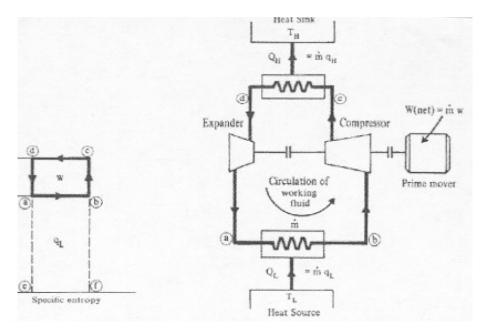
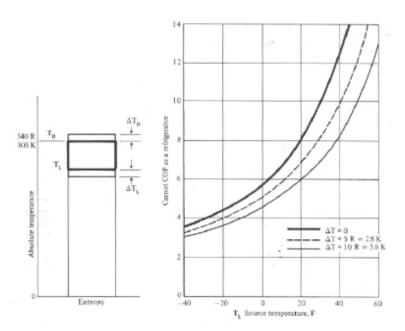
REFRIGERATION CYCLES

Carnot Cycle

We start discussing the well-known Carnot cycle in its refrigeration mode.




Figure 1: Carnot Cycle

In this cycle we define the coefficient of performance as follows:

$$COP = \frac{q_L}{w} = \frac{T_L}{T_H - T_L} \tag{1}$$

Which comes from the fact that $w = q_H - q_L$ (first law) and $q_L = T_L \Delta s$, $q_H = T_H \Delta s$ (second law). Note that *w* is also given by the area of the rectangle.

Temperature differences make the COP vary. For example, the next figure shows how COP varies with T_L (T_H is ambient in this case) and the temperature difference in exchangers.

Figure 2: *COP* changes with heat exchanger temperature approximation and $T_L(T_H = ambient)$

We now turn our attention to a real one stage refrigeration cycle, depicted in the next figure.

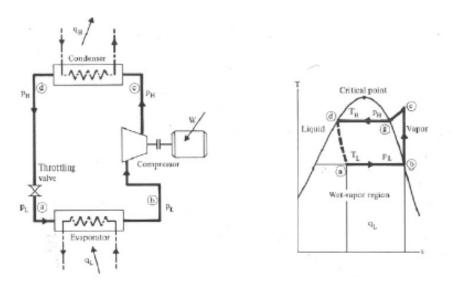


Figure 3: Typical one-stage dry refrigeration Cycle

We notice that:

- To be able to achieve the best match possible with the rectangular shape it is necessary to operate inside the two phase region.
- Compression is in this example performed outside the two phase region. Creating a "horn", which is not thermodynamically advisable, is mechanically better. For this reason, this cycle is called "dry" cycle. A "wet" cycle is shown in the next figure.

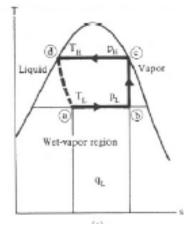


Figure 4: Wet refrigeration Cycle

- The expander has been substituted by a throttling valve. If an expander had been used the line from **d** to **a** would be a vertical line. This is also done for mechanical reasons.

The refrigeration cycles can also be represented in a P-H diagram.

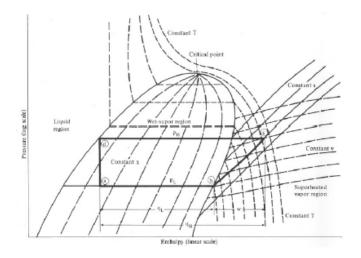


Figure 5: *P*-*H* diagram representation of a dry refrigeration cycle

Refrigerant fluid choice: We now turn our attention to the fluids. Usually, one tends to pick p_L as low as possible, but not below atmospheric pressure. Thus, the refrigerant chosen needs to have a normal boiling point compatible with the lowest temperature of the cycle (usually 10°C lower than the system one wants to cool). The higher pressure needs to be compatible with the cooling media used for q_H . If this is cooling water, then the T_H needs to be around 10°C higher than the available cooling water temperature. The next table shows the existing refrigerants. It is followed by the boiling temperature and rang of selected refrigerants.

