PIPELINE ENGINEERING

Mechanical Energy Balance
gAz+/vdp = =W, - > F (1-1)
potential energy  expansion work Kinetic energy Work added/ Sum of friction
change change subtracted by losses

compressors
or pumps/expanders

Note that the balance is per unit mass. In differential form
gdz+vdp+VdV =W, —oF (1-2)
Rewrite as follows
dp:—p(g-dz—V-dV—éF +éWo) (1-3)

Divide by dL (L is the length of pipe)

dp dz dv oF oW,
H e gyt Nt p - pT0 1-4
dlr,, . a7 A A A (1)
or:
d_p\J — @) + d_pj + d_pj (1_5)
dL Tot dL elev dL accel dL frict

W, . : . . : .
( 8L0 is usually ignored, as the equation applies to a section of pipe)

The above equation is an alternative way of writing the mechanical energy balance. It is not a
different equation.

The differential form of the potential energy change is



g%z gsin ¢ (1-6)

Friction losses: We use the Fanning or Darcy-Weisbach equation (Often called Darcy equation)

V2
D

OF

dL (1-7)

an equation that applies for single phase fluids, only (two phase fluids are treated separately).
The friction factor, in turn, is obtained from the Moody Diagram below.
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Figure 1-1: Moody Diagram

Friction factor equations. (Much needed in the era of computers and excel)

_l6

Laminar Flow f =
Re

(1-8)
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0,046

Turbulent Flow f - (1-9)
Re
smooth pipes: a=0.
Iron or steel pipes a=0.16
Turbulent Flow L —2log (L + i} (Colebrook eqn) (1-10)
Jf “\37D " Rey/f

Equivalent length of valves and fittings: Pressure drop for valves and fittings is accounted for
as equivalent length of pipe. Typical values can be obtained from the following Table.

Table 1-1: Equivalent lengths for various fittings.

- L,
Fitting N
45° elbows 15
90° elbows, std radius 32
90° elbows, medium radius 26
90° elbows, long sweep 20
90° square elbows 60
180° close return bends 75
180° medium radius return bends 50
Tee (used as elbow, entering run) 60
Tee (used as elbow, entering branch) 90
Gate Valve (open ) 7
Globe Valve (open ) 300
Angle Valve (open) 170

Pressure Drop Calculations

Piping is known. Need pressure drop. (Pump or compressor is not present.)

Incompressible Flow
a) Isothermal (p is constant)

iz dv  dF
=.p[ g2y OV dF 111
. p(g dL ' dL dLj (-11)

dp
dL

forafixed¢ = Veconstant = dV=0
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SF =2v2-f-(5—D"j (1-12)

L
AP=—-plg-AZ+2V2. F.—+> F 1-13
p p{g S+ } (1-13)

b) Nonisothermal
It will not have a big error if you use p(Taverage), V(Taverage)

Exercise 1-1:
Consider the flow of liquid water (@ 20°C) through a 200 m, 3” pipe, with an elevation change

of 5 m. What is the pressure drop?

Can the Bernoulli equation assuming incompressible flow be used for gases? The next figure
illustrates it.
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Figure 1-2: Error in Bernoulli equation

In conclusion, if Pou = P <0.2—-0.3 using the assumption of incompressibility is OK.
pin

Compressible Flow (Gases)

a) Relatively small change in T (known)
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For small pressure drop (something you can check after you are done) can use Bernoulli and
fanning equation as flows

2
gdz+vdp+d(V7J=-dF (1-14)
Then
9 gz+lop+ Lav=-0 (1-15)
Vv Vv \' \'
G
but V=v— , where
V = Velocity (m/sec)
v = Specific volume (m3/Kg)
G = Mass flow (Kg/sec)
A = Cross sectional area (mz)
Then,
2
%dz+£dp+ 9 d_V:-d—IZ::-Zf 9 d_L (1-16)
v v A)v v A) D
Now put in integral form
QJEJFJ.@J{EY d_V__z(Ejz‘i‘J-de (1-17)
v2 v A \Y A/ D
Assume
Tav — Tin +Tout (1—18)
2
out
. - ppdp
p,, = E{ P + Pout —M} which comes from p,, = J.'”out— (1-19)
3 Pin + Pout J p dp
fav — f(Tin ! I:>in )+ 1:(Tout ! Pout ) (1_20)
2
The integral form will now be
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2 2
p§v~g~AZ+‘[OUt@ (E) ln(\ﬂjz_z.(gj .fav.L (1-21)

