LJ liquid medium
 - Generation Time = 15 hours
- Deviation: growth time
Cell Membrane Separation

- **Centrifugation**
 - Pellets: 3,000 x g for 20 min
 - Wash in phosphate-buffered saline
 - Re-suspend in distilled water

- **Sonication**
 - Weakening of the cell wall with electrical pulses
 - Three cycles of 30 s pulses
 - Carbohydrate yield: 70-80%

- **Centrifugation**
 - 3,000 x g for 20 min

- **Supernatant filtration**
 - Separation of the capsule

- **Lyophilization (optional)**

Deviation: sonication cycles

As presented by Stokes et al., 2004
Cell Membrane Cleaving

- Fragments between 2 and 10 kDa
 - Ensures no virulence activity
 - High titer response with less than 10 kDa
Acetolysis

- **Step 1: Acetolysate**
 - Acetic acid, acetic anhydride, and sulfuric acid
 - 8 hrs @ room temp. (RT)
 - Pour into 30 g ice water

- **Step 2: pH stabilization**
 - At RT
 - pH = 7.5 with NaOH

- **Step 3: Sugar acetate extraction**
 - Use chloroform
 - Yield = 96.3%

- **Step 4: Evaporation**
 - Dry over anhydrous sodium sulfate
Deacetylation

- **Step 5:**
 - Methanol, barium methoxide, & Dowex 50
- **Step 6:**
 - Sephadex G- 25, eluted at 10 mL/hr
- **Step 7:** Gel filtration (0.2 µm)

Deviations:

Cleaving, size, yield, and reaction
Carbohydrate Attachment

- **Step 1- Amination of polysaccharides (PS)**
 - Deviation: insufficient amino substitution
 \[\text{PS-CHO} + \text{NH}_4\text{Cl} \rightarrow \text{PS-NH}_2 \]

- **Step 2- Thiolation of PS with 2-iminothiolane**
 \[\text{PS-NH}_2 + \text{NH}_2^+\text{Cl}^- \rightarrow \text{PS-NH-C(NH}_2^+\text{Cl}^-)_(\text{CH}_2)_3\text{-SH} \]
Carbohydrate Attachment

- Step 3- Bromoacetylation of tetanus toxoid (TT)
 - Deviation: contamination in tetanus sample

\[
\text{TT-NH}_2 + \text{NHS-CO-CH}_2-\text{Br} \rightarrow \text{TT-NH-CO-CH}_2-\text{Br}
\]

As presented by Pawlowski, et al, 1999
Carbohydrate Attachment

- Step 4- Conjugation activated PS and TT
 - Deviation: incomplete conjugation

Step 2 product + Step 3 product →

\[
\text{TT-NH-CO-CH}_2\text{-S-(CH}_2\text{)}_3\text{-C(NH}_2^+\text{Cl}^-\text{-NH-PS}
\]

- Step 5- Separation: product from free reactants
 - Deviation: contaminants, pH variation
Research and Pre-FDA

- Laboratory research
 - Create the vaccine
 - Improve the product yield
 - Create the deliverable drug

- Animal testing
 - Test biological activity and safety
FDA Approval Process

- **Phase I**
 - Metabolic and pharmacologic effects in humans
 - Dosing effects
 - Effectiveness

- **Phase II**
 - Effectiveness of the drug
 - Short-term side effects
 - Health risks

- **Phase III**
 - Overall benefit-risk relationship

- **Applications and Committees**

- **Conditions of Failure**
 - Design failure in research
 - Clinical hold in FDA
What do technical deviations mean in ???
Goals

- Directed at risk taker, risk averter, or risk average

- Aid with critical decisions
 - Research and investment
 - Failed FDA phase

- Market strategies and demand models

- Risk assessment

- Success and profit estimation
Decision- Making

- First Stage or “Here and Now” Decisions
 - There will be consequences for “things that I do today”
 - Example: buying a house

- Second Stage or “Wait and See” Decisions
 - Made in response to the realization of uncertainty
 - Need to be addressed, not made
 - Example: opening an umbrella when it rains
Decision- Making