Refrigerant number	Chemical name	Chemical formula
218 290*	Octafluoropropane Propane	CF ₃ CF ₂ CF ₃ CH ₃ CH ₂ CH ₃
Cyclic organic		a de la constante de la consta
compounds		and the second sec
C316	Dichlorohexafluorocyclobutane	C4Cl2F6
C317	Monochloroheptafluorocyclobutane	C4ClF7
C318	Octafluorocyclobutane	C ₄ F ₈
Azeotropes		and the second se
500	Refrigerants 12/152a 73.8/26.2wt %‡	CCl2F2/CH3CHF2
501	Refrigerants 22/12 75/25wt %	CHClF ₂ /CCl ₂ F ₂
502	Refrigerants 22/115 48.8/51.2wt %	CHClF2/CClF2CF3
Miscellaneous organic		111
compounds		
Hydrocarbons		
50	Methane	CH ₄
170	Ethane	CH ₃ CH ₃
290	Propane	CH ₃ CH ₂ CH ₃
600	Butane	CH3CH2CH2CH3
601	Isobutane	CH(CH ₃) ₃
1150	Ethylene	CH2=CH2
1270†	Propylene	CH ₃ CH=CH ₂
Oxygen compounds		is the the constitution
610	Ethyl ether	C ₂ H ₅ OC ₂ H ₅
611	Methyl formate	HCOOCH ₃
Nitrogen compounds		
630	Methyl amine	CH ₃ NH ₂
631	Ethyl amine	C2H3NH2
Inorganic compounds		
(Cryogenic)		
702	Hydrogen (normal and para)	H ₂
704	Helium	He
720	Neon	Ne
728	Nitrogen	N
729	Air	0.2102, 0.78N2, 0.01A
732	Oxygen	O2
740	Argon	A

Table 1: Refrigerants ASHRAE STANDARD DESIGNATION OF REFRIGERANTS

Methane, ethane, and propane appear in the halocarbon section in their proper numerical order, but these compounds are not halocarbons.

[†] Ethylene and propylene appear in the hydrocarbon section to indicate that these compounds are hydrocarbons, but are properly identified in the section unsaturated organic compounds.

[‡] Carrier Corporation Document 2-D-127, p. 1.

Refrigerant number	Chemical name	Chemical formula
218 290*	Octafluoropropane Propane	CF ₃ CF ₂ CF ₃ CH ₃ CH ₂ CH ₃
Cyclic organic compounds		0.015
C316	Dichlorohexafluorocyclobutane	C ₄ Cl ₂ F ₆
C317	Monochloroheptafluorocyclobutane	C ₄ ClF ₇
C318	Octafluorocyclobutane	C_4F_8
Azeotropes		Non-Argenting to the second
500	Refrigerants 12/152a 73.8/26.2wt %‡	CCl ₂ F ₂ /CH ₃ CHF ₂
501	Refrigerants 22/12 75/25wt %	CHClF ₂ /CCl ₂ F ₂
502	Refrigerants 22/115 48.8/51.2wt %	CHClF ₂ /CClF ₂ CF ₃
Miscellaneous organic compounds Hydrocarbons		
50	Methane	CH4
170	Ethane	CH ₄ CH ₃ CH ₃
290	Propane	CH ₃ CH ₂ CH ₃
600	Butane	CH ₃ CH ₂ CH ₂ CH ₃
601	Isobutane	$CH_3CH_2CH_2CH_3$ $CH(CH_3)_3$
1150†		CH ₂ =CH ₂
1270	Ethylene Propylene	CH ₃ CH=CH ₂
	Propylene	ch3ch=ch2
Oxygen compounds	Estad asta	C H OC H
610	Ethyl ether	-2323
611	Methyl formate	HCOOCH ₃
Nitrogen compounds		C. LA SSITES hadelo
630	Methyl amine	CH ₃ NH ₂
631	Ethyl amine	C ₂ H ₅ NH ₂
Inorganic compounds (Cryogenic)	and the second second second	
702	Hydrogen (normal and para)	H ₂
704	Helium	He
720	Neon	Ne
728	Nitrogen	N
729	Air	0.2102, 0.78N2, 0.01A
732	Oxygen	O2
740	Argon	A

Table 1: Refrigerants Continued) ASHRAE STANDARD DESIGNATION OF REFRIGERANTS

Methane, ethane, and propane appear in the halocarbon section in their proper numerical order, but these compounds are not halocarbons.

