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Abstract

This paper is devoted to the comparison of the performance of integral approach to dynamic data reconciliation and steady
state data reconciliation. It is shown that in the absence of biases and leaks, the performance of both approaches is similar.
Moreover, it is proven that once the appropriate variance is chosen, both methods are identical in the absence of accumulation
terms. Finally, an analysis is made on how large the discrepancies are when there are accumulation terms. © 2000 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Steady state data reconciliation in process plants was first proposed more than 35 years ago (Kuehn & Davidson,
1961). This seminal paper started a new area of research in process systems engineering that later changed the
paradigm of plant monitoring and production accounting. Data reconciliation has been used to adjust the
measurements in a process so that they comply with conservation laws. In assuming that the system is at steady state,
all process variability was lumped into one single averaged value for each stream. Thus data reconciliation using the
steady state assumption uses these averaged values together with some variance matrix. The variance of the
measurements comes from the intrinsic nature of the variance of each measurement, and from other covariances that
arise from the fact that the instruments are attached to a single power source. In addition, it has been proposed that
process variability should also be included in such variance to capture the process dynamics. Although a few papers
have addressed the issue of the determination of the variance using field data, it is not known well how effective these
methods are in practice. The reason why this is such an elusive issue is because averaged values include process
variability. Thus, the variance of these values has contributions from the instruments and from the process unsteady
state.

The present commercially available technology is based on steady-state data reconciliation. This technology has
been successful in improving the accuracy of production accounting. To use this software, it is common practice to
use straightforward averages of several measurements of the different plant variables taken throughout a certain
period of time. We know of no study investigating the effect of this averaging practice in the accuracy of the resulting
estimates. Basically, the system fluctuations are lumped with instrument biases and inherent instrument white noise.
Thus, under the assumption that averaged measurements can be used in the context of steady state data
reconciliation, several methods have been proposed to perform the detection and elimination of biases and leaks.
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Dynamic data reconciliation models were first presented by Stanley and Mah (1977), who adapted Kalman filtering
in a quasi steady state condition; Darouach and Zasadzinski (1991) used a backwards difference approximation and
recursive technique to solve the constrained least squares optimization problem. Rollins and Devanathan (1993)
improved on the estimation accuracy using a maximum likelihood function and proposing two estimators that are
later averaged. Narasimhan and Mah (1988) proposed to apply the generalized likelihood ratio (GLR) to dynamic
situations with small departures from steady state values. Kao, Tamhane and Mah (1992) studied the effect of serially
correlated data on gross error detection. They proposed composite test procedures based on window averages,
pre-whitening procedures and the generalized likelihood ratio. Other methods have been presented for dynamic data
reconciliation: Ramamurthi, Sistu and Bequette (1993) proposed a technique based on a successively linearized
horizon, Liebman, Edgar and Lasdon (1992) used orthogonal collocation. Karjala and Himmelblau (1996) rely on
neural networks and Albuquerque and Biegler (1996) on a discretization of the system of DAE using Runge Kutta
methods. Finally, Bagajewicz and Jiang (1997) proposed an integral method for dynamic data reconciliation. As the
name describes, the method relies on the integration of the process differential equations, a polynomial representa-
tion in time and data reconciliation based on adjusting the polynomial coefficients.

We know of no study where a careful comparison of steady state and dynamic data reconciliation is performed.
Practitioners, especially software vendors, claim that dynamic data reconciliation is computationally too intensive
and the effort implementing it in practice will not produce a meaningful improvement over the current steady state
technology. In addition, the power of dynamic data reconciliation and gross error detection methods has not been
thoroughly evaluated and concern exists that it might be not better than those based on steady state techniques. To
clarify this issue, this paper presents a comparison between the classical steady state reconciliation and the integral
dynamic data reconciliation. Dynamic data, subject to averaging and steady state reconciliation will be compared
with the average of the results of dynamic data reconciliation and the averages of the true values. This paper focuses
on a comparison of the integral approach to dynamic data reconciliation (Bagajewicz & Jiang, 1997, 1998) and the
aforementioned steady state techniques to perform data reconciliation.

