<u>PART 1</u>

PINCH AND MINIMUM UTILITY USAGE

TEMPERATURE-ENTHALPY (T-H) DIAGRAMS

• Assume one heat exchanger. These are alternative representations

T-H DIAGRAMS

• Assume one heat exchanger and a heater

T-H DIAGRAMS

• Assume one heat exchanger and a cooler

T-H DIAGRAMS

• Two hot-one cold stream

Streams under phase change

Piece-wise linear representation

Obtained by lumping all the heat from different streams that are at the same interval of temperature.

Remark: By constructing the composite curve we loose information on the vertical arrangement of heat transfer between streams

• Moving composite curves horizontally

Moving the cold composite stream to the right

- Increases heating and cooling BY <u>EXACTLY</u> THE SAME AMOUNT
- Increases the smallest ΔT
- Decreases the area needed $A=Q/(U^* \Delta T)$

Notice that for this simple example the smallest ΔT takes place in the end of the cold stream

- In general, the smallest ΔT can take place anywhere.
- We call the temperature at which this takes place THE PINCH.

- From the energy point of view it is then convenient to move the cold stream to the left.
- However, the area may become too large.
- To limit the area, we introduce a minimum approach ΔT_{min}

 ΔT_{min} is also known as HRAT (Heat Recovery Approximation Temperature)

GRAPHICAL PROCEDURE

- Fix ΔT_{min} (HRAT)
- Draw the hot composite curve and leave it fixed
- Draw the cold composite curve in such a way that the smallest temperature difference is equal to ΔT_{min}
- The temperature at which $\Delta T = \Delta T_{\min}$ is the PINCH
- The non-overlap on the right is the Minimum Heating Utility and the non-overlap on the left is the Minimum Cooling Utility

EXAMPLE

Stream	Туре	Supply T	Target T	ΔH	F*Cp	
		(°C)	(°C)	(MW)	(MW °C-1)	
Reactor 1 feed	Cold	20	180	32.0	0.2	
Reactor 1 product	Hot	250	40	-31.5	0.15	
Reactor 2 feed	Cold	140	230	27.0	0.3	
Reactor 2 product	Hot	200	80	-30.0	0.25	

 $\Delta T_{min} = 10 \ ^{\circ}C$

Hot Composite Curve

Cold Composite Curve

Observation: The pinch is at the beginning of a cold stream or at the beginning of a hot stream

Note: There is a particular overlap that requires only cooling utility

Special Overlap Cases

• Overlap leads only to cooling utility

• Different instances where the cold stream overlaps totally the hot stream. Case where only heating utility

SUMMARY

- The pinch point is a temperature.
- Typically, it divides the temperature range into two regions.
- Heating utility can be used only above the pinch and cooling utility only below it.

Composite curves are inconvenient. Thus a method based on tables was developed.

• STEPS:

- 1. Divide the temperature range into intervals and shift the cold temperature scale
- 2. Make a heat balance in each interval
- 3. Cascade the heat surplus/deficit through the intervals.
- 4. Add heat so that no deficit is cascaded

• We now explain each step in detail using our example

Stream	Туре	Supply T	Target T	ΔH	F*Cp
		(°C)	(°C)	(MW)	(MW °C-1)
Reactor 1 feed	Cold	20	180	32.0	0.2
Reactor 1 product	Hot	250	40	-31.5	0.15
Reactor 2 feed	Cold	140	230	27.0	0.3
Reactor 2 product	Hot	200	80	-30.0	0.25

1. Divide the temperature range into intervals and shift the cold temperature scale

Now one can make heat balances in each interval. Heat transfer within each interval is feasible.

2. Make a heat balance in each interval.

3. Cascade the heat surplus through the intervals. That is, we transfer to the intervals below every surplus/deficit.

4. Add heat so that no deficit is cascaded.

If the heating utility is increased beyond 7.5 MW the cooling utility will increase by the same amount

IMPORTANT CONCLUSION

DO NOT TRANSFER HEAT ACROSS THE PINCH

THIS IS A GOLDEN RULE OF PINCH TECHNOLOGY.

•WHEN THIS HAPPENS IN BADLY INTEGRATED PLANTS THERE ARE HEAT EXCHANGERS WHERE SUCH TRANSFER ACROSS THE PINCH TAKES PLACE

Multiple Utilities

