INCORPORATING PRODUCT DESIGN INTO THE DEVELOPMENT OF NEW REFRIGERANTS

By: Isaac Anderson and Christopher DiGiulio

[1] Vapor-Compression Refrigeration. Answers.com. 4/27/2007 http://www.answers.com/topic/vapor-compression-refrigeration>.

PRESENTATION OUTLINE

- **1. Background**
- 2. The Use of Consumer Preference Functions in Refrigerant Design
- **3. Design of New Refrigerants Based on Consumer Preference Functions and the Chosen Market**
 - **A.** Discussion of Group Contribution Theory
 - **B. Enumeration Modeling in Excel using Group Contribution Theory**
- 4. Conclusions
- **5. Recommendations**

BACKGROUND

HISTORY OF REFRIGERATION

- Refrigeration goes back to ancient times
 - Stored Ice
 - Evaporative
 Processes
- In 1805, Oliver Evans proposed the use of a volatile fluid in a closed cycle to freeze water into ice

chemical, biological & moterials chemical, biological and materials engineering university of oklahoma

HISTORY OF REFRIGERATION

- Evan's theories most likely influenced Jacob Perkins and Richard Trevithick
- They proposed an air-cycle system in 1828, but it wasn't built either
- Actual refrigerants were introduced in the 1830s with the invention of the vapor compression system by Perkins

Table 1: Historical introduction of refrigerants

year	refrigerant	chemical formula
-	(/absorbent)	or makeup
1920-		distillate of india
18505	caoutenoueme	and have
	aulfunia (athail) athan	rubber
	<i>Sulfuric</i> (ethyl) ether	CH ₃ -CH ₂ -O-CH ₂ -
1940-	mother (B E170)	CH ₃
18405	memor (culturic coid	U_{13} - U_{13}
1850	othril alashal	H_2O / H_2SO_4
1850		CH ₃ -CH ₂ -OH
1859	ammonia / water	NH ₃ / H ₂ O
1866	cnymogene	the (hereiner and naph-
		tha (hydrocardons)
10.00	carbon dioxide	
1860s	ammonia $(R-/1/)$	NH ₃
	methyl amine (R-630)	$CH_3(NH_2)$
	ethyl amine (R-631)	$CH_3-CH_2(NH_2)$
1870	methyl formate	HCOOCH ₃
	(R-611)	~~
1875	sulfur dioxide (R-764)	SO ₂
1878	methyl chloride (R-40)	CH ₃ Cl
1870s	ethyl chloride (R-160)	CH ₃ -CH ₂ Cl
1891	blends of sulfuric acid	$H_2SO_4, C_4H_{10}, C_5H_{12},$
	with hydrocarbons	$(CH_3)_2CH-CH_3$
1900s	ethyl bromide	CH_3 - CH_2Br
	(R-160B1)	
1912	carbon tetrachoride	CCl ₄
	water vapor (R-718)	H_2O
1920s	isobutane (R-600a)	$(CH_3)_2CH-CH_3$
	propane (R-290)	CH ₃ -CH ₂ -CH ₃
1922	dielene (R-1130) ^a	CHCl=CHCl
1923	gasoline	hydrocarbons
1925	trielene (R-1120)	CHCl=CCl ₂
1926	methylene chloride	CH_2Cl_2
	(R-30)	

^a blend of cis- and trans-1,2-dichloroethene isomers

HISTORY OF REFRIGERATION

- In 1928, Midgely, Henne, and McNary of GM pioneered work to obtain molecules with desirable properties using systematic design
 - They synthesized all 15 combinations of one carbon with various combinations of chlorine, fluorine, and hydrogen.
 - They finally chose dichlorodifluoromethane (Freon) as having the most desirable characteristics, thus introducing the first chlorofluorocarbons

REFRIGERANTS FROM 1830-PRESENT

• First Generation

- Generally solvents, fuels or volatile components (whatever worked)
- Second Generation
 - CFCs were introduced
- Third Generation
 - Shift to HCFCs
- Fourth Generation
 - Focused on refrigerants that do no contribute to global warming

[3] Calm, James M. and Glenn C. Hourahan. *Refrigerant Data Update*. January 2007. Heating/Piping/Air Conditioning Engineering. Feb. 7, 2007 http://www.hpac.com/Issue/Article/44475/Refrigerant Data Update.

chemical, biological & materials engineering university of oklahoma

REFRIGERANT PHASE-OUT

• 1987

 Montreal Protocol established requirements that began the world wide phase-out of CFCs

• 1992

 Montreal Protocol established phase-out for HCFCs

PHASE-OUT SCHEDULE FOR HCFCS

- 2003
 - The amount of all HCFCs that can be produced nationwide must be reduced by 35.0%
- 2010
 - The amount of all HCFCs that can be produced nationwide must be reduced by 65.0%
- 2015
 - The amount of all HCFCs that can be produced nationwide must be reduced by 90.0%
- 2020
 - The amount of all HCFCs that can be produced nationwide must be reduced by 99.5%
- 2030
 - No HCFCs can be produced

PHASE-OUT SCHEDULE FOR HCFCS

chemical, biological & moterials chemical, biological and materials engineering university of oklahoma

THE USE OF CONSUMER PREFERENCE FUNCTIONS IN REFRIGERANT DESIGN

CONSUMER PREFERENCE FUNCTIONS AND DEMAND

- In the design of the potential refrigerants, consumer preference functions were used to evaluate refrigerant properties
- Consumer preference functions can also be used to solve for the demand (d₁) of a new refrigerant when it is in competition with an existing refrigerant
- In the following equation, β is the only variable dependent on consumer preference functions

$$\phi(d_1) = p_1 d_1 - \left(\frac{\alpha}{\beta}\right)^{\rho} p_2 \left[\frac{Y - p_1 d_1}{p_2}\right]^{1 - \rho} d_1^{\rho} = 0$$

 Where: Y is the market potential P is the price D is the demand
 ρ was set to a constant value of 0.76
 α is the consumer awareness of our product
 β relative consumer preference The subscript 1 refers to the new product The subscript 2 refers to the existing comparison product

chemical, biological & potenials chemical, biological and materials engineering university of oklahoma

DEVELOPMENT OF a

- Alpha is the consumer awareness of the new refrigerant as a function of time.
- The plots on the right show the values of alpha that were used when calculating the demand
- The bottom figure illustrates the effect of increases advertising

chemical, biological & moterials chemical, biological and materials engineering university of oklahoma

DEVELOPMENT OF B

• The equation used to derive β is as follows

 $\beta = \frac{H_2(competition \ preference)}{H_1}$

• Where H_i is the respective consumer preference of each product

$$H_i = \sum \omega_i y_i$$

Where : ω_i is the weight of refrigerant property y_i is the property score of each refrigerant property

CONSUMER PREFERENCE FUNCTIONS

• Consumer preference functions predict consumer reactions to different refrigerant design properties

• The consumer preference functions were estimated using expected consumer reactions to refrigerant properties

chemical, biological & moterials chemical, biological and materials engineering

WHAT MAKES A GOOD REFRIGERANT?

- Safe: non-toxic, nonflammable, and nonexplosive
- Environmentally friendly: low ODP, low GWP
- Compatible with existing refrigeration materials
- Desirable thermodynamic characteristics: high latent heat, low compression ratio, low specific heat of liquid
- Stable at operating temperatures chemical, biologi

CONSUMER PREFERENCE FUNCTIONS

• Based on 6 characteristics

- Flammability
- Explosiveness
- Toxicity
- Global Warming Potential
- Ozone Depletion Potential
- Coefficient of Performance
- The outlook for discovery or synthesis of ideal refrigerants is extremely unlikely. Trade-offs among desired objectives are necessary to achieve balanced solutions⁴

[4] Calm, James M. and David A. Didion. "Trade-Offs in Refrigerant Selections: Past, Present and Future." Int. J. Refrig., 21, 308 (1998).

SURVEY 1

Survey 1 - Refrigerant Design

Please Rank each of these issues on a scale of 1 to 10 (10 is very								
<u>important</u> and 1 is <u>not important</u>)								
Refrigerant Property / Refrigeration Cycle Properties	Rank							
Is a refrigerant with a low toxicity important to you	7							
Is a refrigerant that doesn't contribute to global warming important to you	8							
The potential for ozone depletion is something that concerns you	8	K						
The efficiency of the system should be as high as possible	9							
The flammability of the refrigerant should be as low as possible	10							
The system should have the lowest possible explosion potential	10							
REMEMBER COST IS NOT AN ISSUE!!!		-						

Expected consumer response

chemical, biological & moterials chemical, biological and materials engineering university of oklahoma

ESTIMATING ω_i

• This figure represents the expected weights of the refrigerant properties

 It can be seen that efficiency is the most important property to consumers

chemical, biological & moterials

chemical, biological and materials engineering V university of oklahoma

SURVEY 2

Example - Donut Design (Sweetness)

The following options are meant to gauge consumer preferences when concerning the sweetness of donuts. In the following options, a sweet rating would be equivalent to the sweetness of a chocolate bar. Based on this information, please assign percentage values indicating how happy you would be with each option.

PERSON	Not Sweet	Semi Sweet	Sweet	Very Sweet	Inedible
					Sweetness
1	0%	75%	50%	25%	0%
2	0%	100%	50%	0%	0%
3	0%	0%	100%	75%	0%

SURVEY 2 – EFFICIENCY

Coefficient of Performance (Efficiency)

In the following options, R-12 (Freon) would be considered an efficient refrigerant. Based on this information, please assign percentage values indicating how happy you would be with each option.