The issue of the proper use of steady state data reconciliation in the context of the current practice of data
averaging is explored first. Then, a review of the integral dynamic data reconciliation method is presented. A
theoretical comparison between the two is presented next, followed by a discussion on variance determination.
Examples are then presented.

2. Average-based steady state reconciliation

Let the system of equations for material balances be represented by

d6
dt

=Af (1)

Cf=0 (2)

where 6 and f are the tank hold-ups and flows, respectively. Let f i
+, i=1, …, n be the vector of measurements of all

stream flows for n instances of time and 6 i
+ be the vector of tank hold-up measurements for the same times.

Steady state data reconciliation, as performed by several commercial packages (Datacon from Simsci and
Sigmafine from OSI, among others) is based on
1. The average of the flow measurements f( +
2. A new artificial flowrate f i

6+ defined as follows:

f i
6+ =

6 i
+−60

+

(ti− t0)
(3)

3. The average of the artificial flowrates f( 6+
Thus the system equations are now represented by:

Dy=0 (4)

where

D=
�A −I

C 0
n

(5)
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and

y=
� f

f 6
�

(6)

Let R be the variance of all measurements. If all the flows are measured, then the solution to the problem is:

ỹ= [I−RDT(DRDT)−1D ]ȳ+ (7)

where

ȳ+=
� f( +

f( 6+
�

.

This solution is obtained by posing a problem as a least-squares minimization, assumption that has been proposed
by the seminal paper by Kuehn and Davidson (1961) and substantiated by the maximum likelihood concepts (see
Mah, 1990), using Bayesian theory (Johnston & Kramer, 1995) and information theory (Crowe, 1996).

When not all flows or tank hold-ups are measured, then matrix projection (Crowe, Garcı́a Campos & Hrymak,
1983) or transformation of D to a canonical form (Madron, 1992) have been proposed to identify redundant
measurements. These transformations are well known and are omitted here.

3. Integral model for dynamic linear reconciliation

The integral model has been presented in a recent paper (Bagajewicz & Jiang, 1997). After reducing D into its
canonical form (Madron, 1992) the problem is reduced to

BR

d6R
dt

=AR fR (8)

CR fR=0 (9)

The model uses redundant measurements only. For this reason, subscript R is added. The result of cooptation is
that linear combinations of hold-up variations need to be used (Bagajewicz & Jiang, 1997), hence matrix BR. The
following polynomial representation is proposed next:

fR: %
s

k=0

ak
Rtk (10)

6R:6R0+ %
s

k=0

vk+1
R tk+1 (11)

where s is the polynomial order chosen.
Assuming that there are n measurements with normally distributed errors, a maximum likelihood formulation

leads to a least squares problem given by:

Min %
n

i=0

{(6Ri−6Ri
+)TSV

−1(6Ri−6Ri
+)+ ( fRi− fRi

+)TSF
−1( fRi− fRi

+)}

s.t.

BR(6Ri−6R0)=AR
& t

0

fR(j)dj (i=0, …, n)

CR fRi=0 (i=0, …, n)

Â
Ã
Ã
Ã
Ì
Ã
Ã
Ã
Å

(12)

By substituting Eqs. (10) and (11) into Eq. (12), one obtains a linearly constrained quadratic problem. Thus, the
procedure to obtain the solution is similar to the procedure used to obtain Eq. (7). The mathematical details are in
Bagajewicz and Jiang (1997).
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4. Variance in average-based steady state data reconciliation

To establish a comparison between steady state and dynamic data reconciliation in the case of time varying
systems the value of variance used in the case of steady state data reconciliation should be discussed. It has been
claimed in several papers (Almasy & Mah, 1984; Keller, Zasadzinski & Darouach, 1992; Chen, Bandoni &
Romagnoli, 1997) that the variance used in steady state data reconciliation is different than the instrument variance.
One of the main reasons stated for such a difference is the departure from steady state. Thus, before any comparison
is performed a new variance needs to be determined. This has been for years the major problem for practitioners, as
no well-established guidelines exist to determine this variance, except for the aforementioned few papers that
recommend some strategies.