+
noy A

Nowuse p-V= ZRT , where M: Molecular weight. Then p,, = Zpa;xl_ , which leads to:
av av
dp M M 2 2 P, 2 2
- dp=—— — —pl )= - p; 1-22
J. V Zav RTav J‘ p p 2 : Zav RTav ( pOUt pm) 2 pav ( pour pm) ( )
Therefore;
P GY, (v GY. L
2 av 2 2 out | _
Pa9 Az + b D, ( Pout — pin)+(xj IH(W] - _2(Kj 1:av B (1'23)
but,
Vou _ [_Zout ‘Tout] P (1-24)
Vin Zin ’ Tin Pout
Then
GY. (Z, T.p GY. L
2g-Az+ Lo (g2 p2 )| 2 qn | Sew P | o2 g = 1-25
pavg 2pav (pout pln) [Aj ( Zin 'Tin pOUt J (Aj av D ( )

To calculate Z,, Kay’s rule is used. This rule states that the reduced pressure and temperature
of the gas is obtained using the average pressure and temperature (as above calculated) and a
pseudo critical pressure and temperature.

m=&1 (1-26)
P

T =ta (1-27)
Tg

In turn the critical pressure and temperatures are obtained as molar averages of the respective
components critical values.

P =D YiPe, (1-28)

Te =2 ¥, (1-29)

With these values the Z factor comes from the following chart:
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Pseudo ﬁdu:-ﬂ pressure
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Figure 1-3: Natural Gas Compressibility Chart

Equation (1-25) can be further simplified. First neglect the acceleration term because it is
usually small compared to the others, to obtain:
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GY., L
2 ‘AZ+ pav 2 _ 2 +2 — f _:O 1‘30
Pad 2p (p‘)“t p'n) (Aj ¥D ( )

av

Form this equation we can get G, as follows:

M 2 p2
av 'AZ
oo 7D M (po=P) Z,RT, " (130
32f,L| 2Z,RT, Z RT,
But the volumetric flow at standard conditions is given by p.Q = % Z RT, where the
subscript S stands for standard conditions. Therefore:
M p:
2 —pi )20 g-Az
Q2 ~ 7Z'2R 252 -I-sz (pln pout) ZavRTav g E (1_32)
32 Mp; 22, T, L fa
Now, if Az=0, we get
szﬂ'zR ZS2 TSZ (p|2n_p§ut) E (1_33)
32 Mp? | 2z, T,L |f,
which can be rearranged as follows:
Pi — Po =K Q° (1-34)

2
64 Mp.ZoToy fur L and is known to be WxL, a product of a resistant factor W
©R Z:T} D’

where K =

64 Mp’zZ, T, f

av

times the length L. With this, we have W = — 2 .
R Z;T, D

To calculate pressure drop we recognize that average pressures are a function of p,, , which is
unknown. Then we propose the following algorithm:

()

av

64 MpiZJTo 3

av_av

R 22T} D’

a) Assume p and calculate p

b) Calculate K" =

b) Use formula to get a new value p:"=./p2 -K® Q’
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p(i+1) _ p(i)
d) Continue until W <e

out

Depending on the choice of friction term expression, several formulas have been reported for
equation (1-34). They are summarized in the following table.

Table 1-2: Different forms of compressible flow equations

Equaticn Formula®
' h ER] (T, \F -F :I"'I‘.r. | vt

Fritesche Q 1.7204 F‘) = o ()

Fully Turbulent (4] ] dﬁ%[ :,* :| (I-FI~ } log |:' 1.7 '%' | o

Panhandle B ¢, = 2431 |r,.—'-:| |I- -ITE'I—J" ] o

Colebrook-White 0, = 0.4696 () ( 77727 ) 4 log( 5 + —5 ¥ ]5 D
IGT Dhstnbution Q 0.6643 | A '| |r T l|| { £ . 5

Muelle: 0, = 04937(32) (37 ) (2B
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Table 1-2 (continued): Different forms of compressible flow equations

Pipe Diameter, (in.) (

Exercise 1-2:

Natural gas (84,000 std m’/hr at 49 atm and 38°C) is sent from a gas refinery to a city, through
a 16” pipeline. The distance is 170 Km. The gas reaches the other end at ground temperature,
(5 °C). The gas to have the following molar fractions: Methane: 98%, ethane: 1.2%, propane:
0.75%, and water: 0.05%. We also assume Re~5 10° and &/D =0.01.

As a first approximation, we recommend using the Panhandle A equation: p;, — p2, = K Q"*”

W= 2.552 x 10™*T;xs"*°/D*** (Wilson G.G., R. T. Ellington and J. Farwalther, 1991, Institute
of Gas Technology Education Program, Gas distribution Home Study Course) , where s is the
gas gravity (=Mgas/M,ir)=0.65 for natural gas), Ti, is in °R and D in inches)

What is the pressure drop?
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Heat Transfer Effects

To account for temperature changes due to heat transfer, we use total energy balance
gdz+d(vp)+VdV +du=5q+ow, (1-35)

where the following is identified:
- Potential energy change: g dz
- Rate of work done on the fluid element by pressure forces: d(vp)
- Kinetic energy change: VdV
- Internal energy changes: du
- Heat transfer: 6q. This is given per unit mass flowing (Kcal/h)/(m3/h)
- Work added: dw, . This term is due to pumps and compressors. Since we will treat

these separately, this term is usually set to zero for pipes.