The system is not efficient	The system is marginally	The system is	The system is bigbly	The system is
not entrent	efficient	entelent	efficient	efficient

SURVEY 2 – FLAMMABILIT

Flammability

Ethanol (200 proof), or more commonly know as consumable liquor, would have a ranking of extremely flammable on the following scale. Based on this information, please assign percentage values indicating how happy you would be with each option.

MATERIAL

The refrigerant is non flammable	The refrigerant is slightly flammable	The refrigerant is flammable	The refrigerant is highly flammable	The refrigerant is extremely flammable

Toxicity

The following options are meant to gauge the consumer's preference to toxicity. Phenol would be considered highly toxic and water would be considered non toxic out of the list of options. To present the dangers associated with different levels of toxicity, the precautions associated with phenol are listed. Exposure to phenol can result in acute poisoning by ingestion, and inhalation or skin contact may lead to death. Phenol is readily absorbed through the skin. It is highly toxic by inhalation, corrosive and is a severe irritant. Based on this information, please assign percentage values indicating how happy you would be with each option.

SURVEY 2 – TOXICI

The	The	The	The refrigerant is	The	The refrigerant
refrigerant	refrigerant	refrigerant	moderately	refrigerant	is extremely
is non	is very is slightly		toxic	is highly	toxic
toxic	slightly	toxic		toxic	
	toxic				

SURVEY 2 – EXPLOSION POTENTIAL

Explosion Potential

Ethanol, used in the preceding example, would pose a moderate risk for explosions because it can form explosive mixtures with air. Based on this information, please assign percentage values indicating how happy you would be with each option.

SURVEY 2 – GLOBAL WARMING POTENTIAL

Global Warming Potential

Global warming potential (GWP) is evaluated on a scale that uses CO_2 as the benchmark. Meaning, CO_2 is assigned a value and other components are compared to CO_2 . Sulfur hexafluoride has one of the highest GWP's on this scale and would be ranked as having an extremely high GWP on this survey. Oxygen has no GWP and would be ranked as having no GWP on this survey. **Based on this information, please assign percentage values indicating how happy you would be with each option**.

The	The	The	The	The	The
refrigerant	refrigerant	refrigerant	refrigerant	refrigerant	refrigerant
has no	has a very	has a slight	has a	has a high	has an
GWP	slight GWP	GWP	moderate	GWP	extremely
			GWP		high GWP

SURVEY 2 – GLOBAL WARMING POTENTIAL

chemical, biological & materials engineering university of oklahoma

SURVEY 2 – OZONE DEPLETION POTENTIAL

Ozone Depletion Potential

Ozone depletion potential (ODP) is evaluated on a scale that uses CFC-11 as a benchmark. All other components are based on how damaging to the ozone they are in relation to CFC-11. On this scale, CFC-12 (Freon) would be considered to have a moderate ODP. Based on this information, please assign percentage values indicating how happy you would be with each option.

The	The	The	The	The	The
refrigerant	refrigerant	refrigerant	refrigerant	refrigerant	refrigerant
has no	has a very	has a slight	has a	has a high	has an
ODP	slight ODP	ODP	moderate	ODP	extremely
			ODP		high ODP

SOLVING FOR THE MARKET POTENTIAL (Y)

- Before the market potential can be solved for, a market must be defined
- Possible Markets for New Refrigerants include:
 - Air conditioning for homes and commercial buildings
 - Air conditioning of personal cars, trucks and sport utility vehicles
 - Refrigerated transportation (food, animals, beer, medical supplies etc.)
 - Refrigerators and freezers
 - Industrial operations

CENTRAL AIR/HOUSEHOLD UNITS

US Air-Conditioners Volume 1999-2004e ((000) units) % Growth (000) units (000) units ---- % Growth 10.000.0 -40.0% 9.000.0 30.0% 8.000.0 -7.000.0 20.0% 6.000.0 5.000.0 10.0% 4.000.0 0.0% 3.000.0 2.000.0 - -10.0% 1.000.0 --20.0% 0.0 1999 2000 2001 2002 2003 2004e

Source: AHAM, Appliance Magazine, Appliance Manufacturer, Snapdata Research

⁵US Air Conditioners 2004.

• In 2006, the number of total housing units in the US was 124.4 Million Units

• The number of air conditioners sold in the US is estimated to reach 10.7 million units in 2008

> chemical, biological & moterials chemical, biological and materials engineering university of oklahoma

AUTOMOBILES SOLD IN 2005

• The automotive industry offers higher numbers of units sold per year

Advantage of the automotive market
 – Higher Volume

chemical, biological & moterials chemical, biological and materials engineering university of oklahoma

ESTIMATING THE MARKET POTENTIAL OF THE AUTO MARKET

- In this study, the automotive market was chosen because it offers higher volume in sales
- The market potential was estimated by multiplying automotive sales by an average refrigerant volume required of 24oz.
- The answer obtained was approximately 14.2 thousand metric tons per year

chemical, biological & moterials

chemical, biological and materials engineering

COMPARING THIS VALUE TO DATA PROVIDED BY THE UNFCCC

- The market potential was then compared to information obtained from United Nations Framework Convention on Climate Change (UNFCCC). The table is on the following slide
- The UNFCCC provides the amounts of varying refrigerants produced by the participating countries
 - These countries are Australia, Colombia, the European Union and its member states, Japan, Switzerland and the USA.
- Using the aforementioned estimation, it was calculated that the US accounts for 1/10th R-134a production cited by UNFCCC
- This value seems reasonable given the volume of automobile purchased each year

PRODUCTION & RELEASE DATA PROVIDED BY THE UNFCCC

Expanded Data

 Table 10
 Production and Atmospheric Release

 HFC-134a
 (thousand metric tonnes)

(thousand metric tonnes)

Reporting Companies only

					Cumulative										
	_	Annual Total				Short Banking Times			Mediur	Medium Banking Times			Long Banking Times		
	-	Production	Released	Production	Released	Unreleased	Sales	Released	Unreleased	Sales	Released	Unreleased	Sales	Released	Unreleased
1	990	0.2	0.1	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.0	0.1	0.0	0.0	0.0
1	991	2.2	0.2	2.4	0.3	2.1	0.2	0.1	0.0	2.2	0.2	2.0	0.0	0.0	0.0
1	992	6.4	0.8	8.8	1.1	7.7	0.5	0.3	0.2	8.2	0.8	7.4	0.1	0.0	0.1
1	993	26.5	3.6	35.3	4.7	30.6	2.2	1.4	0.9	32.7	3.2	29.4	0.4	0.1	0.3
1	994	50.4	9.1	85.7	13.8	71.9	5.1	3.6	1.4	78.7	9.5	69.2	1.9	0.6	1.3
1	995	73.8	19.8	159.5	33.6	125.9	15.5	10.3	5.2	140.0	21.9	118.0	4.0	1.4	2.6
1	996	83.7	32.0	243.2	65.6	177.6	25.5	20.5	5.0	210.9	42.7	168.2	6.7	2.3	4.4
1	997	101.9	41.9	345.1	107.4	237.7	32.9	29.2	3.7	301.8	74.5	227.3	10.4	3.7	6.6
1	998	112.2	53.9	457.3	161.3	296.0	39.5	36.2	3.3	398.3	118.1	280.2	19.6	7.0	12.5
1	999	133.7	69.8	591.0	231.1	359.9	53.8	46.7	7.2	509.4	174.2	335.2	27.8	10.3	17.5
2	2000	132.0	85.3	723.0	316.4	406.6	69.4	61.6	7.8	620.0	241.8	378.2	33.6	13.0	20.6

Notes

Emissions are calculated from production and categorised sales using "emission functions".

The emission function for "Long" banking times has been changed in view of the results of a survey commissioned by AFEAS:

(Ashford P., 1999, Development of a global emission function for blowing agents used in closed cell foam, Final Report to AFEAS)

This showed that most (99%) of the HFC-134a in closed cell foams was used to blow expanded polystyrene, the emission function for which comprises

32.5% loss in the year of manufacture and 3%/yr thereafter.

Columns affected by this change are shaded pale green/blue.

The emission function for "Short" banking time (e.g. aerosols) is the same as in previous reports (50% emitted in the year of manufacture and 100% the year after).

The emission function for "Medium" banking time (predominantly refrigeration) is the same as in previous reports (normally distributed about a mean 4.5 year service lifetime).

HOLE IN THE OZONE

DESIGN OF NEW REFRIGERANTS BASED ON CONSUMER PREFERENCE FUNCTIONS AND THE CHOSEN MARKET

METHODS FOR EXAMINING REFRIGERANTS

Analysis from a list

- Only known molecules can be considered
- Extensive database is necessary for complete analysis
- Limited to molecules already identified as refrigerants

<u>Group contribution</u> <u>theory</u>

- Allows for the consideration of unknown molecules
- No need for extensive databases
- Generalized approach

DISCUSSION OF GROUP CONTRIBUTION THEORY

GROUP CONTRIBUTION THEORY

- Developed by observation of existing molecules as a way to predict the basic characteristics of ANY molecule
- Uses characteristics of each functional group to estimate the characteristics of a molecule formed from the functional groups

MOLECULE MADE OF FUNCTIONAL GROUPS

1,1,1,2-Tetrafluoroethane

- Specific groups of atoms within a molecule
- Responsible for the chemical make-up of the molecule
- Example:
 - 3 different functional group types
 - 6 total groups

chemical, biological & moterials chemical, biological and materials engineering university of oklahoma

FUNCTIONAL GROUPS

Acyclic	Cyclic	Halogen	Oxygen	Nitrogen	Sulfur
Groups	Groups	Groups	Groups	Groups	Groups
-CH3	R-CH2-R	-F	-OH	-NH2	-SH
-C <u>F]2</u> -	2R>CH-R	-C]	-0-	>NH	-S-
>CH-	2R>C<2R	-Br	R-O-R	2R>NH	R-S-R
>C<	R=CH-R	-]	>CO	>N-	
=CH2	R=C<2R		2R>CO	R=N-	
=CH-			-CHO	-CN	
=C<			-COOH	-NO2	
=C=			-000-		
			=0		

- = represents a double bond, bonding site
- -- represents a single bond, bonding site
- **R** represents a ring bonding site

ENUMERATION MODELING IN EXCEL USING GROUP CONTRIBUTION THEORY

ENUMERATION VS. OPTIMIZATION

Enumeration

- No initial guess required
- Calculates every possible option
- Complete confidence in solution
- <u>Very time consuming</u> requires hours or days for processing

Optimization Model

- Requires a good initial guess
- Calculates only options which lead to a more likely solution
- Almost complete confidence in solution
- <u>Less time consuming</u> requires a few hours for processing

chemical, biological & moterials chemical, biological and materials engineering

WHAT IS THE ENUMERATION METHOD?

