Slow Release Fragrance and Disinfectant for Carpets

ChE 4273 Capstone
Dr. Bagajewicz
Justin Woody
Carrie Street

- Background

- Design
- Utilities
- Production Process
- Economics

The Case for a Clean Carpet

-Dust Mites -Mold
-Mildew -Bacteria

Dust Mites

aMicroscopic arachnids

aDust mite's dead remains and fecal matter are invisible cause respiratory problems
aRemains are suspended in the air for extended periods of time

Dust Mites: Ideal Environment

-Feed on dead human skin cells

ㅁ>55\% humidity
$\square 72^{\circ}-79^{\circ} \mathrm{F}$

ロ<50\% humidity, most die within 710 days

- Moist, warm, poorly ventilated places
-Quickly mature
-Produce floating spores
-Cause discomfort and allergies

Bacteria

-Gram negative
-Anaerobic
-Require wet environment
-Live in latex backing of carpet
-Produce butyric acid - foul smell

Wet Cleaning Problems

-Cause mildew growth
-Up to 20\% water absorption

- Analogous to shampooing hair without rinsing
- Soapy, sticky residue

Current Products

-Arm\&Hammer

- Borid
- Capture Clean

www.captureclean.com

Challenge

Freshen and Disinfect
 - With Powders

- Slow release fragrance

■ Small particles (biodegradable)

■ Disinfectant

Problem

Dust Mites

Mold

Bacteria

Mildew

Potential Solution

boric acid, tannic acid
boric acid, sodium propinoate
neutralize butyric acid odor with baking soda boric acid, baking soda

Natural Fragrances

Linalool

Citral

Lemon

Rose
Geraniol

Design

-Baking Soda
\square Boric acid

- Linalool in PLGA for extended duration

Sodium bicarbonate

-Absorbs moisture
\square Non-toxic

Boric Acid

BORON COMPOUND
\square Kill dust mites

- crystal coats food source
- Neutralize allergens
- Inhibit mold, mildew, bacteria, and fungi growth
- Kill cockroaches, beetles, and ants by chemical burns

-Poly(lactic-coglycolic acid)
- Biodegradable

-Degrades by hydrolysis of ester linkages

Utility Function Method

$\mathrm{U}=\sum \mathrm{U}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}$

$\mathrm{U}=$ utility $\quad \mathrm{w}=$ importance weight i = characteristic

Utility Function Method

Characteristics
Weights
\sum weights $=1$

Characteristic

Disinfectant Effectiveness
0.21

Scent Intensity
0.22

Fragrance Duration
0.19

Toxicity
0.09

Odor Elimination
0.15

Scent Type
0.14

Utility Function Method

Consumer Tests

Relate characteristics to physical property

Disinfectant Effectiveness relates

$\square \%$ of mites killed
\square Amount of boric acid per unit area

Disinfectant Effectiveness

Disinfectant Effectiveness

Random Walk

Disinfectant Effectiveness

Disinfectant Effectiveness

Scent Intensity relates

■Fragrance intensity

- Number of particles per unit area (n)

Scent Intensity

Quantifying Consumer Preference

■ Journal of Food and Science

- various amounts of linalool
- human subjects determined scent intensity
- 1.5 feet away from the sample
- 25 minutes after the sample was prepared

Linalool (ppm)	Strength	Utility
0	none	50
0.5	none - trace	70
2.5	trace	100
12.5	trace - slight	99
62.5	moderate	90
312.5	heavy	$\mathbf{8 2 . 5}$

Fragrance Duration relates

-Application frequency

\square Amount of linalool in particles (L)

Fragrance Duration

Mass Transfer quantifies

- Scent Intensity
-Fragrance Duration

Fragrance Particle Schematic

Design Parameters

\square Number of particles (n)

\square Amount of linalool in particles (L)

Expected Trends

$n=$ number of particles per unit area
$L=$ amount of fragrance in each particle

Assumptions

\square Radial symmetry
\square Air is semi-infinite
\square No degradation inside particle
\square Polymer degradation slower than fragrance diffusion

Equation Development

r

Welty et al., "Fundamentals of Momentum, Heat, and Mass Transfer," 2001.