But the heat dq is given by interactions with the ambient surroundings:

5q=U(TO—T)”G—D dL (1-36)

where U is the heat transfer coefficient, T, is the outside pipe temperature, 7DdL = dA (see
next figure) and G is the flowrate.

Figure 1-4: Area element

Then, (ignoring W, because there are no pumps) to get:

2 U(T. -T)DdL
gdz+ah+d[ ¥V |= Y (T -T)DdL (1-37)
2 G
Integrate and solve for hoy (use T,y in the heat transfer equation)
U(T -T DL |VZ? —V?
hout :hin+ ( ° aV)ﬂ- —| = = _g(ZZ_Zl) (1'38)
G 2
But
G RT,, G
Ve = Vg o= 7 av = 1-39
out =Vout 74 = Zav s (1-39)
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Finally, to obtain the outlet temperature, one would need to obtain it form the enthalpy and
pressure in the outlet
Tout = Tout ( pout ’hout ) (1'40)
The procedure suggested is then:
a) Assume Tout, Pout

b) Use mechanical energy balance to obtain p
(6]

out

()]

out

¢) Use total energy balance to obtain h

d) get temperature T

out

e) Go to b) and continue until convergence

SCENARIO II

One has a turbine or Compressor/pump and needs W, We use total energy with 6 =0 and
dz =0

2
dh=ow, -3V

(1-41)

Integrating, one obtains:
2
W, =ﬂ=Ah+A Ve (1-42)
G 2

In this expression, we have W, given in Joules/Kg, W in Joules/sec and h in Joules/Kg. Thus,
the work of the compressor/pump is given by:

W — G{Ah+A(%H (143)

For compressors, W is positive, while for turbines, it is negative. However, 4h is known for
liquids because enthalpy does not vary much with pressure. In addition, there isn’t much
temperature change in pumps). However, for gases, 4h is much harder to obtain. Therefore we
go back to the Mechanical Energy equation for pumps/compressors. Indeed, the Bernoulli

equation gives
V2
W =G{J.Vdp+A(—2 HzGJ'vdp (1-44)

where the acceleration term has been neglected. For pumps, the density is constant, so one
obtains:

Natural Gas Basic Engineering 13 Copyright: Miguel Bagajewicz.

No reproduction allowed without consent



w=Yap (1-45)
p

For compressors, one needs to obtain an expression of volume knowing that the evolution is
isentropic (or nearly isentropic). Thus, pv" = constant (n=Cp/Cv for ideal gases n>Cp/Cv for

1
- v he
real gases). Substituting v = p{" - v_ | — integrate to get
p

n-1

W =6 {i} P ( Pou, ] -1 (1-46)

n+1 Pin

The above expression does not include the compressibility factor. A better expression, which
includes the efficiency, is

n-1

W :G{L}MLRR‘ Pout -1 (1-47)
n+l1 2 77a pin

The efficiency factor is usually between 60 to 80% and normally given by the manufacturer.
One expression for such factor is:
T [ptj .
pin

- 1-48
a T T (1-48)

out n

Finally, the outlet temperature is obtained from
Pin irr]1 = poutvcr:ut (1-49)

Using the gas law to obtain v, /v , in terms of temperatures and pressures, substituting and

t

rearranging, on e obtains:
n-1
n-1

L{%} " Z[CR]" (1-50)

where CR is the compression ratio. Normally, manufacturers recommend not exceeding 300 °F
at the outlet.
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Exercise 1-3:

The natural gas of exercise 1-2, is available originally at 2 atm. Calculate the compression
work needed to reach delivery pressure (49 atm) using one compressor. Calculate the outlet
temperature and determine the duty needed to cool the gas down to the corresponding inlet
conditions. Is it acceptable to use one compressor?

We now discuss the compression ratio. This is limited in compressors to the range 1.2 to 6.
Extra compressors should be added if the CR >6, and after-coolers need to be added to control
the temperature. If more than one compressor is to be used, the practice is to use the same CR
for all.

Exercise 1-4:
Consider two compressors.
- Write the power expression for each one assuming the gas is cooled down to its inlet
temperature after compression.
- Add both expressions to obtain the total work as a function of the intermediate
pressure (the rest should not be a variable)
- Take first derivative and obtain the desired result that CR;=CR;

Exercise 1-5:
Obtain the set of compressors needed to compress the gas of exercise 1-2 properly, that is,
limiting the temperature and using the right CR.
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Two Phase Flow

Two phase flow has several regimes, which are depicted in the next figure:

Annular

tratified

— 7 / Froth

T
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I ?J . Wavy
i 1 T *;__?-:i \
== Slug

Plug
31 1
— IIH!?.IE-:‘ T
r—'_';,_n';':=|::ﬂ |t'.'a|:|‘ «— Bubble
=== ~

Figure 1-5: Two phase flow regimes

The two extreme cases are:

Bubble: Vapor and Liquid in Equilibrium (Benzene 40%, Toluene 60%)
- Dispersed: Liquid and gas (air and benzene).