- Also known as the exhaustive method or brute force method
- Take into account every possible combination of functional groups

Iterations for 3x3 = 27

VBA CODE

Module2 - 2

Module2 - 1

Cells(19, 5) = x

Sub enumerator() counter1 = 0 counter2 = 0 Nmax = 10Tbmax = 310For i = 0 To 7 Cells(4, 5) = i For j = 0 To 8 Cells(5, 5) = j If i < Nmax Then If i * 23.58 + 198 < Thmax Then For k = 0 To 3 Cells(6, 5) = k If i + j < Nmax Then If i * 23.58 + j * 22.88 + 198 < Thmax Then For 1 = 0 To 2Cells(7, 5) = 1 If i + j + k < Nmax Then If i * 23.58 + j * 22.88 + k * 21.74 + 198 < Tbmax Then For m = 0 To 7 POr m = 0 10; Cells(8, 5) = m If i + j + k + l < Nmax Then If i * 23.58 + 198 + j * 22.88 + k * 21.74 + l * 18.25 < Tbmax Then For n = 0 To 4 Cells(9, 5) = n If i + j + k + l + m < Nmax Then If i * 23.58 + 198 + j * 22.88 + k * 21.74 + l * 18.25 + m * 18.18 < Tbmax Then For o = 0 To 3 Cells(10, 5) = o If i + j + k + l + m + n < Nmax Then If i * 23.58 + 198 + j * 22.88 + k * 21.74 + l * 18.25 + m * 18.18 + n * 24.96 < Tbmax Then " Cells(12, 5) = q If i + j + k + 1 + m + n + ο + p < Nmax Then If i + 33.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + ο * 24.14 + p * 26.15 < Thmax Then For r = 0 To 3 Por r = 0 To 3 Cells(13, 5) = r If 1 + j + k + 1 + m + n + o + p + q < Nmax Then If 1 * 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + q * 27.15 < Thmax Then For s = 0 To 2 Cells(14, 5) = 8Gold(14, 5) - δ If i + j + k + l + m + n + ο + p + q + r < Nmax Then If i * 23.58 + 198 + j * 22.88 + k * 21.74 + l * 18.25 + m * 18.18 + n * 24.96 + ο * 24.14 + p * 26.15 +q * 27.15 + r * 21.78 < Themes Themese For t = 0 To 6Cells(15, 5) = t Verlauls, 5, = 0 Tr i + j + k + 1 + m + n + 0 + p + q + r + s < Nmax Then Tr i + 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + 0 * 24.14 + p * 26.15 + q * 27.15 + r * 21.78 + s * 21.32 < Tbmax Then For u = 0 To 2 Cells(16, 5) = u $\begin{array}{l} \text{Cells}(16, 5) = \texttt{u} \\ \text{If } i + j + k + 1 + m + n + o + p + q + r + s + t < Nmax Then \\ \text{If } i + j + k + 1 + m + n + o + p + q + r + s + t < Nmax Then \\ \text{If } i + 23.58 + 198 + j + 22.88 + k + 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 \\ \text{For } v = 0 \text{ To } 7 \\ \text{Cells}(17, 5) = v \\ \text{If } i + j + k + 1 + m + n + o + p + q + r + s + t + u < Nmax Then \\ \text{If } i + 23.58 + 198 + j + 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 \\ \text{+ } q * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 < Thema Then \\ \text{Then } Then \\ \text{For } v = 0 \text{ To } 7 \end{array}$ For w = 0 To 7 Cells(18, 5) = w Cells110, 5) = w If i + j + k + 1 + m + n + o + p + q + r + s + t + u + v < Nmax Then If i * 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + q * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) < Tbmax Then For x = 0 To 4

If i + j + k + l + m + n + o + p + q + r + s + t + u + v + w < Nmax Then If i 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + q * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) + w * 38.13 < Themax Then For y = 0 To 3 Cells(20, 5) = y -----β(-ν, 5) = ¥ If i + j + k + 1 + m + n + ο + p + q + r + s + t + u + ν + w + x < Nmax Then If i * 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + ο * 24.14 + p * 26.15 I + q * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 + ν * (-0.03) + w * 38.13 + x * 66.86 < T Dmax Then For z = 0 To 1 Cells(21, 5) = z For aa = 0 To 4 Cells(22, 5) = aa LT i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z < Nmax Then Tf i * 23.58 + 198 + j * 22.88 + k * 21.74 + l * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + q * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) + w * 38.13 + x * 66.86 + y * 93.84 + z * 92.88 < Tbmax Then For bb = 0 To 2 Cells(23, 5) = bb LT1 i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa < Nmax Then If i * 23.58 + 198 + j * 22.88 + k * 21.74 + l * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + q * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) + w * 38.13 + x * 66.86 + y * 93.84 + z * 92.88 + aa * 22.42 < Thmax Then For cc = 0 To 2 Cells(24, 5) = cc Li i + j + k + 1 + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb < Nmax Then If i * 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + q * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) + w * 38.13 + x * 66.86 + y * 93.84 + z * 92.88 + aa * 22.42 + bb * 31.22 < Tbmax Then * 93.84 + z * 92.88 + aa * 22.42 + bb * 31.22 < Tomax Then For dd = 0 To 1 Cells(25, 5) = dd If i + j + k + 1 + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc < Nmax Then If i * 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + q * 27.15 + r * 21.79 + s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) + w * 38.13 + x * 66.86 + y * 93.84 + z * 92.88 + aa * 22.42 + bb * 31.22 + c c * 76.75 < Tomax Then For ee = 0 To 1 Cells(26, 5) = ee Cells(26, 5) = ee If i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd < Nmax Th en If i * 23.58 + 198 + j * 22.88 + k * 21.74 + l * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + q * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) + w * 38.13 + x * 66.86 + y * 93.84 + z * 92.88 + aa * 22.42 + bb * 31.22 + co * 7.67 * dd * 94.97 < Thmar Then For ff = 0 To 1 Cells(27, 5) = ff If i + j + k + 1 + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee < NmIf 1 + j + k + 1 + m + n + 0 + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee < Nm + x Then If <math>i * 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + 0 * 24.14 + p * 226.15 + q * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) + w * 38.13 + x * 66.66 + y * 93.84 + z * 92.88 + aa * 22.42 + bb * 31.22 + cc * 76.75 + dd * 94.97 + ee * 72.2 < Tbmax Then For gg = 0 To 1Cells (28, 5) = gg If i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee + ff < Nmax Then
If i * 23.58 + 198 + j * 22.88 + k * 21.74 + l * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15</pre> $\begin{array}{c} + q & 27.15 + r & * 1.78 + s & 21.32 + t & 26.73 + u & * 31.01 + v & * (-0.03) + u & * 38.64 + y & 26.86 + y & 39.84 + z & 92.88 + aa & 22.42 + bb & * 31.22 + cc & * 76.75 + dd & 94.97 + ee & 72.2 + ff & 169.09 < Translational equation (1.2010) + 10.20100 + 10.20100 + 10.20100 + 10.20100 + 10.20100 + 10.20100 + 10.20100 + 10.20$ bmax Then For hn = 0 To 2 Cells(29, 5) = hh If i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee + ff r gg < Nmax Then ff i * 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 $\begin{array}{c} 11 & 1 & 23.56 \\ + & 1 & 21.78 \\ + & 1 & 21.78 \\ + & 1 & 21.78 \\ + & 1 & 22.42 \\ + & 26.73 \\ + & 1 & 21.01 \\ + & 1 & 21.01 \\ + & 1 & 21.78 \\ + & 1 & 21.78 \\ + & 1 & 21.78 \\ + & 26.73 \\ + & 1 & 21.01 \\ + & 1 & 21.01 \\ + & 1 & 21.78 \\ + & 1 & 21.78 \\ + & 1 & 21.78 \\ + & 1 & 21.78 \\ + & 21$ g * 81.1 < Tbmax Then For ii = 0 To 4 Cells(30, 5) = ii If i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee + ff + gg + hh < Nmax Then