Let us assume first that the system is at steady state, i.e. the true values y are constant. Assume that the
distribution of flow measurements is multivariate normal N(y, RF). Then:
1. The averages follow a normal distribution N(y, RF/n). Note that the variance of the mean is smaller as the

number of measurements increases.
2. As a result of (1), lim

n��
ȳ=y, because the variance of the average tends to zero.

Since the system is at steady state, hold-up measurements are ignored.
The above findings lead us to the following conclusions:

In a system that is at steady state and in the absence of biases and leaks, good estimates of the true values can
be obtained from the averaging of a large number of data. Data reconciliation can improve the variance of these
estimates and make them satisfy balance equations.

An additional important conclusion is also obtained from the above conclusions:

Since the error associated with an average of measurements follows a normal distribution around the true value
with variance RF/n, steady state data reconciliation (assuming no outliers are present) should he used using a
variance Rs=RF/n.

Although the above conclusion looks straightforward, this has not been made very clear among practitioners.

5. Comparison between the integral dynamic model and the average-based steady state model based

The comparison procedure is as follows. Once Eq. (10) and Eq. (11) have been substituted into Eq. (12), the
problem becomes:

Min{(J6R0+TwvR−6R
+)TRV

−1(J6R0+TvvR−6R
+)+ (TaaR− fR

+)TRF
−1(TaaR− fR

+)}
s.t.
DmvR=RmaR

CaaR=0

Â
Ã
Ì
Ã
Å

(13)

where

aR=

Æ
Ã
Ã
Ã
È

a0
R

a1
R

�
a s

R

Ç
Ã
Ã
Ã
É

vR=

Æ
Ã
Ã
Ã
È

v1
R

v2
R

�
v s+1

R

Ç
Ã
Ã
Ã
É

fR
+=

Æ
Ã
Ã
Ã
È

fR0
+

fR1
+

�
fRn

f+

Ç
Ã
Ã
Ã
É

6R
+=

Æ
Ã
Ã
Ã
È

6R0
+

6R1
+

�
6Rn
+

Ç
Ã
Ã
Ã
É

J=

Æ
Ã
Ã
Ã
È

I
I
�
I

Ç
Ã
Ã
Ã
É

Dm=

Æ
Ã
Ã
Ã
È

BR 0 ··· 0
0 BR ··· 0
� � · · · �
0 0 ··· BR

Ç
Ã
Ã
Ã
É

Rm=

Æ
Ã
Ã
Ã
È

AR 0 ··· 0
0 AR/2 ··· 0
� � · · · �
0 0 ··· AR/s+1

Ç
Ã
Ã
Ã
É
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Ca=

Æ
Ã
Ã
Ã
È

CR 0 ··· 0
0 BR ··· 0
� � · · · �
0 0 ··· CR

Ç
Ã
Ã
Ã
É

RV
−1=

Æ
Ã
Ã
Ã
È

SV
−1 0 ··· 0
0 SV

−1 ··· 0
� � · · · �
0 0 ··· SV

−1

Ç
Ã
Ã
Ã
É

RF
−1=

Æ
Ã
Ã
Ã
È

SF
−1 0 ··· 0
0 SF

−1 ··· 0
� � · · · �
0 0 ··· SF

−1

Ç
Ã
Ã
Ã
É

Ta=

Æ
Ã
Ã
Ã
È

I 0 ··· 0
I t1I ··· t1

sI
� � · · · �
I tnI ··· tn

sI

Ç
Ã
Ã
Ã
É

Tv=

Æ
Ã
Ã
Ã
È

0 ··· 0
t1I ··· tn

s+1I
� · · · �

tnI ··· tn
s+1I

Ç
Ã
Ã
Ã
É

Once this problem is solved analytically (Bagajewicz & Jiang, 1997), the average of the reconciled flowrates is:

f( R=Gt f (14)

where Gt is an averaging (linear) operator. An average equivalent to the artificial flowrates can be obtained from

d6R
dt

=Gt

d6R
dt

(15)

which will be compared with the result given by Eq. (7).