The latter is common in gas pipelines; the former is common in crude pipelines, especially light
crudes.
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One important thing to recognize is that except for the extreme cases, the phases travel at
different velocities. Typical velocities are shown in the next table:

Table 1-3: Typical velocities of two phase flows

REGIME LIQUID VEL(ft/sec) VAPOR VEL.(ft/sec)
Dispersed Close to vapor >200
Annular <0.5 >20
Stratified <0.5 0.5-10
Slug 15 (But less than vapor vel.) 3-50
Plug 2 <4
Bubble 5-15 0.5-2

To predict the flow patterns, one needs to use the Baker Plot (next Figure) for horizontal pipes
(there is a similar one for vertical pipes).

20 _1-100
L el TN T .
* T
Wavy Annular
2 =10
1 5
Gy
A gad
[ Bubbly
g2—1 Stratified
o195
t
o054 % Plug
0 0

S00 00¢ 2000 5000 10000 20000
1 - L 1 'l 1
T 1 T T 1 1 1
50 00 200 500 1000 2000 5000
Gy

Figure 1-6: Two phase flow regimes transitions

518
L

W,
In this diagram, we have G, Z(TQJ’ G :[VWLJ A, (W in Ib/h, A in inz) which are the
g
superficial velocity of the vapor and the liquid, respectively. In turn, the parameters are given

1/3
by A=0.463,/p p, (with densities given in b/f) w= 147 1 (with the surface tension
o

2/3
L

given in dyn/cm and the viscosity in ¢p)

We note that:

1) Aand y depend on the fluid property only
2) G depends on the ratio of flows (Known beforehand. Not a design parameter)
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3) Gy depends on the vapor/gas superficial velocity. It can be modified changing the
diameter
4) Transition boundaries are not at all that sharp.

From this diagram, we notice that following change of regimes in a pipe. As the pressure drop
is large, then the density of the vapor is lower.

) AwlU/p, =  GAiyl Jpg —> Abscissa decreases

G
2) %D = ; ] —— = Ordinate increases

g 9

Thus trajectories are always "up" and "to the left". Thus a bubbly flow may become, plug, slug
or annular, an annular may become wavy or dispersed, depending on the starting position in the
plot, and so on.

PRESSURE DROP

Lockart and Martinelli (1949) developed one of the first correlations. It is based on multiplying
the pressure drop obtained by considering the vapor phase occupying the whole pipe, by a
factor

ApTwoPhase = ¢2ApVaporPhase (1 -5 1)

ApLiquidPhase

In turn, the correction factor is given by ¢ =aX", where X = . The following table

pVaporPhase
gives some typical values of the corresponding constants:

Table 1-4: Constants for Lockart and Martinelli’s correlation

a b
Bubble 14.2 0.75
Slug 1190 0.82
Stratified 15400 1
(horizontal)
Plug 27.3 0.86
Annular 4.8-0.3125 D(in)  0.343-0.021 D(in)

We notice that there are several more modern correlations, which will be explored later. In
turn, the pressure drop due to gravity, is given by

d .

f} =[eop, +1-2,)p ]gsing (1-52)
gravity

where ¢, is the (void) fraction of gas. We omit the pressure drop due to acceleration.
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Hydrate Formation

Hydrates are crystalline structures between water and hydrocarbons. One typical example is
given in the figure below:

0#5 _ E*Q\ Cage of water molecules
g/ : N R

(=]

‘é‘ CH,4 molecule in the center
®
Figure 1-7: Methane Hydrate

The next figure shows the Pressure-Temperature diagram of water-hydrocarbon systems. Curve
1-1 represents the curve for vapor pressure of the hydrocarbon.

Pressure
r Y

Liquid hydrocarbon

Liguid hydrocarbon

+ hydrate

—

Vapor hydrocarbon

+ hydrate

Vapor hydrocarbon
Lap et
Vapar + waler e

\ Hydrate zone
hydrocarbon 3 ) . i

+ ice \
\

0°C Temperature

Figure 1-8: Generic Hydrate P-T diagram
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The next figure shows some specific cases of hydrocarbons:
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Figure 1-9: Hydrate P-T diagram for various hydrocarbons

Clearly, in high pressure pipelines, favorable thermodynamic conditions for hydrate formation
can be encountered. It is therefore important to keep in mind that these conditions need to be
avoided. These hydrates can be prevented from forming through heating, pressure change (not
a choice in pipelines) and the introduction of inhibitors. These inhibitors are salts, alcohols,
glycols, ammonia and MEA. The most widely used is methanol. The next figure shows the
depression of hydrate formation temperature observed for various hydrates.