<table>
<thead>
<tr>
<th>First Stage Decision</th>
<th>Second Stage Decisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focus processes in pre-FDA research</td>
<td>- Time to begin plant construction</td>
</tr>
<tr>
<td>- Protein/ polysaccharide conjugation</td>
<td>- Time to begin marketing campaign</td>
</tr>
<tr>
<td>- Capsule cleaving/ recovery</td>
<td>- Additional research after failed FDA stage</td>
</tr>
<tr>
<td>- Bacterial growth</td>
<td></td>
</tr>
</tbody>
</table>
Financial Definitions

Market – brings together buyers and sellers

Demand – schedule with various amounts of a product consumers are willing/able to purchase at a price

Risk - uncertainty of project and associated financial loss or gain

Net Present Value (NPV) – how much the project is worth at a point in time; indicative of favorable venture
Market

- Diverse target groups
 - Melanoma patients in the U.S.
 - Cancer world wide
- Tuberculosis
 - 12 million hospital personnel
 - 1.4 million military personnel
- Depends on resources of investors
Economics

Definitions:
- $\alpha =$ Measurement of customer knowledge of product
- $\beta =$ Measurement of customer preference
- $d_1 =$ Amounts of a product at a price that consumers are willing to purchase

Purpose
- Price
- Return on Investment (ROI)
- Production schedule

\[d_1 = \left[\frac{\alpha P_2}{\beta P_1} \left(\frac{Y}{P_2} - \frac{P_1}{P_2} d_1 \right)^{1-\beta} \right]^{1/(1-\alpha)} \]
Demand Model

Iterative Calculation – 82% Market

New Product 3.5 times better

d1 = New drug
\(\alpha = \text{varied} \)
\(\beta = 0.29 \)

\(P2 = $115.09 \)
\(P1 = $140.00 \)

D = 13.4 million units
α Function Model

<table>
<thead>
<tr>
<th>Year</th>
<th>Market Target</th>
<th>Installations Visited</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2 %</td>
<td>170</td>
</tr>
<tr>
<td>0 to 1</td>
<td>10 – 15 %</td>
<td>760</td>
</tr>
<tr>
<td>1 to 2</td>
<td>35 – 40 %</td>
<td>1,940</td>
</tr>
<tr>
<td>2 to 3</td>
<td>70 – 75 %</td>
<td>2,690</td>
</tr>
<tr>
<td>3 to 4</td>
<td>90 – 95 %</td>
<td>1,520</td>
</tr>
<tr>
<td>4 to 5</td>
<td>95 – 100 %</td>
<td>170</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>7,250</td>
</tr>
</tbody>
</table>

- Increased with advertisement
- Aggressiveness of marketing campaign
β Parameter

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
<th>Weight (w)</th>
<th>New Product (y₁)</th>
<th>Existing Product (y₂)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficacy</td>
<td>New product more effective than existent one</td>
<td>0.7</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Side Effects</td>
<td>New product has less side effects than existent one</td>
<td>0.3</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Delivery Method</td>
<td>Currently, only available via injection</td>
<td>0</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Availability</td>
<td>Target institutions, not public</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brand</td>
<td>No similar product</td>
<td>0.05</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

β = measurement customer preference

\[
H = \Sigma (w * y₁) = 0.77
\]

\[
\beta = \frac{H_2}{H_1} = 0.23
\]

\[
\beta = 0.29
\]
Price & Demand Relation

- Higher demand for lower priced product

Demand at Different Prices

- Time (years) axis
- Demand (million units) axis
- Different price lines for $100/unit, $120/unit, $135/unit, $140/unit, $145/unit, $170/unit, and $200/unit
Profit Results

Different profits depending on α and d_1.

Cumulative Profit for Different Prices

- $100/unit
- $120/unit
- $135/unit
- $140/unit
- $145/unit
- $170/unit
- $200/unit

Profit ($millions$)

Time (years)
Price Optimization

NPV as a Function of Price

- Higher NPV preferred
- Discounted rates, etc. (later)
Return on Investment

ROI = Profit/FCI; approx. 3 years

Maximum ROI = 29.08%
Demand and Risk Relation

- Selected values of α, β, price, and demand
 - α varies with time
 - $\beta = 0.29$
 - $P_{\text{opt}} = $140.00
 - Demand = 13.4 million units

- Risk calculated accordingly
What is Risk?