5.1. Comparison in the absence of accumulation terms

Assume there is no tank and only flowrates are involved. The data reconciliation problem at steady state becomes:

Min( fR* − f( R+)T(n+1)SF
−1( fR* − f( R+)

s.t.

CR fR*=0 (16)

where fR* stands for the solution of the steady state model using the averages of the measurements. The solution is:

fR*=Pf( R+ (17)

where

P= [I−SFCR.
T(CRSFCR

T)−1CR ] (18)

This solution can be formalized in a similar way for a dynamic case. The problem is:

Min %
n

i=0

( fRi− fRi
+)TSF

−1( fRi− fRi
+)

s.t.
CR fRi=0�i=0, …, n

Â
Ã
Ì
Ã
Å

(19)

which has as solution the following:

fRi=PfRi
+ i=0, …, n (20)

Therefore we can conclude that the following holds

f( R=Pf( R+ (21)

and

f( R= fR* (22)

Eq. (23) states that the averages of reconciled data obtained using data reconciliation are equal to the reconciled
data using steady state reconciliation based on averages of dynamic measurements.

We will now show that this is also true when the integral dynamic data reconciliation model is used.
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5.1.1. Proof
First note that under the no hold up assumption the solution of the integral dynamic data reconciliation problem

is (See Appendix A)

fR=Ta [I−ZRFCa
T(CaZRFCa

T)−1Ca ]ZRF(RF
−1Ta)TfR

+ (23)

where Z is defined in the same appendix. However, the matrix within parenthesis can be expressed in terms of a new
matrix P (Appendix B)

I−ZRF(CaVRFCa
T)−1Ca=

Æ
Ã
Ã
Ã
È

I−SFCR
T(CRSFCR

T)−1Cr

· · ·
I−SFCR

T(CRSFCR
T)−1CR

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
È

P
· · ·

P

Ç
Ã
Ã
Ã
É

(24)

Therefore Eq. (23) becomes:

fR=

Æ
Ã
Ã
Ã
È

I 0 ··· 0
I I ··· I
� � · · · �
I nI ··· nsI

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
È

P
· · ·

P

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
È

z00I z01I ··· z0sI
z10I z11I ··· z1sI
� � · · · �

zs1I zs2I ··· zssI

Ç
Ã
Ã
Ã
É

×

Æ
Ã
Ã
Ã
È

SF

· · ·
SF

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
È

I I ··· I
0 I ··· nI
� � · · · �
0 I ··· nsI

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
È

SF
−1

· · ·
SF

−1

Ç
Ã
Ã
Ã
É

fR
+ (25)

Thus

fR=

Æ
Ã
Ã
Ã
È

P 0 ··· 0
P P ··· P
� � · · · �
P nP ··· nsP

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

z00I I %
s

i=0

z0i ··· I %
s

i=0

niz0i

z10I I %
s

i=0

z1i ··· I %
s

i=0

niz1i

� � · · · �

zs0I I %
s

i=0

zsi ··· I %
s

i=0

nizsi

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

fR
+

=

Æ
Ã
Ã
Ã
È

P
· · ·

P

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

�
z00 fR0

+ + %
s

i=0

z0i fR1
+ + ···+ %

s

i=0

niz0i fRn
+ �

I� %
s

j=0

zj0 fR0
+ + %

s

j=0

%
s

i=0

zji fR1
+ + ···+ %

s

j=0

%
s

i=0

nizji fRn
+ �

I� %
s

j=0

n jzj0 fR0
+ + %

s

j=0

n j %
s

i=0

zji fR1
+ + ···+ %

s

j=0

n j %
s

i=0

nizji fRn
+ �

I

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

(26)