[†] Ethylene and propylene appear in the hydrocarbon section to indicate that these compounds are hydrocarbons, but are properly identified in the section unsaturated organic compounds. ‡ Carrier Corporation Document 2-D-127, p. 1.

⁵

Table 1: Refrigerants Continued)

Refrigerant number	Chemical name	Chemical formula
Inorganic compounds (noncryogenic)		
717	Ammonia	NH ₃
718	Water	H,O
744	Carbon dioxide	CO ₂
744A	Nitrous oxide	N ₂ O
764	Sulfur dioxide	SO ₂
Unsaturated organic compounds		
1112a	Dichlorodifluoroethylene	CCl ₂ =CF ₂
1113	Monochlorotrifluoroethylene	CCIF=CF ₂
1114	Tetrafluoroethylene	CF ₂ =CF ₂
1120	Trichloroethylene	CHCl=CCl ₂
1130	Dichloroethylene	CHCl=CHCl
1132a	Vinylidene fluoride	CH2=CF2
1140	Vinyl chloride	CH2=CHCl
1141	Vinyl fluoride	CH2=CHF
1150	Ethylene	CH2=CH2
1270	Propylene	CH ₃ CH=CH ₂

ASHRAE STANDARD DESIGNATION OF REFRIGERANTS

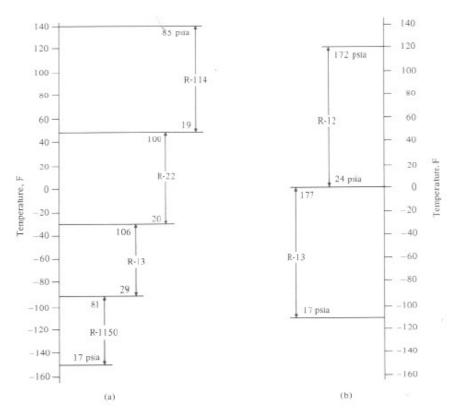
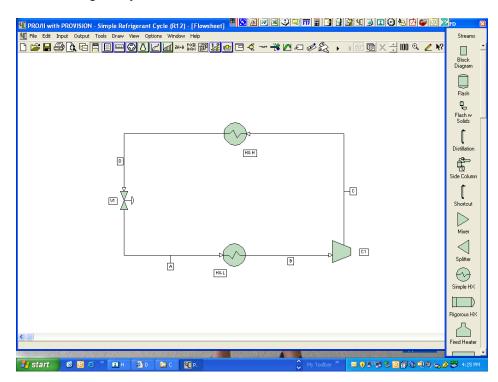
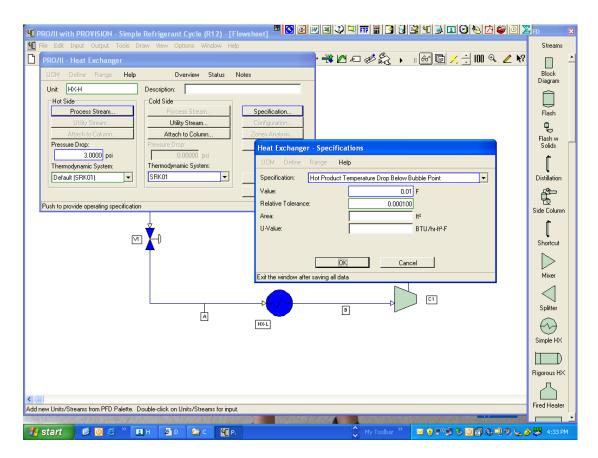
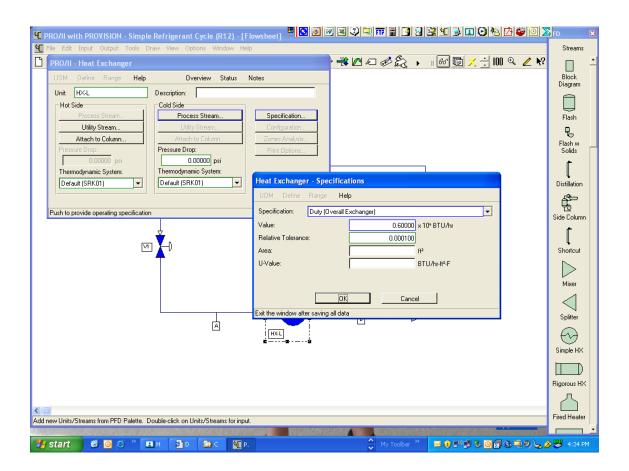