Boundary Conditions

$$
\square=c^{\text {sat }} \quad \text { at } r=R_{1}
$$

$\left.\square D_{m} \frac{d C}{d r}\right|_{r=R_{2}}=\left.D_{a} \frac{d C^{*}}{d r}\right|_{r=R_{2}}$
$\square r>R_{2}$

$$
\begin{aligned}
\mathrm{r} & >\mathrm{R}_{2} \\
C^{*} & \left.C^{*}+\left(C^{*}\left(R_{2}\right)-C^{*}\right)^{*}\right) \frac{R_{2}}{r} \operatorname{erfc}\left(\frac{r-R_{2}}{2 \sqrt{D_{a}} t}\right)
\end{aligned}
$$

Linalool Concentration

$$
\begin{gathered}
C(r)=c^{\text {sat }}-\frac{R_{2}}{R_{1}} \frac{D_{a}}{D_{m}} C\left(R_{2}\right)+\frac{R_{2}}{r} \frac{D_{a}}{D_{m}} C\left(R_{2}\right) \\
C\left(R_{2}\right)=\frac{c^{s a t}}{1+\frac{R_{2}}{R_{1}} \frac{D_{a}}{D_{m}}-\frac{D_{a}}{D_{m}}}
\end{gathered}
$$

Scent Intensity

-Relates

- Odor intensity

■ Number of particles per unit area (n)
-Assuming

- 10 micron particle diameter
- Fixed amount of linalool in particles (L) to 90% linalool

Scent Intensity: Concentration at 5 ft

Scent Intensity

Fragrance Duration

$$
\int_{0}^{t^{*}} D_{m} \frac{d C}{d r}=m
$$

$$
t^{*}=\frac{c_{o} R_{1}^{3}}{3 D_{a} C\left(R_{2}\right) R_{2}}
$$

Fragrance Duration

םRelates

- Application frequency
- Amount of linalool in particles (L)
-Assuming
- 24 hours to concentration threshold
- Fixed number of particles (n)

Fragrance Duration: Concentration at 5 ft

Fragrance Duration

Fragrance Duration

Toxicity relates

-Toxicity
\square Amount of boric acid per unit area

Toxicity

Toxicity

- Components are fixed
-Toxicity is the same as the competitor

Toxicity

Odor Elimination relates

■Odor Eliminated (Freshness)
\square Amount of baking soda per unit area

Odor Elimination

Odor Elimination

Odor Elimination

Scent Type

Production Process

Double Emulsion

Fragrance Particles

Other Raw Materials

Mixing

Product

Water/Oil/Water Double Emulsion

Aqueous linalool

Double Emulsion

\square Mix by sonication

Sonicator

www.2spi.com

Double Emulsion

Double Emulsion

\square PVA ensures small colloids stay small Linalool \longleftarrow Water/PVA \rightarrow

Double Emulsion

\square Remove organic solvent

Rotary Evaporator

aironline.com/equipment

Double Emulsion

\square Collect microspheres

Centrifuge

aironline.com/equipment/

Double Emulsion

\square Prepare for mixing

Freeze Dryer
www.labx.com

Production Process: Mixing

Cost Analysis

-TCI and FCI
\square Price and Demand Model

- Maximized Utility
- Maximized NPW
- Shipping Costs
- Advertising Costs
- Risk
- Strauss Plots
- Monte-Carlo Simulations

Price and Demand

$$
0=P_{1} D_{1}-\left(\frac{\alpha}{\beta}\right)^{\rho} P_{2}\left(\frac{Y-P_{1} D_{1}}{P_{2}}\right)^{1-\rho} D_{1}^{\rho}
$$

α	$=$ consumer awareness
β	$=$ competitor utility/our utility
ρ	$=$ diminishing marginal utility
(concave $<1)$	
Y	$=$ budget constraint
P	$=$ price
D	$=$ demand
1 = ours, $2=$ competition	

Price and Demand

Budget Constraint $=54$ million

Alpha
${ }^{\square} \alpha$ is a function of advertising and time

ロ Preliminary estimates based on $\alpha=0.9$

Advertising

- Directly proportional to demand
- $\$ 5$ million for 100% demand

Shipping

Choose
 Distribution

throughout USA

Assign
 Weights

population and humidity

Shipping

high productivity

Shipping Assumptions

- Ship by truck
-Constant product composition
-Uniform price in all regions
- Uniform budget constraint in all regions