which finally renders

%
n

i=0

fRi=P
��

z00+ %
s

j=0

zj0+ ···+ %
s

j=0

n jzj0
�

fR0
+ +

� %
s

i=0

z0i+ %
s

j=0

%
s

i=0

zji+ ···+ %
s

j=0

n j %
s

i=0

zji

�
fR1
+ + ···

+
� %

s

i=0

niz0i+ %
s

j=0

%
s

i=0

nizji+ ···+ %
s

j=0

n j %
s

i=0

n jzji
�

fRn
+ n
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=P
�

z00+ %
n

k=1

%
s

j=0

k jzj0
�

fR0
+ +

� %
s

i=0

z0i+ %
n

k=1

%
s

j=0

k j %
s

i=0
zji
�

fR 1

+ + ···+
� %

s

i=0

niz0i+ %
n

k=1

%
s

j=0

k j %
s

i=0

nizji
�

fRn
+ (27)

But:

z00+ %
n

k=1

%
s

j=0

k jzj0=I (28)

%
s

i=0

z0i+ %
n

k=1

%
s

j=0

k j %
s

i=0

zji=I (29)

and

%
s

i=0

miz0i+ %
n

k=1

%
s

j=0

k j %
s

i=0

mizji=I 1Bm5n (30)

as it is shown in Appendices C and D, and from which we conclude that

%
n

i=0

fRi=P [ fR0
+ + fR1

+ + ···+ fRn
+ ] (31)

Thus we have

f( R=Pf( R+ (32)

and

f( R= fR* (33)

Therefore, the assertion that the averages of reconciled values from dynamic data reconciliation are the same as the
reconciled values from steady state data reconciliation based on dynamic data averages is also true when the integral
approach is used.

5.2. Comparison in the presence of accumulation terms

When tanks with hold-ups are involved, assume one can obtain the artificial flowrate for hold-ups ( f 6=d6/dt) and
the corresponding standard deviation (Sf 6). Then one gets the data reconciliation problem at steady state, which is
similar to Eqs. (16) and (17):

min(yR* − ȳR
+)T(n+1)Sy

−1(yR* − ȳR
+)

s.t.
GRyR*=0

Â
Ã
Ì
Ã
Å

(34)

where

y=
� f

f 6
�

, GR=
�AR −I

CR 0
n

, Sy=
�SF

Sf 6

n
For a dynamic system,

min %
n

i=0

(yRi−yRi
+)TSy

−1(yRi−yRi
+)

s.t.
GRyRi=0 i=0, …, n

Â
Ã
Ì
Ã
Å

(35)

Obviously, from analyzing Eqs. (34) and (35), one can get the same conclusion as in the case when tanks are absent,
that is,

ȳR=yR* (36)

only if
1. There was a direct measurement of hold-up changes, or
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2. there was a known relation between the variance one needs to use for the artificial flowrates and the hold-up
variance.

Since

V( R=
&

f( R6 dt (37)

VR*=
&

fR* dt (38)

Thus, when hold-ups are involved, one can certainly expect:

f( R= fR* (39)

V( R=VR* (40)

In reality, however only the tank hold-ups, rather than the corresponding artificial flowrates, are directly measured.
In applying steady state data reconciliation to a system with tank hold-ups, one has to estimate the standard
deviations for the artificial flowrates from their hold-ups. This estimation can vary since different methods could be
applied. Instead, dynamic data reconciliation has the advantage that makes use of tank hold-ups directly. Therefore,
one can expect a difference between the results by applying steady state data reconciliation and dynamic data
reconciliation to a system.

5.3. Variance determination

We restrict the analysis to systems were one assumes that the variance–covariance matrix is diagonal.

5.3.1. True 6ariance
Although more elaborate estimates of the variances RF and RV of a system that is not at steady state can be

constructed, we propose to obtain them by using the following procedure:
(1) Perform a fitting of the dynamic data. For the case of polynomial fitting of flowrates one obtains (Bagajewicz

& Jiang, 1997)

ãR= [UF
TUF ]−1UF

TfR
+ (41)