&
(]

Depression of hydrate
formation temperature ("C)

0 10 20 30 40 60 60 70 80
Wt %% in water

Figure 1-10: Hydrate temperature formation depression
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Pipeline Costs

Historical pipeline and compressors installed cost data were obtained from the Oil & Gas
Journal special report on Pipeline Economics, September 3, 2001 Pipeline per mile cost
distribution for different pipe diameters and compressor installed cost for different horsepower
requirement are plotted in the following figure. All cost figures are updated to 2005 dollars
using Marshal & Swift cost indexes.

3000

2500 -

*

2000 -

—eol

y=43.2x+ 100

1500 -

1000 -

s
500 -
¢

Figure 1-11: Pipe average cost (k$/mile) vs. ID
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Figure 1-12:  Compressor cost (k$) vs. horsepower

Fixed Capital Investment were calculated by adding the installed cost of a pipe length (assumed
5000 miles) and the cost of all required recompression stations. The Fixed Capital Investments
obtained are then divided by the pipe length to obtain a per mile cost profile for different flow
rates. The curve in the next figure shows that this cost profile takes a logarithmic shape.
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Figure 1-13: Pipeline fixed cost (b$/mile) vs. capacity (BSCFD)

A linear correlation gives the following form:
FCI(B$/mile) =0.001659 * Capacity(BSCFD) + 0.001108

Operating costs for pipelines were estimated as follows; an average of 5 operators is assumed
to be the requirement for each compression station, with an hourly wage of $21. Direct
supervisory and clerical labor is assumed to be 20% of operating labor. Compressor fuel
requirement is estimated at 8,000 Btu / BHP-HR, and fuel cost at $2.5 per million Btu.
Maintenance cost is assumed to be 7% of the FCI for compressors and 3% for pipes while
insurance is 1% for compressors and 0.4% for pipes. Operating cost per pipeline mile versus
capacity is plotted in the next figure:

B$0.000250

B$0.000200 T
y =7E-05x + 4E-05

B$0.000150

B$0.000100

B$0.000050

B$0.000000 \ T
0 05 1 15

Figure 1-14: Pipeline per mile annual operating cost vs. capacity

This estimate should be reasonable with about 40% accuracy. Similar linear approximation to
that of the FCI is assumed. Linear regression was used to estimate the operating cost
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dependence of the capacity, ignoring capacities less than 100 MMSCFD. This gave a general
correlation of the following form:

Oper.Cost(B$ / mile/ year) = 0.00007 * Capacity(BSCFD) + 0.00004

Exercise 1-9:
Consider the pipeline of Exercise 1-8:
- Vary the pipeline maximum pressure (1200 psia) to some lower and higher value.
Adjust the diameter accordingly and calculate the number of recompression
stations.
- Calculate the cost. Can you say that 1200 psia is the right pressure?

Pipeline Looping

Pipeline looping is the practice of designing pipelines with segments run in parallel. This
practice increases the pipeline flow capacity without altering the final pressure. If temperature
is close to ambient temperature, the location of a loop does not change the final delivery
pressure. However, when temperature changes substantially, then the location of a loop has an
influence. Thus, in these cases, for example, it is recommended to loop in the upstream region,
where the gas is hotter. This allows the gas to cool down faster and therefore increase the
delivery pressure.

Consider the following example: A 100 Km length (20” OD) pipeline is used to send 289
MMSEFD at an inlet pressure of 1,200 psia and a temperature of 45 °C. The pipe roughness is
750 p inches, and a soil temperature of 10 °C.

Three alternatives were studied for this pipeline. a) No looping, b) Looping the first 25 Km,
and c¢) Looping the last 25 Km. The results of a simulation are shown in the next figure:

Case I: No Loop

P = 1200 psia P = 1130.4psia P = 1059 psia P = 984 6psia P = 905.5psia

= 25 km = 25 km - 25 km - 25 km

T = 115°F (45°C) T = 90.7°F (32.6°C) T=76.1F (24.5°C) T =66.4F (19.1°C) T = 50.5°F {15.3°C)

Case II: Looping First 25 Km of the Pipeline (Upstream)

P = 1200 psig———E = 1183.1psia P=1117 4psia P = 1048.9psia P = 976.5psia
& 25km 2 25 km . 25 km = 25 km o
T = 11FF (45°C) T = B0.24°F (26.8°C) T = 69.6°F (20.9°C) T = 62.4F (16.8°C) T =57.4F (14.1°C)

Case 111: Looping Last 25 Km of the Pipeline (Downstream)

P = 1200 psia P = 1130 4psia P = 1059 psia P=0846psia_____P =964.72psia
_ 25 km = 25 km " 25 km ~ 25km \\_
T =113F (45°C) T =90.7F (32.6°C) T = 76.TF (24.5°C) T = 66.4F (19.1°C) T = B0.FF {15.7°C)

Figure 1-15: Results from Looping
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Exercise 1-10:
Verify the results of figure 1-15 using the simulator.