Distribution Centers

Olympia, WA
Salt Lake City, UT
Denver, CO
Austin, TX
Jefferson City, MO
Indianapolis, IN
Tallahassee, FL
Albany, NY

Sacramento, CA Phoenix, AZ Helena, MT
Baton Rouge, LA
St Paul, MN
Nashville, TN
Columbia, SC
Harrisburg, PA

Distribution Centers

50states.com

Shipping Calculations

Plant	Population	Avg. Humidity	Fraction of Location
Olympia, WA	3.9 million	78%	0.11
St. Paul, MN	3 million	73%	0.09
Baton Rouge, LA	750,000	76%	0.05

Plant Location
 Cost per gal

Montgomery, AL
\$ 304
Jackson, MS
Atlanta, GA
\$ 289
\$ 304
Little Rock, AR
Oklahoma City, OK
\$ 250

TCI Calculations

TCI Calculations

FCI

 \$350,000Working Capital

TCI \$525,000

NPW Calculations

Maximum Utility

-Composition

- 0.1% Linalool
- 0.2\% PLGA
- 20.6\% Boric Acid
- 79.1\% Baking Soda

םCost per 16 oz container to have + NPW

- Unrealistic, you get a -NPW at any price

Maximum NPW Product

- Varied Composition - which varied utility

Maximum NPW Product

- Maximum NPW Utility $\beta=0.735$ Price $=\$ 19.44$

- Composition - 0.01\% Linalool, 0.02\% PLGA, 17.9\% Boric Acid, 80\% Baking Soda

Revised Budget Constraint

- All calculations have been based on disinfectant market only
- $Y=54$ million
- Max NPW is \$1,730,000 - lowest approximation
- If the air freshener market (98 million) is taken into account
- Max NPW is \$13,300,000 - highest approximation
- Actual budget constraint most likely would fall in the middle
- A novel idea is to poll consumers
- How much would they pay extra than just disinfectant
- Shown below

16oz-10\$ container	
2x Duration	$\$ 2.14$
More Effective	$\$ 2.03$
Fresher	$\$ 1.58$
Safer	$\$ 1.23$
Better Scent	$\$ 1.01$
Increase	$\$ 17.99$
Initial Demand	5400000
New Budget Constraint	$\$ 97,000,000.00$

New $Y=97$ million
Max NPW = \$6,800,000

- Strauss Plots

■ Varied all raw materials 20\% of 2007 selling price
-Monte Carlo Simulations

- Varied all raw materials 20\% of 2007 selling price

Strauss Plots

Strauss Plot Slope

Linalool
-150

PLGA
-400

Boric Acid

Baking Soda
$-3 e 5$
-1e6

Strauss Plots

- Sensitivity to Price

- Lower the price, higher the demand, and higher sensitivities

Strauss Plot Slopes

Price per container	Linalool	PLGA	Boric Acid	Baking Soda
$\$ 19$	-440	-162	$-3.6 e 5$	$-1.6 e 6$
$\$ 20$	-350	-129	$-2.9 e 5$	$-1.3 e 6$
$\$ 21$	-280	-123	$-1.3 e 5$	$-1.0 e 6$

As price goes down, demand goes up the NPW is a stronger function of the raw materials

Monte Carlo Simulations $-\mathrm{Y}=54$ mill

5\% of losing money
95\% of making money

Monte Carlo Simulations $-\mathrm{Y}=54$ mill

14\% of losing money
86% of making money

Monte Carlo Simulations $-\mathrm{Y}=54$ mill

97\% of losing money
3\% of making money

Monte Carlo Simulations $-\mathrm{Y}=97$ mill

1\% of losing money
99\% of making money

Monte Carlo Simulations $-\mathrm{Y}=97$ mill

1% of losing money
99\% of making money

Monte Carlo Simulations $-\mathrm{Y}=97$ mill

66\% of losing money

34\% of making money

Questions

Utility Questions

Utility	Wt.	$\mathbf{U}_{\text {ours }}$	$\mathbf{U}_{\text {theirs }}$	$\mathbf{U}_{\text {theirs should be }}$
Duration - Linalool	0.19	13.90	9.50	0
Toxicity	0.09	7.50	7.50	7.5
PLGA-Scent Strength	0.22	16.40	11.00	0
Boric Acid	0.21	18.00	19.95	19.95
Baking Soda	0.15	14.90	7.30	7.3
What Scent	0.14	13.00	7.00	7
				83.70
$\boldsymbol{\beta}=$	62.25	41.75		
		$\boldsymbol{\beta}$	0.73	0.50
		NPW	$\$ 1,730,000$	$\$ 12,000,000$