- Predictor of the product’s success
- A collection of paths that vary with first stage decision
 - Research time invested: 6, 8, or 10 years
Cumulative Probabilities and Costs

- Pathways
 - All possibilities considered
 - Realistic probability assigned
- Probabilities compounded and costs summed over a particular path
- Risk and net present values calculated
Sample Pathway

1. Reaction to Vaccine:
 - 30-20-15%
 - 70-80-85%

2. Titer Measurements:
 - 0.5 years
 - 90-80-75%
 - 10-20-25%

3. Booster Administration:
 - $1.3 million - $1.3 million - $2.2 million
 - 1.5 - 1.5 - 2.5 years
 - 20-10-5%
 - 40-45-45%
 - 40-45-50%

4. Titer Levels:
 - Insufficient Titer
 - Sufficient Titer Levels as BCG Vaccine
 - High Titer

5. Titer Levels:
 - Low Titer Levels than BCG Vaccine
 - High Titer

6. Reaction Detection in Animal Testing:
 - 70-80-90%

7. Adverse Reaction:
 - Back to R&D

8. Satisfactory or No Reaction:
 - $1.8 million - $2.6 million - $3.5 million
 - 2-3-4 years
 - 30-20-10%

9. Vaccine Proceeds!!
Sample Pathway

<table>
<thead>
<tr>
<th>Characteristics of Example Path</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Possibility of Occurrence</td>
<td>0.259%</td>
</tr>
<tr>
<td>Cost of Pathway (millions)</td>
<td>$49.0</td>
</tr>
<tr>
<td>Time in Research (years)</td>
<td>6</td>
</tr>
<tr>
<td>Time in FDA (years)</td>
<td>10</td>
</tr>
<tr>
<td>Net Present Value (millions)</td>
<td>$605</td>
</tr>
</tbody>
</table>
This is a very risky project!

What can we do?
FDA: Attempt #2

- Where drug was abandoned before, return to research for one year

- Continue in FDA at same phase

- Expect higher probability of success
Comparison of Risk Analyses

<table>
<thead>
<tr>
<th>Summary of Pathways in Risk Analysis</th>
<th>Initial</th>
<th>"Second Chance"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pathways</td>
<td>71</td>
<td>443</td>
</tr>
<tr>
<td>Successful Pathways</td>
<td>12</td>
<td>96</td>
</tr>
<tr>
<td>Percent Success (6 year path)</td>
<td>9.2%</td>
<td>23.3%</td>
</tr>
</tbody>
</table>
Risk Summary: TB Vaccine

<table>
<thead>
<tr>
<th>First Stage Decision- Time Invested in Research</th>
<th>6 Years</th>
<th>8 Years</th>
<th>10 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single trip Through FDA</td>
<td>Risk</td>
<td>90.8%</td>
<td>78.1%</td>
</tr>
<tr>
<td></td>
<td>Expected Worth (millions)</td>
<td>$555.43</td>
<td>$494.43</td>
</tr>
<tr>
<td>Recycle Through FDA</td>
<td>Risk</td>
<td>76.7%</td>
<td>65.3%</td>
</tr>
<tr>
<td></td>
<td>Expected Worth (millions)</td>
<td>$485.97</td>
<td>$428.16</td>
</tr>
</tbody>
</table>
Conclusions

- **1st stage decision**
 - 6, 8, or 10 years pre-FDA research

- **Price optimization**
 - $140/unit
 - ROI = 29% (5 years)

- **FDA risks based on 1st stage decision**
 - From 54% to 91%

- **Risks based on 2nd stage decision to re-cycle drug**
 - Decreased to 47% to 77%
 - Decreased Expected Worth

- **Pre- FDA research**
 - Significantly increases success probability
 - Decreases Expected Worth
General Conclusions

- New drug analysis outcome
 - General form of pre-FDA research & FDA approval process
 - Market analysis
 - Demand and pricing models
 - Risk analysis
 - Expected worth estimation
 - Assistance in critical decision-making
Tuberculosis Vaccine