Figure 6: Temperature Ranges of Refrigerants

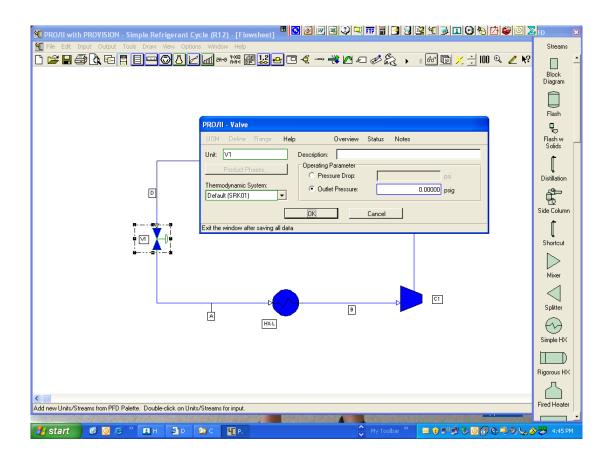
We now turn to Pro II to show how a refrigerant cycle is built. We start with entering the cycle as follows:



We pick R12, which will allow us to cool down anything to

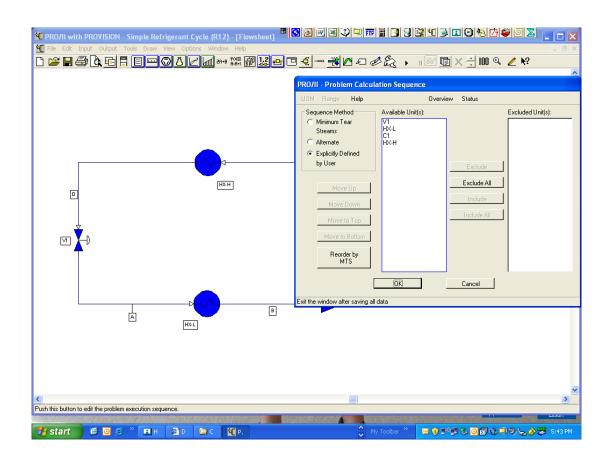

Next we define the outlet pressure of the compressor. This needs to be such that stream C (after the cooler) is higher than 60 $^{\circ}$ F. To start we choose around 85 psia.

🔨 PRO/II with PROVISION - Simple Refrigerant Cycle (R12) - [Flowsheet] 😬 💽 🗑 🖉 🗵 🎱 🗰 🕄 🕃 😢 🕊 🔍 💷 🔿 🎭 🗗 🦃	🖸 🔀 FD 🛛 🗙
🛍 File Edit Input Output Tools Draw View Options Window Help	Streams
🗋 PR0/II - Compressor	<u>/ k?</u>
UDM Define Range Help Overview Status Notes	Block Diagram
Product Phases • • • • • • • • • • • • • • •	Flash Flash
Outlet Temperature Estimate:	Solids
Pressure, Work or Head Specification Outlet Pressure 85.000 psia Enter Curve	Distillation
Efficiency or Temperature Specification	Ê
Adiabatic Efficiency	T <u>Q</u> Side Column
Operating Speed: RPM C	t
Maximum Dutlet Pressure: psig OK	Shortcut
Relative Convergence Tolerance: 0.0010000 Cancel	
Enter the adiabatic efficiency value	Mixer
	\triangleleft
	Splitter
HKL	\bigcirc
	Simple HX
	Rigorous HX
	八
Add new Units/Streams from PFD Palette. Double-click on Units/Streams for input.	Fired Heater
🛃 start 🛯 🖉 🖉 🖉 🐂 Н 🖓 р 🦛 с 📲 р. 🔷 Му Toobar ²⁰ 🗷 🔮 🗐 🚱 👰 🧐	🔊 😓 🄗 🐺 4:30 PM


Next we define the top heat exchanger, by specifying an outlet temperature slightly below the bubble point.