chemical, biological & materials engineering university of oklahoma

VBA CODE

Module2 - 3	
If i * 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + $r * 21.774 = s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) + s * 38.13 + x * 66.86 + y * 93.84 + z * 92.88 + aa * 22.42 + bb * 31.22 + cc * 76.75 + dd * 94.97 + ee * 72.2 + ff * 169.09 + g g * 81.1 + h * (-10.5) < Tbmax Then For j = 0 To 5 For j = 0 To 5 = 11$	
If $i + j + k + 1 + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee + ff + gg + hh + ii < Nmax Then$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Cells(32, 5) = kk If i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee + ff	
+ gg + nh + 11 +)] < Nmax Then II + 21.74 + 1 + 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 II * 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 II * q * 27.15 + r * 21.78 + a * 21.42 + b * 31.22 + c * 76.75 + dd * 94.97 + ee * 72.2 + ff * 169.09 + g F * 81.1 + hh * (-10.5) + ii * 73.23 + jj * 50.17 < Tbmax Then For I1 = 0 To 3	
Cells(33, 5) = 11 If i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee + ff	
+ gg + nn + 11 + 11 + KK < Xmax inen If i * 23.58 + 198 + j * 22.88 + K * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + g * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) + w * 38.13 + x * 66.86 + y * 93.84 + z * 92.88 + aa * 22.42 + bb * 31.22 + cc * 76.75 + dd * 94.97 + ee * 72.2 + ff * 169.09 + g g * 81.1 + hh * (-10.5) + ii * 73.23 + jj * 50.17 + kk * 52.82 < Tbmax Then	
rorm = 0 10 5 Cells(34, 5) = mm Tf i + i + k + 1 + m + n + 0 + n + g + r + 8 + f + 11 + V + V + V + V + Z + 28 + bh + cg + dd + ee + ff	
$\begin{array}{c} + \mathrm{gg} + \mathrm{bh} + \mathrm{ii} + \mathrm{jj} + \mathrm{kk} + \mathrm{ll} < \mathrm{hmax} \mathrm{Then} \\ \mathrm{If} \ \mathbf{i} & 23.58 + 198 + \mathbf{j} & 2.88 + \mathrm{k} & 21.74 + \mathbf{l} & 18.25 + \mathrm{m} & 18.18 + \mathrm{m} & 24.96 + \mathrm{o} & 24.14 + \mathrm{p} & 26.15 \\ \mathrm{f} \ \mathbf{i} & 27.15 + \mathrm{r} & 21.78 + \mathrm{g} & 21.32 + \mathrm{t} & 26.73 + \mathrm{u} & 31.01 + \mathrm{v} & (-0.03) + \mathrm{w} & 38.13 + \mathrm{x} & 66.86 + \mathrm{y} \\ \mathrm{f} \ \mathbf{i} & 27.15 + \mathrm{r} & 21.78 + \mathrm{g} & 20.26 + \mathrm{v} & 20.26 + $	
g * 81.1 + hh * (-10.5) + ii * 73.23 + jj * 50.17 + kk * 52.82 + 11 * 11.74 < Thmax Then For nn = 0 To 2	
Cell8(55, 5) = mn If i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee + ff - qq + b + ii + ii + kk + ll + mm < Nmay Than	
<pre>' 99 + II + 12 + 11 + II + III + IIII + IIIII + IIII + IIIII + IIII + IIIII + IIII + IIII + IIII + IIII + IIIII + IIIII + IIIII + IIIII + IIII + IIII + IIIII + IIIII + IIII + IIII + IIII + IIII + IIIII + IIII + IIII + IIII + IIII + IIIII + IIIII + IIII + IIII + IIIII + IIIII + IIIII + IIII + IIIII + IIIII + IIIII + IIIII + IIIIII</pre>	
For $o = 0$ To 2 Cells(36, 5) = o T i = j = k + 1 + m + n + o + n + g + r + g + t + u + u + u + u + u + z + z + z + b + cg + dd + ce + ff	
$\begin{array}{c} 1 & 1 & -1 \\ + g g + h 1 & + i 1 + j + kk + 11 + m n + nn < Nnax Then \\ \text{If } i & 23.58 + 198 + j & 22.88 + k & 21.74 + 1 & 18.25 + m & 18.18 + n & 24.96 + 0 & 24.14 + p & 26.15 \\ + q & 27.15 + r & 21.78 + s & 21.32 + t & 26.73 + u & 31.01 + v & (-0.03) + w & 38.13 + x & 66.66 + y \end{array}$	
* 93.84 + z * 92.88 + aa * 22.42 + bb * 31.22 + cc * 76.75 + dd * 94.97 + ee * 72.2 + ff * 169.09 + g g * 81.1 + hb * (-10.5) + ii * 73.23 + jj * 50.17 + kk * 52.82 + 11 * 11.74 + mm * 57.55 + nn * 125.66 < Tbmax Then Por pp = 0 To 4	
Cellar(37, 5) = pp If i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee + ff + qg + hh + ii + jj + kk + ll + mm + nn + oo < Nmax Then	
If $\tilde{1} \times 23.58 + 198^{-}$ j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + q * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) + w * 38.13 + x * 6.66 + y * 93.84 + z * 92.88 + aa * 22.42 + bb * 31.22 + c * 76.75 + dd * 94.97 + ee * 72.2 + ff * 169.09 + g g * 81.1 + hh * (-10.5) + ii * 73.23 + jj * 50.17 + kk * 52.82 + 11 * 11.74 + mm * 57.55 + nn * 125.66 + o * o* 152.54 < Themas Then	
For qq = 0 To 4 Cells(38, 5) = qq If i + j + k + l + m + n + o + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee + ff	
$ \begin{array}{l} + \ gg + hh + \ ii + \ jj + kk + 11 + mn + nn + 00 + tp < Nmax \ Then \\ TI & * \ 23.58 + \ 198 + \ j + \ 22.88 + \ k * \ 21.74 + 1 & 18.28 + m * \ 18.18 + n & * \ 24.96 + 0 & * \ 24.14 + p & * \ 26.15 \\ + \ q & \ 27.15 + r & \ 21.78 + a & \ 21.32 + t & \ 26.73 + u & \ 31.01 + v & \ (-0.03) + v & \ 38.13 + x & \ 46.66 + y \\ & \ 93.84 + z & \ y & \ 22.88 + a & \ 22.24 + th & \ 31.22 + c & \ 7.75 + dd & \ 94.97 + ee & \ 72.2 + ff & \ 16.90 + g \\ & \ 33.84 + z & \ y & \ 22.84 + a & \ 22.24 + th & \ 33.12 + c & \ 7.75 + dd & \ 94.97 + ee & \ 72.2 + ff & \ 16.90 + g \\ & \ 33.84 + z & \ y & \ 22.84 + a & \ 22.24 + th & \ 33.12 + c & \ 7.75 + dd & \ 94.97 + ee & \ 72.2 + ff & \ 16.90 + g \\ & \ 33.84 + z & \ y & \ y & \ 33.84 + z & \ y & \$	
B OTT 1 1 1 1 1 1 1 1 1 2 1 2 1 2 1 2 1 2 1	

+ oo * 152.54 + pp * 63.56 < Tbmax Then

For rr = 0 To 5 Cells(39, 5) = rr

Module2 - 4

If i + j + k + 1 + m + n + 0 + p + q + r + s + t + u + v + w + x + y + z + aa + bb + cc + dd + ee + ff + gg + hh + i1 + jj + kk + 11 + mm + nn + oo + pp + qq < Nmax ThenCelle(45, 2) = counter2If i * 23.58 + 198 + j * 22.88 + k * 21.74 + 1 * 18.25 + m * 18.18 + n * 24.96 + o * 24.14 + p * 26.15 + q * 27.15 + r * 21.78 + s * 21.32 + t * 26.73 + u * 31.01 + v * (-0.03) + w * 38.13 + x * 66.86 + y * 93.84 + z * 92.28 + aa * 22.42 + bb * 31.22 + cc * 76.75 + dd * 9.07 + ee * 72.2 + ff * 169.09 + g * 81.1 + hh * (-10.5) + ii * 73.23 + jj * 50.17 + kk * 52.82 + 11 * 11.74 + mm * 57.55 + nn * 125.66 + v + co * 152.54 + p * 63.56 + q * 68.78 < Tbmax ThenIf Cells(86, 13).Value > 0 Thene = 2

e = 2 d = 134 + counter1 $\begin{array}{l} d = 134 + counterl \\ cells(d, e) = Cells(93, 13).Value \\ cells(d, e) = Cells(94, 13).Value \\ cells(d, e + 1) = Cells(14, 5).Value \\ cells(d, e + 2) = Cells(14, 5).Value \\ cells(d, e + 4) = Cells(16, 5).Value \\ cells(d, e + 4) = Cells(6, 5).Value \\ cells(d, e + 5) = Cells(7, 5).Value \\ cells(d, e + 7) = Cells(6, 6).Value \\ cells$ Cells(d, e + 12) = Cells(14, 5).Value Cells(d, e + 13) = Cells(15, 5).Value Cells(d, e + 18) = Cells(20, 5).Value Cells(d, e + 19) = Cells(21, 5).Value Cells(d, e + 19) = Cells(21, 5).Value Cells(21, 5 $\begin{array}{c} \text{Cells}(3,\ e+19) = & \text{Cells}(21,\ 5), \text{Value}\\ \text{Cells}(4,\ e+20) = & \text{Cells}(22,\ 5), \text{Value}\\ \text{Cells}(4,\ e+21) = & \text{Cells}(23,\ 5), \text{Value}\\ \text{Cells}(4,\ e+22) = & \text{Cells}(24,\ 5), \text{Value}\\ \text{Cells}(4,\ e+22) = & \text{Cells}(24,\ 5), \text{Value}\\ \text{Cells}(4,\ e+24) = & \text{Cells}(25,\ 5), \text{Value}\\ \text{Cells}(4,\ e+24) = & \text{Cells}(25,\ 5), \text{Value}\\ \text{Cells}(4,\ e+25) = & \text{Cells}(27,\ 5), \text{Value}\\ \text{Cells}(4,\ e+25) = & \text{Cells}(27,\ 5), \text{Value}\\ \text{Cells}(4,\ e+25) = & \text{Cells}(28,\ 5), \text{Value}\\ \end{array}$ Cells(d, e + 26) = Cells(28, 5).Value Cells(d, e + 27) = Cells(29, 5).Value Cells(d, e + 28) = Cells(30, 5).Value Cells(d, e + 29) = Cells(31, 5).Value Cells(d, e + 30) = Cells(32, 5).Value Cells(d, e + 31) = Cells(33, 5).Value Cells(d, e + 32) = Cells(33, 5).Value Cells(d, e + 40) = Cells(65, 13).Value Cells(d, e + 41) = Cells(66, 13).Value Cells(d, e + 42) = Cells(67, 13).Value Cells(d, e + 43) = Cells(68, 13).Value Cells(d, e + 44) = Cells(69, 13).Value Cells(d, e + 45) = Cells((70, 13). Value Cells(d, e + 46) = Cells((71, 13). Value Cells(d, e + 46) = Cells((72, 13). Value Cells(d, e + 48) = Cells((72, 13). Value Cells(d, e + 49) = Cells(74, 13).Value Cells(d, e + 50) = Cells(75, 13).Value Cells(d, e + 51) = Cells(75, 15).Value Cells(d, e + 52) = Cells(76, 13).Value Cells(d, e + 53) = Cells(77, 13).Value Cells(d, e + 53) = Cells(78, 13).Value

chemical, biological and materials engineering university of oklahoma

VBA CODE

chemical, biological and materials engineering university of oklahoma

REFRIGERANT MODELING

Our design

- 1. Design Basic Thermodynamic Optimization
- 2. Include structural constraints
- **3. Include physical constraints**
- 4. Find information on existing molecules
- **5. Select molecules for further research**