Questions?
Appendix
Antibody Stimulation: Goal

- Use parts of *Mycobacterium tuberculosis* capsule and force the body to create antibodies against it
- Replicate ‘natural’ antibody production process
- Stimulate response for future and current infection
Method Benefits

- Has the highest yield and the most documentation
- Modeled for all saccharide-protein conjugate vaccines
- Researched with Tetanus Toxoid
Antibody Suppression

TB multiplies inside macrophages

- Binds to macrophage surface protein (C3b) - receptor for complement cascade
 - No guidance to site of infection
- Prevents formation of phagolysosome
Carbohydrate Attachment

- Step 1- Amination of polysaccharides (PS)
 - Deviation: insufficient amino substitution

\[
\text{PS-CHO} + \text{NH}_4\text{Cl} \xrightarrow{\text{NaBH}_3\text{CN}} \text{PS-NH}_2
\]

- solid sodium cyanoborohydride

PS + solid ammonium chloride \rightarrow aminated PS
Carbohydrate Attachment

- Step 2- Thiolation of aminated polysaccharides with 2-iminothiolane

\[\text{PS-NH}_2 + \text{S} - \text{NH}_2^+\text{Cl}^- \rightarrow \text{PS-NH-C(NH}_2^+\text{Cl}^-)-(\text{CH}_2)_3\text{-SH} \]

Aminated PS + 2-iminothiolane \rightarrow thiolated PS
Carbohydrate Attachment

- Step 3- Bromoacetylation of tetanus toxoid (TT)
 - Deviation: contamination in tetanus sample

\[\text{TT-NH}_2 + \text{NHS-CO-CH}_2-\text{Br} \rightarrow \text{TT-NH-CO-CH}_2-\text{Br} \]

Stock TT + solid N-hydroxysuccinimide ester of bromoacetic acid \(\rightarrow \) bromoacetylated TT
Carbohydrate Attachment

- **Step 4**: Conjugation of thiolated polysaccharides with bromoacetylated tetanus toxoid
 - Deviation: incomplete conjugation

\[
\text{PS-NH-C}(\text{NH}_2^+\text{Cl}^-)-(\text{CH}_2)_3-\text{SH} + \text{TT-NH-CO-CH}_2-\text{Br} \rightarrow \\
\text{TT-NH-CO-CH}_2-\text{S-(CH}_2)_3-\text{C}(\text{NH}_2^+\text{Cl}^-)-\text{NH-PS}
\]

- **Step 5**: Separation of conjugates from free reactants
 - Deviation: contaminants, pH variation
General Technological Risks

- Experimental failure
- Unexpected outcomes
- Lack of chemical reactivity
- Deviations in product recovery
 - Methodology or instrumentation
- Unavailability of resources or test subjects
- Risk to human health
TB Vaccine Risks & Deviations

- Growth on plates not determined
- Non-effective sonication
- Yield of cell membrane (pellets) uncertain
- Carbohydrate cleaving inaccurate
 - Over 10 kDa or less than 2 kDa capsule fragments
 - Deacetylation not achieved – lower yield
TB Vaccine Risks & Deviations (cont’d)

- Insufficient amino substitution of polysaccharide
- No sulfhydryl groups after reduction of disulfides
- Residual salts and impurities in tetanus toxoid
- Incomplete bromoacetylation reaction - no activated amino group
- Incomplete conjugation of polysaccharide and tetanus toxoid
- pH variance at any step
- Contamination by free reactants
Vaccine Components

- 25ug polysaccharide- tetanus toxoid conjugate
- Sodium Phosphate Buffer
- 0.9% Sodium Chloride Saline
Animal Testing Procedures

- 80 male BALB/c inbred mice injected with complex
- 10 mice injected with saline, 10 with carbohydrates as controls
- Mice immunized subcutaneously at 0 and 28 days with 1 ug of conjugates in 0.25 mL phosphate-buffered physiological saline (PBS)
- Blood samples collected every 7 days for 120-day period
Animal Testing Procedures