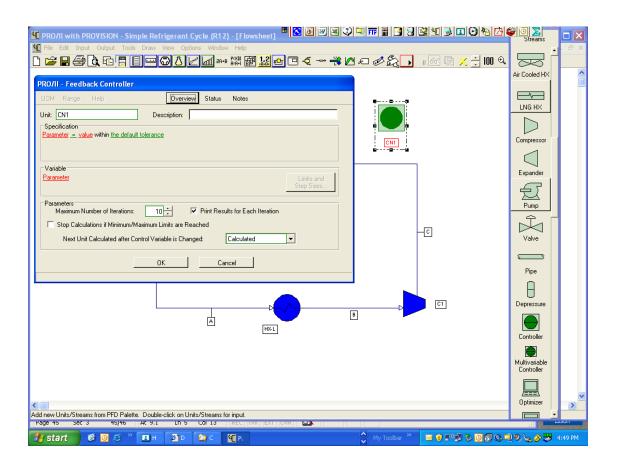
We continue by specifying the duty of the bottom exchanger. This is customary because this is the targeted design goal of the cycle.

We enter the outlet pressure of the valve (atmospheric).

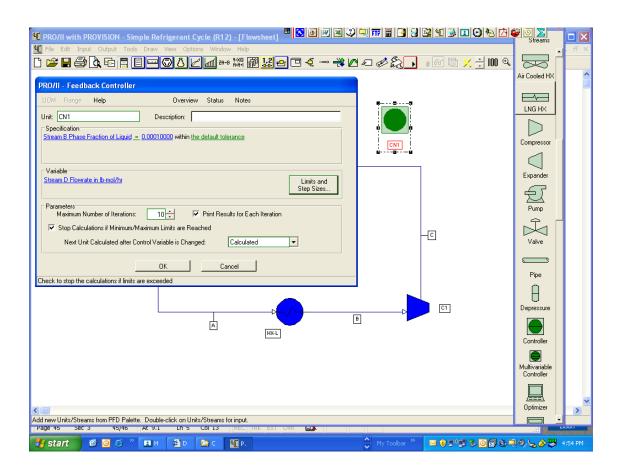


We also realize that this flowsheet does not have input or output streams. Thus, to start the simulation, one needs to give an initial value to a stream. We chose stream D, and initialize with a flowrate that is guessed.

If le Edit Input Output Tools Draw View Options Window Help Image: Stream Data - Flowrate and Composition UM File Edit Input Output Tools Draw View Options Window Help Image: Stream Data - Flowrate and Composition UM Range Help Tag Specify flowrate and composition for stream D Fluid Flowrate Specification Image: Total Fluid Flowrate: 50.000 lb-mol/hr	
UDM Range Help Tag UDM Range Help Tag UDM Range Help Tag UDM Range Help Tag	
Specify flowrate and composition for stream D	
Fluid Flowate Specification	
C Individual Component Flowrates	
Copy Component Composition	
Paste MITROGEN Mole	
ETHANE	
HIGH PROPANE	
BUTANE	
PRO/II - Stream Data BUTANE	
UOM Range Help Tag Overview Status Notes	
Stream: D Description: Clear Compositions Total: 1.0000 Vormalize Component F Based on Speci	
From Unic HX-H	3a Fiula
To Unit: V1 IIII IIII Cancel	
Supply Initial Estimate for Stream Data Stream Type Exit the window after saving all data	
	_
Petroleum Assay	
Referenced to Stream Solids Data	
B Splitte Stream Polymer Data	
Thermal Condition Simple	X
First Specification:	
Pressure V 50.000 psig	1×
S Fied He	ter
Ad OK Cancel	
🛃 start 🕑 🖸 🗇 🐂 H 🗿 D 😭 C 📲 P. 🔷 My Toolbar [≫] 🔤 🕽 🗊 🕃 🗐 🕃 🗐 😓 😓 🏷 🖑 444	


If the flowrate chosen is too high, then the inlet of the compressor will be two phase and this is not advisable. If the flowrate is too low, the cycle will loose efficiency (the "horn" will get larger).

Warning: Pro II may not realize internally that it needs to solve the unit that the initialized stream feeds to and try to continue until it reaches convergence in the loop but it will loose the input data. To avoid problems we specify the order in which we want the flowsheet to solve by clicking in the unit sequence button.