FLOW OF VARIABLES FROM GROUP CONTRIBUTION THEORY

chemical, biological & moterials chemical, biological and materials engineering wiversity of oklahoma

HOW TO USE GROUP CONTRIBUTION THEORY

$$T_{b} = 198.21 + \sum_{i=1}^{N} n_{i} * T_{bi}$$
$$T_{c} = \frac{T_{b}}{(0.584 + 0.965 * \sum_{i=1}^{N} n_{i} * T_{ci} - \left(\sum_{i=1}^{N} n_{i} * T_{ci}\right)^{2}}$$

$$P_{c} = \frac{1}{\left(0.113 + 0.0032 * \sum_{i=1}^{N} n_{i} * a_{i} - \sum_{i=1}^{N} n_{i} * P_{ci}\right)^{2}}$$

$$C_{p0a} = \sum_{i=1}^{N} n_i * C_{p0ai} - 37.93 + \left(\sum_{i=1}^{N} n_i * C_{p0bi} - 0.21\right) * T_{avg}$$

$$+ \left(\sum_{i=1}^{N} n_{i} * C_{p0ci} - 3.91 * 10^{-4}\right) * T_{avg}^{2}$$
$$+ \left(\sum_{i=1}^{N} n_{i} * C_{p0di} - 2.06 * 10^{-7}\right) * T_{avg}^{3}$$

Tb=Boiling temperature Tbi=contribution of group i to boiling temperature **Tc=critical temperature** Tci = contribution of group i to critical temperature ai=number of atoms in group i **Pci=** contribution of group i to critical pressure Tavg= average temperature (user defined) **CpOai**=*a* contribution to heat capacity **CpObi=6** contribution to heat capacity **CpOci**=*c* contribution to heat capacity **CpOdi**=*d* contribution to heat capacity at average temperature *** Equations 1-4 are the only ones dependent upon values of ni chemical, biological & moterials chemical, biological and materials engineering university of oklahoma

THERMODYNAMIC EQUATIONS

Liquid Heat Capacity at T_{avg}

$$C_{pla} = \frac{1}{4.1868} * \left\{ C_{p0a} + 8.314 * \left[1.45 + \frac{0.45}{1 - T_{avgr}} + 0.25 * \omega * \left(17.11 + 25.2 * \frac{\left(1 - T_{avgr}\right)^{1/3}}{T_{avgr}} + \frac{1.742}{\left(1 - T_{avgr}\right)} \right) \right\}$$

chemical, biological & potenials chemical, biological and materials engineering

• Heat of vaporization at boiling temperature (Riedel Method)

• Heat of vaporization at evapolization $\ln(P_c) - 1.013$

$$\Delta H_{ve} = \Delta H_{vb} * \left(\frac{1 - T_{evp} / T_c}{1 - T_b / T_c}\right)^{0.38}$$

PRESSURE EQUATIONS

Vapor pressure at condensing

$$\ln(P_{vpcr}) = \frac{-G}{T_{cndr}} * \left[1 - T_{cndr}^{2} + k * (3 + T_{cndr})(1 - T_{cndr})^{3}\right]$$
$$P_{vpc} = P_{vpcr} * P_{c}$$

Vapor pressure at evaporation

$$\ln(P_{vper}) = \frac{-G}{T_{evpr}} * \left[1 - T_{evpr}^{2} + k * (3 + T_{evpr})(1 - T_{evpr})^{3}\right]$$
$$P_{vpe} = P_{vper} * P_{c}$$

chemical, biological & moterials chemical, biological and materials engineering wiversity of oklahoma

GROUP COMBINATION CONSTRAINTS

- 1. Structural feasibility
- 2. Size and molecular weight
- **3. Vapor pressure**

STRUCTURAL FEASIBILITY

- Even number of groups with odd number of bonding sites
 - 2 "-CH3" groups or 1 "-CH3" group and 1 ">CH-" group
- Groups must be able to connect to form ONE molecule
 - 2 "-CH3" groups cannot connect with 2 "-F" groups to make ONE molecule
- Total number of bonding sites should be even

• 2 bonding sites make I bond

STRUCTURAL FEASIBILITY CON'D

• Number of each bonding type should be even

- 2 "= CH2" groups, 2 "= O" groups, or 1 "= CH2" with 1 "= C=" with 1 "= O" group
- Mixed bonding types should have a transition group
 - 1 "= CH2" and 1 "-F" requires 1 "= CH-" group
- Every branch should have an edge (end cap)
 - Example: 1 ">C<" group have 4 branches which will require 4 groups with only 1 bonding site such as "-F"

MOLECULAR SIZE

- Minimum number of groups is 2
- Maximum number of groups is 10
 - Max groups by type: one bond = 7 - C-CH-C(F)₇=10 two bonds = 8 - CH₃-(CH₂)₈-CH₃=10 three bonds = 4 - (CH)₄(F)₆=10 four bonds = 2 - (C)₃(F)₈=11
- Our results show that the maximum number of groups used is 9
- Typically larger molecules have higher boiling points making them unfit for refrigeration

VAPOR PRESSURE

- Minimum vapor pressure at evaporation temperature of I bar
 - Atmospheric pressure
- Maximum vapor pressure at condensation of 10 bar
 - Mechanical compressibility factor
 - Multi-stage compressor (cost prohibitive)
- Heat capacity must be positive
 - Negative heat capacity is not possible physically chemical, biological & materials

"MAKING" A MOLECULE

• n _{-F}	= 2
• n_cl	= 2
• n _{>C}	< = 1
• Fre	on

 $\bullet \mathbf{n_{-CH3}} = \mathbf{2}$

• n_{-CH2} = 2

• Butane

 \bullet n_{-CH3} = 3 • $\mathbf{n}_{>CH} = \mathbf{l}$ • iso-butane

chemical, biological & moterials

chemical, biological and materials engineering

n_{-CH3} = 2
n_{>CH} = 1
n_{-CH2} = 1

• $\mathbf{n}_{-OH} = \mathbf{l}$

• iso-butanol

 $\bullet \mathbf{n}_{=\mathbf{CH2}} = \mathbf{1}$

$$\square_{=C<} = \square$$

$$D \Pi_{-0} = 1$$

= 2

• 99

MOLECULE MAKER

		Physical Constraints			Thermody	Thermodynamic Properties		
	n=	Pvpe	FALSE	0	Tavg	K	294	
sCH3	2	Pvpc	FALSE	0	Теур	К	272	
sCH2s	2	heatcap	TRUE	1	Tcnd	K	317	
SSCHS	2			0	N groups		6	
SSCSS	U	Str	uctural Constra	aints	Tboil	ĸ	334.61	
dCH2	0	Ynt	true	1	Tcrit	К	499.73	
dCHs	0	oddfree	true	1	Pcrit	bar	35.01	
dCss	0	connected	true	1	heatcap	J/molK	0.131	
dCd	0	nofree	true	1	Tb reduced		0.670	
rCH2r	0	bond type	true	1	Tavg reduced	К	0.588	
rrCHr	0	singlefree	true	1	Tcnd reduced		0.633	
rrCrr	0	double free	true	1	Tevp reduced		0.544	
drCHr	0	triple free	true	1	alpha		-0.942	
drCrr	0	single cyclic fre	true	1	beta		-2.734	
sF	0	double cyclic fro	true	1	omega		0.345	
sCl	0	mixed	true	1	heat capacity	J/molK	45.325	
sBr	0	end cap	false	0	enthalpy of vaporiza	kJ/mol	29.502	
SI	0	real structure		0	enthalpy of vaporiza	kJ/mol	33.335	
SOH	U		Binary Variable	es	h		7.179	
sOs	0	Yss		1	G		3.790	
rOr	0	Ydd		0	ka		0.561	
ssCO	0	Ytt		0	Pvpcr		0.015	
rrCO	0	Ysr		0	Pvper		0.002	
sCHO	0	Ydr		0	Рурс	bar	0.533	
sCOOH	0	Yr		0	Руре	bar	0.070	
scoos	0	YSO		0	t=		0.000	
doO	0	Yst		0				
sNH2	0	Yssr		0				
ssNH	0	Ysdr		0				
rrNH	0	Ydsr		0		iterations		
ssNs	0	Y0m		1		27		
drNs	0	Ym5		0				
sCN	0	Ym1		1				
sNO2	0	Ym6		0				
sSH	0	Ym2		1				
sSs	0	Ym7		0				
rSr	0	Ym3		1				
	6	Ym8		0				
		Ym4		1				
		Ym9		0				