Retrograde condensation

One very common phenomenon in pipelines is retrograde condensation. Consider the P-T plot
of the next figure. It corresponds to a gas with the following composition: Methane: 93.47 %,
Ethane: 3.52%, Propane: 0.585%, n-butane: 0.16%, i-butane: 0.11%, pentane: 0.055%, i-
pentane 0.05%, hexane: 0.09%, heptane: 0.04%, octane: 0.03%, nonane: 0.01%, CO;: 0.0545,
Na: 1.34%. Assume a 157, 200 Km pipeline starts at 60 atm and 15 °C. If the external
temperature is 5 °C (U=1 BTU/hr-ft*°F), then it is clear that there will be liquid formation in
this pipeline, even if the operation is isothermal.

1

Pressure, atm

" =
e s " a0 v i

Temperature, C

Figure 1-16: P-T diagram of example gas and retrograde condensation

Interestingly, if the pressure at the other end is low enough, then the liquid might vaporize
again. This means that the pressure drop regime inside the pipe might change and one has to be
careful in performing the simulations.

Exercise 1-11:
Generate the answers for the above example using the simulator. Change the pipe diameter and
the length to verify the statements.
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Pipeline Optimization Process

J-Curve Analysis

Conventional Pipeline design methods, which rely mostly on hand calculations or at best on
simple spreadsheet suggest that the compressor size and the pipe diameter be varied and the
cost of service ($/(m**Km) for the first year be plotted as a function of flowrate. Typical
assumptions are that there is no volume buildup in the pipe, the time value of money is
neglected and that the facilities are designed to sustain the flows.

For example, Figure 1-17 shows one such exercise performed for three different diameters and
parametric at different maximum operating pressures (MOP) and compression ratios.
Efficient operating ranges that are flat are preferred

m—
B 1 - 8690 kPa (1260 psi) MOP
2 - 12410 kPa (1800 psi) MOP
ad 2a - 12410 iPa (1800 psi) MOP
E o (With Higher Pipe Cos)
-
t
R
St
s 180 ~—
E 140 —
120 —
§ o I I [N I N I N N T S M O N I

10 000 30 000 50000 70 000 80 000 110000 120000 150 000 170 000

Pipelina Design Day Flow (10* m¥d)

Figure 1-17: J-Curves for various diameters

Exercise 1-12:
Explain why J-curves go through a minimum.
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Optimization Parameters

J-Curves are a simplistic first approach but one that can provide a first approximation to the
right diameter and compressors. Thus one needs to establish

Route: In most cases this is defined by a variety of other factors and given to the
designer.

Pipeline Initial Capacity: Most pipelines are constructed taking into account the
fact that demand at the receiving end(s) will increase through time. Thus, one is
faced with the decision of designing for future capacity and underutilize the pipeline
for some time or design for current or more short term capacity and use loops to
expand later.

Expansions: If capacity expansions are considered, then they need to take place
through looping. Not only the new loop has to be designed, but its timing and
capacity be selected.

Maximum operating pressure: This choice has already been considered in
constructing the J-Curves. However, in more complex situations, one is faced with
multiple delivery points with different delivery pressures, etc.

Pipe Size: This choice has already been considered in the J-Curve selection but
needs to be revisited anyway in view of the influence of the other factors.

Load Factor: This factor is the ratio between the average daily volume delivered
divided by the peak volume. If this ratio is too small, then storage facilities for
inventory holding (salt caverns, underground caverns, abandoned reservoirs, etc if
available, or large LNG or high pressure, CNG, storage tanks) are more convenient
than more powerful compressors and larger diameters. The issue to resolve is when
these are substituted by inventory holding sites. In addition, the question remains
where these holding sites should be located.

Compressor Station Spacing: While an earlier exercise suggests that when
multiple compressors are used it is best to keep the compression ratio equal, this
hypothesis needs verification. Reciprocating compressors are chosen when the
power requirement is smaller than 5,500 Kw. Compression ratios recommended for
centrifugal compressors are generally in the range of 1.25 to 1.35 and smaller than
1.5 for reciprocating compressors.

Exercise 1-13:
Consider the pipeline of Exercise 1-8:

- Assume two compression stations will be used.
- Determine (by inspection and using a simulator what is the best compression ratio
for each compressor. Aim at minimizing total work only.