Construct the simulation above described and determine the right flowrate in the cycle. Determine all temperatures and obtain the COP. Compare it with a Carnot Cycle.

The above exercise can be done automatically using a "controller", which is a type of "spec and vary" equivalent to "Goal Seek" in Excel. Once the controller is picked, double clicking on it reveals the menu.

Thus, we choose to have the inlet to the compressor just slightly above dew point (specification) and we vary the flowrate, just as we did by hand. It is, however, easier to specify a very low liquid fraction. Make sure the starting point is close to the right value. Sometimes the controller has a hard time converging.

Other more complex refrigeration cycles:

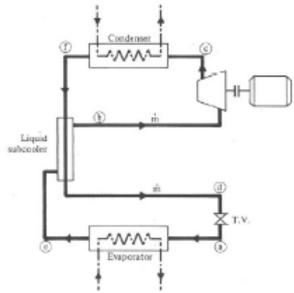


Figure 7: Liquid sub-cooling in a refrigeration cycle.

The corresponding TS and P-H diagrams are shown in the next figure. Since we are using the vapor (at the lower pressure) to sub-cool, there is a gain in q_L at the expense of a slight increase in work. Whether there is a gain, it depends on the fluid and the sub-cooled temperature choice.

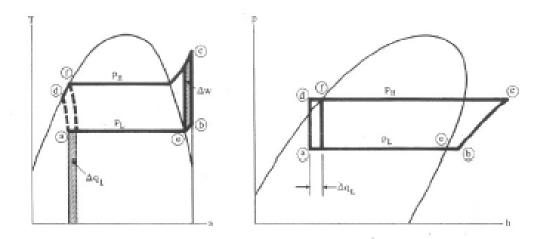


Figure 8: TS and P-H diagram for liquid sub-cooling in a refrigeration cycle.

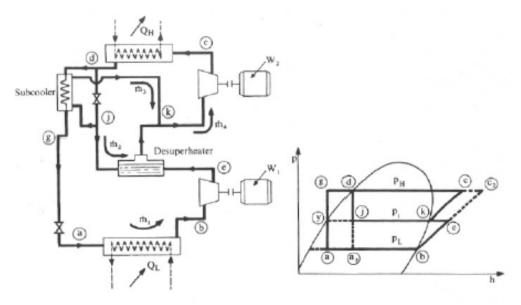


Figure 9: One Stage subcooler-desuperheater refrigeration cycle.

Consider now a multistage situation in which two cycles are combined. One reason that multistage cycles are used is because one cycle may require more than one compressor as the compression ratio for one may get to be too high. Instead of putting compressors in series, one could split the work among two compressors and actually increase the COP.

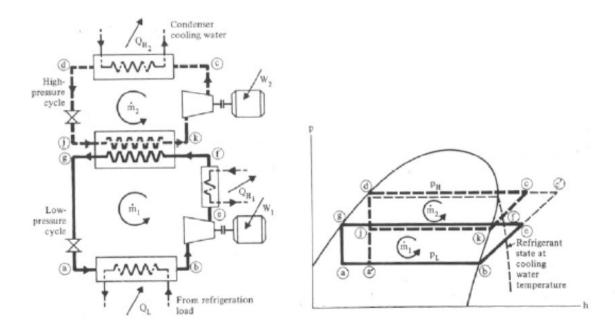


Figure 10: Two Stage refrigeration cycle.

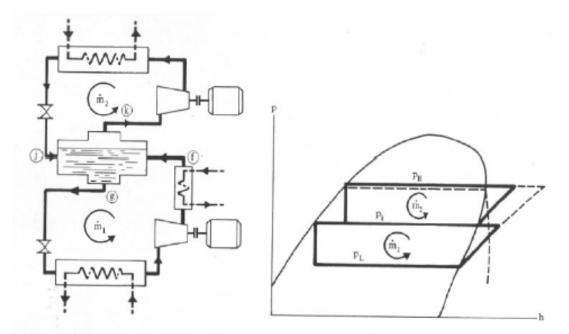


Figure 11: Open flash two stage refrigeration cycle.

This actually requires one fluid, but eliminates the need for the upper cycle to have a lower temperature for proper heat exchange, thus reducing work. Besides, a flash tank is cheaper than a heat exchanger.