RESULTS FROM EXCEL

- 3,692,945 possible solutions (16 hours)
- 649 solutions
- 566 structurally feasible solutions (passed the filter, but not feasible)
- Since each solution was evaluated by referencing online databases the process for finding molecules was extremely tedious
- are included in optimization function calculations for comparison

β VALUES

Chemical Formula	H = Σx _i y _{ij}	$\beta = H_2/H_1$	Rank
CH2=CH-F	0.61	1.39	2
CH3 -CH=CH2	0.61	1.39	4
CH2=CF2	0.51	1.68	8
CH2=CH-CI	0.50	1.69	1
CH2=CFCI	0.49	1.75	3
CH2=C=CH-F	0.40	2.13	5
CH2=CH-O-F	0.40	2.14	6
CH2=CH-C(=O)-F	0.40	2.14	20
Cl2	0.40	2.15	7
F-Br	0.39	2.17	9
CH2=CCH3F	0.39	2.17	10
CH2=CH-CH2-F	0.39	2.18	11
CH2=C=CF2	0.39	2.18	12
CH2=C=C=C=O	0.39	2.19	13
FSH	0.39	2.19	14
CH2=C(-F)-O-F	0.39	2.19	15
FNH2	0.39	2.19	16
cyc(CH=CH-CH2)	0.39	2.19	17
cyc(CH=CH-O)	0.39	2.20	18
O=CH-Br	0.38	2.22	19
R134a	0.85	1.00	-

 Using the preceding six quantitative plots, a value for β for each possible refrigerant can be defined

> chemical, biological & moterials chemical, biological and materials engineering university of oklahoma

LIMITATIONS OF GROUP CONTRIBUTION THEORY

• Actual data compared with data found using functional group theory

$$abs(T_{b(theory)}-T_{b(act)}) = \Delta T_{b}$$

- Average $\Delta T_b = 39.7 K$
- Examples:

3-fluoro-1-propene, min $\Delta T_b = 1.2 K$

1-fluoro-2-propanone, max ∆**T**_b=89.9K

ERRO

R	\mathbf{T}_{boil}	$\mathbf{T}_{\mathbf{crit}}$	P _{crit}
max	47%	32%	36%
min	0.4%	1.1%	0.5%
average	16%	14%	12%

LIMITATIONS OF FUNCTIONAL GROUP THEORY

- Errors reveal inconsistencies with functional group theory
- Possibly good refrigerants were likely excluded from our findings

RECOMMENDATIONS

RECOMMENDATIONS

- 1. Develop correlations to relate data obtained from models to consumer preference functions. Relationships could be developed to relate properties that can be found from the empirical data to those exclusive to an individual molecule.
- 2. Link spreadsheets to databases to quickly search through molecules. Not all properties can be examined from a molecule's empirical formula or structure. Many databases, in periodicals, for potential refrigerant molecules are available for possible refrigerants. These databases could eliminate error caused by property estimation.
- **3.** A large scale survey needs to be performed. A large scale random survey is needed to find actual consumer preferences to refrigerant properties.

RECOMMENDATIONS

- 3. More structural constraints need to be developed. Some molecular structures pass the filters in the iterative method, but do not exist in reality.
- 4. Considering refrigerant blends would create many more options for refrigerant solutions.
- 5. Laboratory study The laboratory setting offers the benefit of being able to measure properties for synthesized refrigerants. In this way, more accurate correlations for group contributions or efficiency could be developed.

QUESTIONS?

WORKS CITED

- *I. History of the Refrigerator*. History.com. 2/7/2007 <http://www.history.com/exhibits/modern/fridge.html>.
- 2. Refrigerant Data Update. January 2007. Heating/Piping/Air Conditioning Engineering. Feb. 7, 2007 <http://www.hpac.com/Issue/Article/44475/Refrigerant Data Update>.
- 3. What you Should Know about Refrigerants when Purchasing or Repairing a Residential A/C System or Heat Pump. Jan. 29, 2007. Environmental Protection Agency. Jan. 29th, 2007 <http://www.epa.gov/ozone/title6/phaseout/22phaseout.html>.
- 4. HCFC Phaseout Schedule. April 16th, 2006. Environmental Protection Agency. Feb. 5th, 2007 <http://www.epa.gov/ozone/title6/phaseout/hcfc.html>.
- 5. *Air Conditioners 2004.* July 2004. Snapshot International. Feb. 11th, 2007 < http://dx.doi.org/10.1337/us080034 >.
- 6. *American Housing Survey for the United States: 2005.* August 2006. U.S. Department of Housing and Urban Development and the US Department of Commerce. Feb 11th, 2007 <http://www.census.gov/prod/2006pubs/h150-05.pdf>.
- 7. Trends in Residential Air-Conditioning Usage from 1978 to 1997. July 24, 2000. US Department of Energy. Feb 11th, 2007 http://www.eia.doe.gov/emeu/consumptionbriefs/recs/actrends/recs_ac_t rends.html>.
- 8. The Properties of Gases and Liquids 5th Edition. O'Connell, J., B. Poling and J. Pransnite.McGraw-Hill, New York, 2001. Chapter 2 (78-89).

APPENDIX

CREATING MORE ACCURATE CONSUMER PREFERENCE FUNCTIONS

- To accurately predict the refrigerant market, a large scale survey needs to be performed
- The large scale survey will eliminate inaccuracies present in the survey prepared and presented previously
- These inaccuracies stem from the inherent bias in a small survey

MORE THERMODYNAMIC EQUATIONS

$$\alpha = -5.97214 - \ln\left(\frac{P_c}{1.013}\right) + \frac{6.09648}{T_{br}} + 1.28862 * \ln(T_{br}) - 0.169347 * T_{br}^6$$

$$\beta = 15.2518 - \frac{15.6875}{T_{br}} - 13.4721 * \ln(T_{br}) + 0.43577 * T_{br}^6$$

$$\omega = \frac{\alpha}{\beta}$$

$$h = \frac{T_{br} * \ln(P_c/1.013)}{1 - T_{br}}$$

$$G = 0.4835 + 0.4605 * h$$

$$k = \frac{h/G - (1 + T_{br})}{(3 + T_{br})(1 - T_{br})^2}$$

chemical, biological ξ insterious

THERMODYNAMICS

• Functional group theory can be used to determine many important characteristics

• Temperature-Entropy data are needed to accurately determine efficiency, but cannot be determined from functional group theory

• $\Delta H/C_p$ is used to estimate efficiency

GAMS CODE

	gamstext.txt						
sets				deut deus dess			
ded -	all possible	groups / sCH3	, SCH2S, SSCHS, SSC	ss, acH2, aCHs, aCss,			
	SCHO SCOOH SCOOS d	no sNH2 ssNH r	rNH ssNs dNs drN	s sen snoz ssH sss rsr/			
1100,	k thermodynami	c labels / Tbi	. Tci. Pci/	5,561,5162,551,555,1517			
	1 heat capacit	y contribution	/ CpOAi, CpOBi,	CpOCi, CpODi/			
	j bond types /	ŚS, DD, TT, S	R, DR/;				
table	c(i,k) group cont	ributiọn to mo	lecular thermody	namics			
a C112	Tb1	TC1	PC1				
SCH3	23.50	0.0141	-0.0012				
SSCHS	21 74	0.0164	0.0020				
ssCss	18.25	0.0067	0.0043				
dCH2	18.18	0.0113	-0.0028				
dCHs	24.96	0.0129	-0.0006				
dCss	24.14	0.0117	0.0011				
	26.15	0.0026	0.0028				
rrCHr	21.13	0.0122	0.0023				
rrCrr	21.32	0.0042	0.0061				
drCHr	26.73	0.0082	0.0011				
drCrr	31.01	0.0143	0.0008				
sF	-0.03	0.0111	-0.0057				
SCI	38.13	0.0105	-0.0049				
SBF	93 84	0.0155	-0.0034				
SOH	92.88	0.0741	0.0112				
sOs	22.42	0.0168	0.0015				
ror	31.22	0.0098	0.0048				
ssco	76.75	0.0380	0.0031				
rrco	94.97	0.0284	0.0028				
SCHO	169.00	0.0379	0.0030				
sC00s	81.10	0.0481	0.0005				
doO	-10.50	0.0143	0.0101				
sNH2	73.23	0.0243	0.0109				
SSNH	50.17	0.0295	0.0077				
rrNH	52.82	0.0130	0.0114				
dNs	74 60	0.0169	-0.0099				
drNs	57.55	0.0085	0.0076				
SCN	125.66	0.0496	-0.0101				
sNO2	152.54	0.0437	0.0064				
sSH	63.56	0.0031	0.0084				
SSS	68.78	0.0119	0.0049				
rsr	52.10	0.0019	0.0051				
table	d(i,1) heat capac	ity contributi	on				
	Cp0Ai	СрОВі	Cp0Ci	Cp0Di			
sCH3	19.500	-8.08E-03	1.53E-04	-9.67E-08			
SCH2S	-0.909	9.50E-02 2.04E-01	-5.44E-05	1.19E-08			
SSCHS	-25.000	2.04E-01 4.27E-01	-2.05E-04 -6 41E-04	3.01E-07			
dCH2	-23.600	-3.81E-02	1.72E-04	-1.03E-07			
dCHs	-8.000	1.05E-01	-9.63E-05	3.56E-08			
dCss	-28.100	2.08E-01	-3.06E-04	1.46E-07			
dCd	27.400	-5.57E-02	1.01E-04	-5.02E-08			
rCH2r	-6.030	8.54E-02	-8.00E-06	-1.80E-08			
rrChr	8.6/0	1.62E-01 5.57E-01	-1.60E-04	6.24E-U8 4 69E-07			
drCHr	-2.140	5.74E-02	-1.64E-06	-1.59F-08			
drCrr	-8.250	1.01E-01	-1.42E-04	6.78E-08			
			Page 1				