Heating and Cooling: Clearly, cooling leads to significant savings because
pressure drop is reduced. However, money needs to be spent to install and run the
coolers. Thus the trade-off needs to be resolved.
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Exercise 1-14:

Consider the shown in the following figure
@) Supply: 5,722,000 m3/d

638
Km0 115 ll43 323 550 609 3 630  Km650
Oo—r
Supply: 10,407,840 m3/d l l l l l
336,,000
2,148,200 m3/d 18,240 m3/d 0. 64,600 m3/d
2,832,000 m3/d 354000 m/d
6,595,200 134:400 3,617,400 m3/d
ma/d m3/d

- The piping is in the ground and is not insulated. Assume a ground temperature of
25°C and a ground conductivity of 0.7 W/(m °C). The gas elevation profiles are
provided in the following table:

Km FElevation (m)

0 42
115 7
143 14.93
323 60
550 10
609 120
613 122
630 235
638 470
650 890

- The gas ((1.9% methane, 5% Ethane, 2% propane, 1% n-butane and 0.1% n-
pentane) is supplied at the two points indicated in the diagram at 1,367 kPa and
35°C in the first station (Km 0), and 1520 kPa and 30°C in the second (Km 143).

- Determine using simulations a) Piping diameter, b) Compressors at the supply
station, ¢) cooling required. Do not use a pressure above 5,600 Kpa. Use cost data
provided above.

- Will new compressors be needed/beneficial?
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OPTIMAL DESIGN

A gas-gathering and transmission system consists of sources of gas, arcs composed of
pipeline segments, compressor stations, and delivery sites. The design or expansion of
a gas pipeline transmission system involves capital expenditures as well as the continu-
ing cost of operation and maintenance. Many factors have to be considered, including

1. The maximum number of compressor stations that would ever be required during a
specified time horizon

2. The optimal locations of these compressor stations

3. The initial construction dates of the stations

4. The optimal solution for the expansion for the compressor stations

5. The optimal diameter sizes of the main pipes for each arc of the network

6. The minimum recommended thickness of the main pipes

7. The optimal diameter sizes, thicknesses, and lengths of any required parallel pipe
loops on each arc of the network

8. The timing of constructions of the parallel pipe loops

9. The operating pressures of the compressors and the gas in the pipelines

In this example we describe the solution of a simplified problem so that the var-
ious factors involved are clear. Suppose that a gas pipeline is to be designed so that it
transports a prespecified quantity of gas per time from peint A to other points. Both
the initial state (pressure, lemperature, composition) at A and final states of the gas are
known. We need to determine.

1. The number of compressor stations

2. The lengths of pipeline segments between compressor stations
3. The diameters of the pipeline segments

4. The suction and discharge pressures at each station.

The criterion for the design will be the minimum total cost of operation per vear
including capital, operation, and maintenance costs. Note that the problem considered
here does not fix the number of compressor stations, the pipeline lengths, the diame-
ters of pipe between stations, the location of branching points, nor limit the configu-
ration (branches) of the system so that the design problem has to be formulated as a
nonlinear integer programming problem. Figure El3.4a illustrates a simplified
pipeline that we use in defining and solving the problem.

Before presenting the details of the design problem, we need to distinguish
between two related problem, one being of a higher degree of difficulty than the other,
If the capital costs of the compressors are a linear function of horsepower as shown
in line A in Figure E13.4b, the transmission line problem can be solved as a nonlin-
ear programming problem by one of the methods discussed in Chapter 8. On the other
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FIGURE El34a

Pipeline configuration with three branches.

hand, if the capital costs are a linear function of horsepower with a fixed capital out-
lay for zero horsepower as indicated by line B in Figure E13.4b, a condition that more
properly reflects the real world, then the design problem becomes more difficult to
solve and must be solved by a branch-and-bound algorithm combined with a nonlin-
ewr programming algorithm as discussed later on. The reason why the branch-and-
bound method is avoided for the case involving line A is best examined after the math-
ematical formulation of the objective function (cost function) has been completed. We
split the discussion of the transmission line problem into five parts: (1) the pipeline
configuration, (2) the variables, (3) the objective function and costs, (4) the inequal-
ity constraints, and (35) the equality constraints,

The pipeline configuration. Figure E13.4a shows the configuration of the
pipeline we are using in this example and the notation employed for the numbering sys-
tem for the compressor stations and the pipeline segments. Each compressor station is
represented by a node and each pipeline segment by an arc. N1, N2, and N3 represent
the maximum number of possible stations in each of the three branches. Pressure
increases at a compressor and decreases along the pipeline segment. The transmission
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FIGURE E13.4b
Capital and operating costs of compressors,

system is presumed to be horizontal. Although a simple example has been selected (o
illustrate a transmission system, a much more complicated network can be accommo-
dated that includes various branches and loops at the cost of additional computation
time. For a given pipeline configuration each node and each arc are labeled separately.
In total there are
n total compressors [n = 3 (N))]
n — 1 suction pressures (the initial entering pressure is known)
n discharge pressures
n + | pipeline segment lengihs and diameters (note there are two segments
issuing at the branch)

The variables. Each pipeline segment has associated with it five variables: (1) the
flow rate (; (2) the inlet pressure p, (discharge pressure from the upstream compressor);
{3) the outlet pressure p, (suction pressure of the downstream compressor), (4) the pipe
diameter D, and (5) the pipeline segment length L. Inasmuch as the mass flow rate is
fixed, and each compressor is assumed to have gas consumed for operation of one-half
of one percent of the gas transmitted, only the last four variables need to be determined
for each segment.