Similarly, for tank hold-ups one has

ṽR= [UV
TUV ]−1UV

T6R
+ (42)

where

UF=

Æ
Ã
Ã
Ã
È

I 0 ··· 0
I t1I ··· t1

sI
� � · · · �
I tnI ··· tn

sI

Ç
Ã
Ã
Ã
É

UV=

Æ
Ã
Ã
Ã
È

I 0 ··· 0
I t1I ··· t1

s+1I
� � · · · �
I tnI ··· tn

s+1%I

Ç
Ã
Ã
Ã
É

(2) Construct the following sets of data

{pRi}=
!

fRi
+ − %

s

k=0

ãk
Rt i

k" (43)

{qRi}=
!
6Ri
+ −

�
6R0+ %

s

k=0

ṽk+1
R t i

k+1�" (44)

(3) Estimate the variance RFi and RVi as the standard deviation of {pRi} and {qRi}, respectively.

5.3.2. Variance of a6erages
One can assess the variance Rs by directly calculating the standard deviation of the time varying sample. Since data

reconciliation is performed using the averages, once again, the variance Rs is obtained by dividing the variance of the
sample by the number of measurements used.
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5.4. Simple system example

To perform an assessment on how large are the discrepancies that one obtains by using a steady state model, the
system of Fig. 1 was investigated first. The measured values are shown in Figs. 2–4 and the standard deviation of
the dynamic data is shown in Table 1. To enhance the effects a comparatively large variance on hold-up
measurement was used.

Table 2 shows the calculated standard deviations for the three streams used in averagebased steady state data
reconciliation. Final results are shown in Table 3.

6. Results for a more complex system

Consider the system introduced by (Bagajewicz & Jiang, 1997) and depicted in Fig. 5. The calculated variances are
given in Table 4.

Table 5 compares the reconciled flowrates (real and artificial) obtained performing steady state data reconciliation
with the average of the results obtained using the integral dynamic data reconciliation. Deviations from true values
are shown.

Fig. 1. A simple process.

Fig. 2. Measurements and true values of tank hold-up.

Fig. 3. Measurements and true values of f1.
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Fig. 4. Measurements and true values of f2.

Table 1
Standard deviation used for dynamic state data reconciliation

f1 f2 V

3.20.080.04

Table 2
Standard deviation used for steady state data reconciliation

f1 f2 f 6

0.04/
51=0.0056 3.2*
2/
50=0.640.08/
51=0.0112

Table 3
Comparison of steady state and dynamic state data reconciliationa

fl f2 f 6

0.00844.6595Reconciled at steady state 4.6679
4.6671 4.6629 0.0050Reconciled dynamic state
4.6642 4.6542 0.01True value

−0.0571Measured value 4.65954.6679

a Averages of indicated values.

Fig. 5.

By simply comparing the values of the estimates of the instrument varialices (RF and RV) to the values of the
variances used in steady state data reconciliation, one finds that the relative values from one to another vary. Thus,
estimates of variances of flowrates that exhibit larger flow variations are also relatively larger. The importance of
picking the proper variance when using data reconciliation is thus highlighted.
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7. Conclusion

This paper has presented a comparison of steady, state data reconciliation and the integral dynamic data
reconciliation. The theoretical and experimental results show that:
� When there is no tank and only flowrates are involved, the averages of reconciled values from dynamic data

reconciliation are the same as the reconciled values from steady state reconciliation based on dynamic data
averages, provided the right variance is used.

� When tank hold-ups are included in data reconciliation, the averages of reconciled flowrates/tank hold-ups from
dynamic data reconciliation could theoretically be the same as the reconciled flowrates/hold-ups from steady state
data reconciliation based on dynamic data averages, if a proper assessment of variance existed.

� Variances of measurements can be assessed using the dynamic data and can be used in steady state data
reconciliation when averaged dynamic data is used.
The performance comparison of steady state and dynamic data reconciliation on gross error detection will be

addressed in the future papers.