SF SC1 SBr SI SOH SOS FOF SSCO	26.500 33.300 28.600 32.100 25.700 25.500 12.200 6.450	-9. -9. -6. -6. -6. -1.	13E-02 53E-02 49E-02 41E-02 91E-02 32E-02 26E-02 70E-02	gamste -	Xt.tXt 1.91E-04 1.87E-04 1.36E-04 1.26E-04 1.77E-04 1.11E-04 6.03E-05 3.57E-05	 L.03E-07 9.96E-08 7.45E-08 5.87E-08 9.88E-08 5.48E-08 3.86E-08 2.86E-09
sCHO sCHO sCOOH sCOOS doO sNH2 sSNH rrNH sSNS dNS	30.400 30.900 24.100 24.500 6.820 26.900 -1.210 11.800 -31.100	-8. -3. 4. 4. -4. -4. -2. 2.	29E-02 36E-02 27E-02 02E-02 02E-02 12E-02 52E-02 30E-02 27E-01	-	2.36E-04 1.60E-04 8.04E-05 4.02E-05 1.27E-05 1.64E-04 4.86E-05 1.07E-04 3.20E-04	 L.31E-07 0.88E-08 5.87E-08 4.52E-08 L.78E-08 0.76E-08 1.05E-08 5.28E-08 1.28E-08 1.46E-07
drNs sCN sNO2 sSH sSs rSr	8.830 36.500 25.900 35.300 19.600 16.700	-3. -7. -3. -7. -5.	84E-03 33E-02 74E-03 58E-02 51E-03 81E-03		4.35E-05 1.84E-04 1.29E-04 1.85E-04 4.02E-05 2.77E-05	2.60E-08 L.03E-07 3.88E-08 L.03E-07 2.76E-08 2.11E-08
table gr(i scH3 scH2s ssCH2s dsCH2s dcH2 dcH2 dcH2 dcH tCH tCH tCH tCH tCH tCH tCH tCH tCH tC	,j) heat SS 1 2 3 4 0 1 2 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 1 2 0 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 1 2 3 4 0 1 2 3 1 2 3 4 0 1 2 3 1 2 1 2	capacity (DD 00 01 11 12 00 00 00 00 00 00 00 00 00 00 00 00 00	Contribu TT 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ti on SR 00000000000000000000000000000000000	DR 00 00 00 00 00 00 00 00 00 00 00 00 00	

chemical, biological & moterials chemical, biological and materials engineering university of oklahoma
GAMS CODE

	gamstext.txt		gamstext.txt	
SSNH		Yss		
SSNS	3 0 0 Õ Õ	Ydd		
dNs	1 1 0 0 0	Ytt		
drNs	1 0 0 0 1	Ydr		
SCN		Ysd		
SNU2		Yst		
\$55		Yssr		
rSr	0 0 0 2 0	Ysdr		
Paramete	r a(i) number of atoms in group i	aux1		
/SCH3 4,	SCH2S 3,SSCHS 2,SSCSS 1,0CH2 3,0CHS 2,0CSS 1,0C0 1,	aux2		
SI 1.SOH	2.sos 1.ror 1.ssc0 2.rrc0 2.scH0 3.scO0H 4.scO0s 3.do0 1.	aux3		
sNH2 ^{´3} ,s	sNH 2,rrNH 2,ssNs 1,drNs 1,sCN 2,sNO2 3,sSH 2,sSs 1,rSr 1/	aux4		
b(i) num	ber of bonds in each group i	Positi	ve variables Nt omega Thr Tavgr Pc Th Tc ChOa Tondr Tevpr Chla:	
/sCH3 1,	SCH2s 2, SSCHs 3, SSCSs 4, dCH2 1, dCHs 2, dCss 3, dCd 2,	Binary	variables Ya, Yc,Ym,Yss,Ydd,Ytt,Ysr,Ydr,Ysd,Yst,Yssr,Ysdr,Ydsr;	
ST 1 SOH	1 sos 2 ror 2 ssco 2 rrco 2 scHo 1 scool 1 scool 2 doo 1	integé	r variable n,aux0,aux1,aux2,aux3,aux4,aux5;	
SNH2 1.5	sNH 2.rrNH 2.ssNs 3.drNs 2.sCN 1.sNO2 1.sSH 1.sSs 2.rSr 2/			
Tavg ave	rgage temperature of coolant		restarting moleculessessesses	
/294/		n 1('s	5 J-1, SH')=1 ·	
Tevp tem	perature at evaporation	n.1('d	CH2')=0;	
Tond tem	nerature at condensation	NT.1=3	;	
/316.5/		*****	*********thermodynamics for initial molecule**********************************	
Nmax lar	gest possible ring		$198.21 + Sum(1, n.1(1)^{c}(1, 101));$ Th $1/(0.584+0.965*sum(i, n.1(1)*c(i, 'Tci'))$	
/16/	and a second	10.1 -	-(sum(1, n.1(1)*c(1, 'Tc('))**2):	
*n(1) nu	mber of atoms in group i	Tbr.l=	Tb.1/Tc.1;	
*/drCHr	6/:	Pc.1=	(0.113+0.0032*sum(i, n.1(i)*a(i))-sum(i, n.1(i)*c(i,'Pci')))**(-2);	
Variable	S S	alpha.	I=(-5.97214-log(Pc.1/1.013)	
n(i)	number of groups of type i		+0.09048/1DF.1+1.28802^10g(1DF.1)	
Nt		beta.1	=(15.2518-15.6875/Tbr.]	
TC	critical temperature		-13.4721*log(Tbr.1)+0.43577*Tbr.1**6);	
PC	critical pressure	omega.	l=alpha.l/beta.l;	
Tbr	reduced temperature	Cp0a. I	= (sum(1, n. l(1)*d(1, 'CpOA1'))-37.93	
Cp0a	heat capacity at standard temperature		+(sum(i,n,1(i)*u(i,'coo;'))=0.000391)*Tavg**2	
Tavgr	reduced average temperature		+(sum(i,n.1(i)*d(i,'cp0Di'))+0.000000206)*Tavg**3)/1000;	
Teypr	reduced evanorating temperature	Tavgr.]=Tavg/Tc.];	
alpha	reduced evaporating temperature	Tevpr.	1=Tevp/Tc.1;	
beta		Cpra. i	$=(1/4.1888)^{\circ}((Cpua.1.1000)+8.514^{\circ}(1.45)$	
omega	Timuid have annuale.		+25.2*((1-Tavgr.1)**(1/3)/Tavgr.1)	
dHyb	heat of vaporization at boiling		+1.742/(1-Tavgr.1)))) ;	
dHve	heat of vaporization at evaporation	Tcndr.	1=Tond/To.1;	
h		dHVD.I b.l-Th	= ((1.093^8.314^1C.1^1DF.1)^10g(PC.1)-1.013)/(0.93-1DF.1) ;	
G		G. 1=0.	4835+0.4605*h.1:	
ка	reduced vapor pressure at condensing	ka.1=(h.l/G.l-(1+Tbr.ĺ))/((3+Tbr.l)*(1-Tbr.l)**2);	
Pyper	reduced vapor pressure at evaporating	Pvpcr.	l=EXP(-G.1/Tcndr.l*(1-Tcndr.l**2+ka.l*(3+Tcndr.l)*(1-Tcndr.l)**3));	
Pvpc	vapor pressure at condensing	Pvper.	I=EXP(-G.I/Ievpr.I*(I-Ievpr.I**2+Ka.I*(3+Tevpr.I)*(1-Tevpr.I)**3)); -Byper 1*Be 1:	
Pvpe	vapor pressure at evaporating	PVpC.1 Pvpe 1	=Pvper.1*Pc.1:	
t1	opitmization variable	***bin	ary***	
t2		*\$onte	xt	
Ya		Yr.1=0		
Yc		Ya. 1=1		
Ym		Ysd, 1=	1:	
۲r	Dage 2	Ydr.1=	ō;	
	Page 5		Page 4	