The objective function. Because the problem is posed as a minimum cost
problem, the objective function is the sum of the yearly operating and maintenance
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costs of the compressors plus the sum of the discounted (over 10 years) capital cosig
of the pipeline segments and compressors. Each compressor is assumed to be adia.
batic with an inlet temperature equal to that of the surroundings. A long pipeline seg-
ment is assumed so that by the time gas reaches the next compressor it returns (o the
ambient temperature. The annualized capital costs for each pipeline segment depend
on pipe diameter and length, but are assumed to be $870/(in.)(mile)(year). The rate of
work of one compressor is

PR
= (0.08531)Q - -—-r,[(p ) - 1] (a)

¥

where k = C_/C, for gas at suction conditions (assumed (o be 1.26)
z = compressibility factor of gas at suction conditions (z ranges from (.88
1o 0.92)
P, = suction pressure, psi
p4 = discharge pressure, psi
T, = suction temperature, “R (assumed 520°R)
Q = flow rate into the compressor, MMCFD (million cubic feet per day)
W = rate of work, horsepower,

Operation and maintenance charges per year can be related directly to horse-
power and are estimated to be between 8.00 and 14.0 $/(hp)(year), hence the total
operating costs are assumed to be a linear function of compressor horsepower,

Figure E13.4b shows two different forms for the annualized capital cost of the com-
pressors. Line A indicates the cost is a linear function of horsepower [$70.00/(hp) vear))
with the line passing through the origin, whereas line B assumes a linear function of
horsepower with a fixed initial capital outlay [$70.00¢(hp}year) + $10,000] to take into
account installation costs, foundation, and so on. For line A, the objective function in dol-
lars per year for the example problem is

" k Pa \ Ak 10k
f= (G + C)Q,{U-Uﬂﬂl}ﬂ(—“)[(") - 1]
i=1 k — 1 F—t
+ 3 C,LD, (b)
=
where n = number of compressors in the system
m = number of pipeline segments in the system (= n + 1)

C,; = yearly operating cost $/(hp)vear)
C. = compressor capital cost 3/(hp)(year)
L' = pipe capital cost $/(in)(mile)(year)
= length of pipeline segment j, mile
D,. = diameter of pipeline segment j. in.

You can now see why for line A a branch-and-bound technigue is not required
to solve the design problem. Because of the way the objective function is formu-
lated, if the ratio (p,/p,) = 1, the term involving compressor i vanishes from the
first summation in the objective function. This outcome is equivalent to the dele-
tion of compressor { in the execution of a branch-and-bound strategy. (Of course
the pipeline segments joined at node i may be of different diameters.) But when
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line B represents the compressor costs, the fixed incremental cost for each com-
pressor in the system at zero horsepower (C) is not multiplied by the term in the
square brackets of Equation (b). Instead, C, is added in the sum of the costs
whether or not compressor { is in the system, and a nonlinear programming tech-
nigue cannot be used alone, Hence, if line B applies, a different solution procedure
is required.

The inequality constraints. The operation of each compressor is constrained
s0 that the discharge pressure is greater than or equal to the suction pressure

p
A=l i=12....n (©)

P,

and the compression ratio does not exceed some prespecified maximum limit K

P
‘=K,i=12...n (d)

"-

In addition, upper and lower bounds are placed on each of the four variables

Pi" = py = pi (e)
P = p, = pi™ f)
I [, =< [0 ()
D' = D, = D™ (h)

The equality constraints. Two classes of equality constraints exist for the
transmission system. First, the length of the system is fixed. With two branches, there
are two constraints

N=1 Nl+N2

2 L+ E L= i

J=1 =M
Ni=1 IN+NT# NI+
S+ Y =L} (i)
=1 J=N1+N1+1

where L} represents the length of a branch. Second, the flow equation, the Weymouth
relation (GPSA handbook, 1972), must hold in each pipeline segment

— pjue
Q= ﬂﬂﬂ?"[fﬁ——i] %)
Ly
where Q) = a fixed number
p4 = the discharge pressure at the entrance of the segment
p, = the suction pressure at the exit of the segment
To avoid problems in taking square roots, Equation () is squared to yield
(871D} pf — p}) — LG} = 0 k)
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