- Serum titers measured when samples are sent to testing facility
- IgG levels monitored periodically
Business Plan
Competition

Crucell & Aeras Global TB Vaccine Foundation

- Bill & Melissa Gates Foundation
 - $82.9 million to Aeras
- $2.9 million to Crucell
- Improve on BCG vaccine
- Phase I clinical trials in 5 years + 8 yrs FDA
- Earliest distribution Year 2019!
Production Capacity

- Current Market = 2.68 million/year
- 3.5% Market Growth - linked to hospitals
α Function Model

<table>
<thead>
<tr>
<th>Range (Years)</th>
<th>Advertisement Method</th>
<th>Expenses</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Word of mouth, Presentations, FDA Results, Journals, Visits (2 sales reps)</td>
<td>$121,584.00</td>
</tr>
<tr>
<td>0 to 1</td>
<td>Visits + Website + Television (9 sales reps)</td>
<td>$1,361,768.00</td>
</tr>
<tr>
<td>1 to 2</td>
<td>Visits + Website + Television (23 sales reps)</td>
<td>$2,212,865.00</td>
</tr>
<tr>
<td>2 to 3</td>
<td>Visits + Website + Television (32 sales reps)</td>
<td>$2,759,984.00</td>
</tr>
<tr>
<td>3 to 4</td>
<td>Visits (18 sales reps)</td>
<td>$1,094,256.00</td>
</tr>
<tr>
<td>4 to 5</td>
<td>Visits (2 sales reps)</td>
<td>$121,584.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>$7,672,032.00</td>
</tr>
</tbody>
</table>

- First 3 years – most costly
Advertisement: Methods & Costs

<table>
<thead>
<tr>
<th>Method & Description</th>
<th>Cost ($/year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Representative (84 installations)</td>
<td></td>
</tr>
<tr>
<td>• Salary</td>
<td>45,000.00</td>
</tr>
<tr>
<td>• Transportation, car, plane tickets</td>
<td>13,440.00</td>
</tr>
<tr>
<td>• Misc., meals, reimbursements, other</td>
<td>2,352.00</td>
</tr>
<tr>
<td>World Wide Web</td>
<td></td>
</tr>
<tr>
<td>• Web Page</td>
<td>2,400.00</td>
</tr>
<tr>
<td>• Web Master salary</td>
<td>32,000.00</td>
</tr>
<tr>
<td>• Fee, other</td>
<td>240.00</td>
</tr>
<tr>
<td>Television</td>
<td></td>
</tr>
<tr>
<td>• 30 second commercial 3 times/day</td>
<td>780,000.00</td>
</tr>
</tbody>
</table>
Demand Equation

\[\beta p_1 d_1 = \alpha p_2 d_2 \left(\frac{d_1^\alpha}{d_2^\beta} \right) \]

\[\beta = \frac{S_2}{S_1} \]

\(\alpha = \text{awareness of product} \)

\(p_1 = \text{our price} \)

\(p_2 = \text{competitor's price} \)

\(d_1 = \text{our demand} \)

\(d_2 = \text{competitor's demand} \)

\[Y = p_1 d_1 + p_2 d_2 \]

\[\Rightarrow d_2 = \frac{Y - p_1 d_1}{p_2} \]

\[\therefore d_1 = \left(\frac{\alpha p_2}{\beta p_1} \right) \left(\frac{Y - p_1 d_1}{p_2} \right)^{1-\beta} \cdot d_1^\alpha \]
Risk Analysis

- Probability
- Net Present Value (millions)

- 6 years
- 8 years
- 10 years
Detail of Losses

Net Present Value (millions)

Probability

-14 -12 -10 -8 -6 -4 -2 0 1

6 years 8 years 10 years

Net Present Value (millions)
Timeline: 2nd Stage Decisions

<table>
<thead>
<tr>
<th>Year</th>
<th>Research</th>
<th>Animal Testing</th>
<th>FDA: Phase I</th>
<th>FDA: Phase II</th>
<th>FDA: Phase III</th>
<th>FDA: Applications</th>
<th>Plant Construction</th>
<th>Marketing</th>
<th>Production</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>