GAMS CODE

gamstext.txt	gamstext.txt
Yss_l=1;	Heatcap Heat capacity
*\$offtext	Tavgrud finds reduced temperature average
	Icharud Tinds reduced temperature of condensation
Nt.10=2;	levprud finds reduced temperature of evaporation
Nt.up=7;	a i prae
Tbr. 10=0.00;	Decae
Ibr.lup=0.19;	omegae
Fe. 10=0.1;	dolly finds fight of variation at heiling temperature
Tavar up=0.99	delive finds heat of vaporization at evaporation temperature
	her
	Geg
Tendr. 10=.01:	kaeg
Tondr.up=0.99:	Pypcreg finds reduced pressure of condensation
Tc.lo=0.01:	Pypereg finds reduced pressure of evaporation
Pvpcr.lo=0.000001;	Pvpceq finds pressure of condensation
Pvpcr.up=0.99;	Pypeeq finds pressure of evaporation
Pvper.lo=0.000001;	optimize1 optimization formula
Pvper_up=0.99;	optimize2
Pvpe.lo=1.1;	optimize3;
Pvpc.lo=1.1;	**************************************
	**********requirement 1
Equations	groups1 Nt=e= sum(1, n(1));
Groupsi total number of groups in molecule	vvvvvvvvvvvvv
*Yaeq finds the binary value for cyclic molecules	xyaq sign(cum/i n(i)*gr(i 'ss'))+sum(i n(i)*gr(i 'bb)))=s-ya;
*Yeedia checks for existance of transition group acyclic	x_{reg} = sign(sim(i, n(i) gr(i, 3s))+sum(i, n(i) gr(i, br))=e=Yc,
*Ymegil checks for existance of transition group cyclic	*Ymedia
*Ymeg2 checks for that a cyclic and acyclic group are in the molecule	*Ymeq1b Ym=L=YC:
*Yreq1 finds the binary value for cyclic molecules	******requirement 3
*Yreq2 makes sure the ring has at least 3 groups	*Ymeq2 Ym=l=Ya+Yc;
*Yreq3	**************************************
oddfree checks for even # of bonds (everything has something to bond with)	<pre>*Yreq1 sign(sum(i,n(i)*gr(i,'SR'))+sum(i,n(i)*gr(i,'DR')))=e=Yr;</pre>
connect checks for connectivity (no lone groups)	*Yreq2 3*Yr=1=sum(i\$(ord(i)>3),n(i));
nofree check for free bonds	*Yreq3. sum(i,n(i)*gr(i,'SR'))+sum(i,n(i)*gr(i,'DR'))=1=Nmax*Yr;
Ysseq single acyclic bond 7 binary	addfaraak requirement S
Ydded double acyclic bond / binary	odatree sum(1,n(1)^b(1))=e=2^aux0;
Visited cripte acyclic bond ? Dinary	connect $connect$ $conn$
Vdreg double cyclic bond 2 binary	
Ysda single&double transition	nofree sum(i, n(i)*b(i))=l=Nt*(Nt-1):
Ysdb single&double transition	*****requirement 8
Ysdc	<pre>Ysseq sign(sum(i,n(i)*gr(i,'SS')))=e=Yss:</pre>
*Ysta single&triple transition	Yddeq sign(sum(i,n(i)*gr(i,'DD')))=e=Ydd;
*Ystb single&triple transition	<pre>*Ytteq sign(sum(i,n(i)*gr(i,'TT')))=e=Ytt;</pre>
*Yssra single&single cyclic transition	Ysreq sign(sum(i,n(i)*gr(i,'SR')))=e=Ysr;
*Yssrb single&single cyclic transition	Ydreq sign(sum(i,n(i)*gr(i,'DR')))=e=Ydr;
*Ysara single&double cyclic transition	Water Water requirement 8.1
YSGPD SINGLE&GOUDLE CYCLIC TRANSITION	Ysda Ysd=e=sign(sum(1,n(1)*gr(1,`SS`)*gr(1,`DD`)));
Ydsra doubleksingle cyclic transition	YSdD YSd=L=Ydd;
Ydsrb doubleasingle cyclic transition	touc., tou=t=tos;
*nodangle	*Ysta Ysta != Yss:
typefree1 even # of single bonds	
typefree2 even # of double bonds	*******requirement 8.3
*typefree3 even # of triple bonds	*Yssra Yssr=L=Yss;
*typefree4 even # of single cyclic bonds	*Yssrb Yssr=L=Ysr:
<pre>*typefree5 even # of double cyclic bonds</pre>	******requirement 8.4
	*Ysdra Ysdr=L=Yss;
Tboil equation to find boiling Temperature	*Ysdrb Ysdr=L=Ydr;
Tcrit equation to find critical Temperature	*******requirement 8.5
Pcrit Critical Pressure	Ydsra Ydsr=e=sign(sum(i,n(i)*gr(i,'SR')*gr(i,'DD')));
Tbrud Reduced boiling temperature	Ydsrb Ydsr=L=Ydd;
Page 5	Page 6

GAMS CODE

gamstext.txt				
Ydsrc	Ydsr=L=Ysr;			
******requirement 9				
********requirem *nodangle	ent 10 sum(i,b(i)*n(i))=e= 2*(Nt-1);			
*********requirem typefree1 typefree2 *typefree3 *typefree5	<pre>ent 11 2*aux1=e=sum(i,n(i)*gr(i,'SS')); 2*aux2=e=sum(i,n(i)*gr(i,'DD')); 2*aux3=e=sum(i,n(i)*gr(i,'TT')); 2*aux4=e=sum(i,n(i)*gr(i,'SR')); 2*aux5=e=sum(i,n(i)*gr(i,'DR'));</pre>			
**************************************	<pre>*****Thermodynamic Equations************************************</pre>			
Pcrit	Pc == (0.113+0.0032*sum(i, n(i)*a(i)) -sum(i, n(i)*c(i, 'Pci'))**(-2):			
Tbrud Heatcap	<pre>Tbr*Tc =e= Tb; CpOa =e= (sum(i,n(i)*d(i,'CpOAi'))-37.93 +(sum(i,n(i)*d(i,'CpOBi'))+0.21)*Tavg +(sum(i,n(i)*d(i,'CpODi'))-0.000391)*Tavg*2 +(sum(i,n(i)*d(i'(CpODi'))-0.00003026)*Tavg*2 +(sum(i,n(i)*d(i'(CpODi'))-0.00003026)*Tavg*2 +(sum(i,n(i)*d(i'(CpODi'))-0.0003026)*Tavg*2 +(sum(i,n(i)*d(i,'CpODi'))-0.0003026)*Tavg*2</pre>			
Tavgrud Tcndrud Tevprud	Tagr*Tc =e= Tag; Tcndr*Tc =e= Tag; Tcndr*Tc =e= Tcnd; Tevpr*Tc =e= Tevp;			
alphae	alpha =e= (-5.97214-log(Pc/1.013) +(6.09648/Tbr)+1.28862*log(Tbr) -0.1693472*(Tbr**86)>			
betae	-0.1093477*(101**0)), beta =e= (15.2518-(15.6875/Tbr) -13.4721*10g(Tbr)+0.43577*(Tbr**6));			
omegae Cpliq	<pre>omega*beta =e= alpha ; Cpla=e=(1/4.1868)*(Cp0a*1000)+8.314*(1.45 +0.45/(1-Tavgr)+0.25*omega*(17.11 +25.2*((1-Tavgr)+2.1/3)/Tavgr) +1.742(1-Tavgr))):</pre>			
delHvb	dHvb =e=(8.3145*Ťc*Ťb́r*(0.4343*Log(Pc) −0.69431+0.89584*Tbr)/(0.37691 −0.3736*Tbr+0.15075/(Pc*Tbr**2)))/1000.			
delHve heq Geq	dHve =≤=dHvb*(l-Tevp/Tc)/(l-Tb/Tc))**0.38; h=e=Tbr*log(Pc/1.013)/(l-Tbr); g=e=0.4835+0.4605*h;			
kaeq Pvpcreq Pvpereq Pvpceq	Ka=e=(n/G-(1+107)/(C3+1D7)(1-1D7)*2); Pvpcr=e=EXP(-G/Tcndr*(1-Tcndr*2+Ka*(3+Tcndr)*(1-Tcndr)**3)); Pvpc=e=EXP(-G/Tevpr*(1-Tevpr**2+ka*(3+Tevpr)*(1-Tevpr)**3)); Pvpc=e=Pvpcr*Pc;			
Pvpeed optimize1 optimize2 optimize3 Model refrigdesign.opt	Pvp====Pvp=r*Pc; t1*cpla===dHve; t2*Pvpc===Pvpe; t2*t1===t3; gn /all/; file=1; coccccc			
Solver refrighesi Display Tbr.1,Cp Tcndr.1, dHvb.1,d Yss.1,Yd	gousing minlp manimizing t3 ; 0a.l,Tb.l,Tc.l,Pc.l,Tbr.l,Tavgr.l, Tevpr.l,alpha.l,beta.l,Omega.l,Cpla.l, Hve.l,h.l,G.l,ka.l,Pvpcr.l,Pvper.l,Pvpc.l,Pvpe.l,t1.l,t3.l d.l,Ysd.l,n.l;			

Page 7

SYSTEMATIC DESIGN

+ Actinide Series

ENVIRONMENTAL EFFECTS

Ozone depletion potential

 Only heavy halogens are known to contribute

ODP = $0.05013 (n_{Cl})^{1.510} * \exp(-3.858 / \tau)$

• Global warming potential - Requires experiments to find radiative $GWP(x) = \frac{\int_{0}^{TH} a_{x} \cdot [x(t)] dt}{\int_{0}^{TH} a_{r} \cdot [r(t)] dt}$ chemical, biological ξ mote

OBTAINING VALUES FOR THE OBJECTIVE FUNCTION

- Flammability and explosiveness
 - Based on lower explosive limit
 - Based on vapor pressure
 - No strong correlation
- Toxicity
 - Based on experimental results
 - Found only for existing molecules

chemical, biological & moterials

chemical, biological and materials engineering **U** university of oklahoma

CORRELATION WITH MOLECULAR WEIGHT

$\begin{array}{c} \Delta H/C_{\mathbb{P}} \text{ CORRELATION WITH} \\ \text{COP} \end{array}$

EVALUATING THE COP FOR NEW REFRIGERANTS

- The following journal publications describe in detail how the COP for new refrigerants can be evaluated
- I. Fleming, John S., Alex C. Bwalya and William Dempster. "The testing and evaluation of trial refrigerants: Part I. System description." *International Journal of Energy Research* 24.14 (2000): 1217-1241.
- 2. Fleming, John S., Alex C. Bwalya and William Dempster. "The testing and evaluation of trial refrigerants: Part 2. The practical use of measured data." *International Journal of Energy Research* 24.14 (2000): 1243-1256.

EVALUATING THE COP FOR NEW REFRIGERANTS

- Following a similar procedure, outlined in these two articles, would provide the COP for the tested refrigerants
- Then a correlation could be developed to relate the COP to functional group contributions
- This correlation would allow for a more rigorous analysis of all the possible refrigerants
- The refrigerants could then be ranked and analyzed using more accurate consumer preference functions