This table breaks down our conservative approach for the utility. When polled consumers stated for our product their would be a 0 utility for a product that had no duration and no scent, yet we felt that to be conservative we should give our competitor 50% of the utility so that we would not be making unrealistic amounts of money. This table shows how much we make with the conservative approach and how much we would have made if the competitor would have had a 0 utility for both. Another implication of our model being conservative with the utility for the fragrance of the competitor is that is gave us the freedom to look into the fragrance market also, which is very important. It would be like comparing apples and oranges if we would have excluded that.

Equipment Costs

Equipment Costs

Unit	Capacity (lbs)	Cost(2007)
solids storage	850	$\$ 780.00$
sonicator	1.62	$\$ 5,000.00$
roto vap	1.62	$\$ 3,200.00$
centrifuge	1.62	$\$ 1,400.00$
freeze dryer	1.62	$\$ 1,800.00$
mixer	850	$\$ 20,152.00$
		$\$ 32,000.00$
Total Equ't Cost		

TCI, FCI, Working Capital

Capital Investment

Direct Costs	\% of Purchased Equ't	
Purchased Equipment Delivered	1	\$32,000.00
Purchased-equipment installation	0.47	\$15,040.00
Instrumentation and Controls	0.36	\$11,520.00
Piping	0.68	\$21,760.00
Electrical Systems	0.11	\$3,520.00
Rent		\$60,000.00
Buildings	0.18	\$5,760.00
Yard Improvements	0.1	\$3,200.00
Service facilities	0.7	\$22,400.00
Total Direct Plant Cost		\$175,200.00
Indirect Costs		
Engineering and Supervision (2 Eng 70K)		\$140,000.00
Construction Expenses	0.41	\$13,120.00
Legal expenses	0.04	\$1,280.00
Contractor's fee	0.22	\$7,040.00
Contingency	0.44	\$14,080.00
Total Indirect Plant Cost		\$175,520.00
Fixed Capital Investment		\$350,720.00
Working Capital		\$175,360.00
Total Capital Investment		\$526,080.00

ROI and PBP questions

Yr	Sales	Costs	Annual Cash Flow	d	r	[(er-1)/r]e-rj	Present Worth
1	\$7,300,396.28	\$6,809,171.87	\$320,076.67	\$780.80	\$0.00	0.93	\$299,439.14
2	\$7,519,408.17	\$7,013,423.60	\$329,670.77	\$780.80	\$0.00	0.81	\$268,157.45
3	\$7,744,990.42	\$7,223,802.89	\$339,552.69	\$780.80	\$0.00	0.71	\$240,144.35
4	\$7,977,340.13	\$7,440,493.55	\$349,731.08	\$780.80	\$0.00	0.61	\$215,058.22
5	\$8,216,660.33	\$7,663,684.93	\$360,214.81	\$780.80	\$0.00	0.53	\$192,593.16
6	\$8,463,160.14	\$7,893,572.05	\$371,013.06	\$780.80	\$0.00	0.46	\$172,475.25
7	\$8,717,054.95	\$8,130,355.79	\$382,135.25	\$780.80	\$0.00	0.40	\$154,459.20
8	\$8,978,566.59	\$8,374,243.04	\$393,591.11	\$780.80	\$0.00	0.35	\$138,325.36
9	\$9,247,923.59	\$8,625,446.91	\$405,390.64	\$780.80	\$0.00	0.30	\$123,877.05
10	\$9,525,361.30	\$8,884,186.89	\$417,544.16	\$780.80	\$0.00	0.27	\$110,938.14
10end	\$0.00	\$0.00	\$0.00	\$0.00	\$24,192.00	0.24	\$5,806.08
						Sum	\$1,921,273.42
			NPW				
			\$1,735,801.42				
	16 oz cont	Revenue		TCI	FCI	$\mathrm{ROI}=\mathrm{Np}, \mathrm{avg} / \mathrm{TCI}$	PBP (yrs)
	375000	\$19.47		\$403,328.00	\$350,720.00	86.00\%	1.01