8. Notation

A balance matrix defined by Eq. (1)
matrix used to denote linear combinations of redundant flowsAR

BR matrix used to denote the linear combination of tank hold-ups
C matrix defined by Eq. (2)

matrix used to denote balances of redundant flowsCR

Ca matrix used in model (13). Defined in the text
D matrix defined by Eq. (5)
Dm matrix used in model (34). Defined in the text

vector of flowratesf
matrix used to denote balances of redundant flowsGR

I identity matrix
matrix used in model (13). Defined in the textJ

P matrix defined by Eq. (18)
variance–covariance matrixS

s polynomial order in Eqs. (10) and (11)
time variablet

U used in Eqs. (41) and (42)
variance matrix of all flow measurementsRF

RV variance matrix of all volume measurements
Rm matrix used in model (13). Defined in the text

matrix used in model (13). Defined in the textTv

vector of unit holdup6
y vector of true values defined by Eq. (6)
ỹ vector of estimates of y given by Eq. (7)
Z auxiliary matrix
zij element of matrix Z

Greek letters
aR vector used in model (13). Defined in the text

averaging operatorGt

Table 4
Variance of flowrates and holdups

Variances of flowrates Variances of Holdups

31 2 3 4 5 6 7 8 9 1 2 4

15.03.20.04Original 3.00.040.160.20.120.160.20.08 6.00.08
Estimated 0.0780.0420.160.220.150.180.210.045 0.082 3.045.9319.993.85
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vector used in model (13). Defined in the textvR

Subscripts and superscripts
flowrate-related quantitiesF
redundant quantitiesR
hold-up-related quantities6

+ measured quantities
estimates obtained using steady state models*
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Appendix A

In this appendix, Eq. (23) is derived. In the absence of accumulation terms, Eq. (12) becomes:

min{(TaaR− fR
+)T Rf

−1(TaaR− fR
+)}

s.t.
Ca aR=0

Â
Ã
Ì
Ã
Å

(A1)

The substitution of Eq. (10) renders

min{(TaaR− fR
+)+Rf

−1(TaaR− fr7i)}

CaaR=0 (A2)

The solution to this problem is analytical and is given by:

aR= [I−QCa
T(CaQCa

T)−1Ca ](−1/2Qw) (A3)

However, Q, the inverse of (TT
a , RF

−1, Ta) can be performed analytically. Then, according to Bagajewicz and Jiang
(1997),

Q= (Ta
TRF

−1Ta)−1=ZRF (A4)

where

RF=

Æ
Ã
Ã
Ã
È

SF 0 ··· 0
0 SF ··· 0
� � · · · �
0 0 ··· SF

Ç
Ã
Ã
Ã
É

Z=

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

(n+1)I I %
n

i=1

j ··· I %
n

i=1

j s

I %
n

i=1

j I %
n

i=1

j 2 ··· I %
n

i=1

j s+1

� � · · · �

I %
n

i=1

j s I %
n

i=1

j s+1 ··· I %
n

i=1

j 2s

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

−1

Therefore

aR[I−ZRFCa
T(CaZRFCa

T)−1Ca ]ZRF(RF
−1Ta)TfR

+ (A5)

Since fR=TaaR, we have immediately Eq. (23).
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Appendix B

In this appendix, we derive Eq. (24). Since

RFCa
T=

Æ
Ã
Ã
Ã
È

SF

· · ·
SF

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
È

CR
T

· · ·
CR

T

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
È

SFCR
T

· · ·
SFCR

T

Ç
Ã
Ã
Ã
É

(B1)

To simplify notation, we assume that

Z=

Æ
Ã
Ã
Ã
È

z00I z01I ··· z0sI
z10I z11I ··· z1sI
� � · · · �

zs0I zs1I ··· zssI

Ç
Ã
Ã
Ã
É

(B2)

where zij can be easily obtained by inverting the following matrix:

ZR=

Æ
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
È

(n+1) %
n

i=1

j ··· %
n

i=1

j s

%
n

i=1

j %
n

i=1

j 2 ··· %
n

i=1

j s+1

� � · · · �

%
n

i=1

j s %
n

i=1

j s+1 ··· %
n

i=1

j 2s

Ç
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
É

(B3)

Therefore

ZRFCa
T=

Æ
Ã
Ã
Ã
È

z00I z01I ··· z0sI
z10I z11I ··· z1sI
� � · · · �

zs0I zs0I ··· zssI

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
È

SFCR
T

· · ·
SFCR

T

Ç
Ã
Ã
Ã
É

(B4)

which, after operating, results in:

ZRFCa
T=

Æ
Ã
Ã
Ã
È

z00SFCR
T z01SFCR

T ··· z0sSFCR
T

z10SFCR
T z11SFCR

T ··· z1sSFCR
T

� � · · · �
zs0SFCR

T zs1SFCR
T ··· zssSFCR

T

Ç
Ã
Ã
Ã
É

(B5)

Pre-multiplying by Ca, one obtains:
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CaZRFCa
T=

Æ
Ã
Ã
Ã
È

CRz00SFCR
T CRz01SFCR

T ··· CRz0sSFCR
T

CRz10SFCR
T CRz11SFCR

T ··· CRz1sSFCR
T

� � · · · �
CRzs0SFCR

T CRzs1SFCR
T ··· CRzssSFCR

T

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
È

CRSFCR
T

· · ·
CRSFCR

T

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
È

z00I z01I ··· z0sI
z10I z11I ··· z1sI
� � · · · �

zs0I zs1I ··· zssI

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
È

CRSFCR
T

· · ·
CRSFCR

T

Ç
Ã
Ã
Ã
É

Z

Â
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ì
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Ã
Å

(B6)

Inverting:

(CaZRFCa
T)−1=Z−1

Æ
Ã
Ã
Ã
È

CRSFCR
T

· · ·
CRSFCR

T

Ç
Ã
Ã
Ã
É

−1

=Z−1

Æ
Ã
Ã
Ã
È

(CRSFCR
T)−1

· · ·
(CRSFCR

T)−1

Ç
Ã
Ã
Ã
É

(B7)

Similar manipulations lead to the following:

Ca
T(CaZRFCa

T)−1Ca=

Æ
Ã
Ã
Ã
È

CR
T

· · ·
CR

T

Ç
Ã
Ã
Ã
É

Z−1

Æ
Ã
Ã
Ã
È

(CRSFCR
T)−1

· · ·
(CRSFCR

T)−1

Ç
Ã
Ã
Ã
É

Æ
Ã
Ã
Ã
È

CR

· · ·
CR

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
È

CR
T(CRSFCR

T)−1CR

· · ·
CR

T(CRSFCR
T)−1CR

Ç
Ã
Ã
Ã
É

Z−1

Â
Ã
Ì
Ã
Å

(B8)

Then,

ZRFCa
T(CaZRFCa

T)−1Ca=

Æ
Ã
Ã
Ã
È

SFCR
T(CRSFCR

T)−1CR

· · ·
SFCR

T(CRSFCR
T)−1CR

Ç
Ã
Ã
Ã
É

(B9)

and finally,

I−ZRFCa
T(CaZRFCa

T)−1Ca=

Æ
Ã
Ã
Ã
È

I−SFCR
T(CRSFCR

T)−1CR

· · ·
I−SFCR

T(CRSFCR
T)−1CR

Ç
Ã
Ã
Ã
É

=

Æ
Ã
Ã
Ã
È

P
· · ·

p

Ç
Ã
Ã
Ã
É

(B10)
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Appendix C

Here we prove that Eq. (28) holds.
Since

ZZ−1=I (C1)

Then

(n+1)z00+ %
n

j=1

jz10+ ···+ %
n

j=1

j szs0=I (C2)

This can be rewritten as

(n+1)z00+ %
s

k=1

%
n

j=1

j kzk0= (n+1)z00+ %
n

j=1

%
s

k=1

j kzk0

= (n+1)z00+
� %

n

j=1

%
s

k=0

j kzk0−nz00
�

=z00+ %
n

j=1

%
s

k=0

j kzk0=I (C3)

Appendix D

Here we prove that Eqs. (29) and (30) hold.
Again from Eq. (C1) the following equations hold:

(n+1)z00+ %
s

k=1

%
n

j=1

j kz0k=I (D1)

(n+1)zi0+ %
s

k=1

%
n

j=1

j kzik=0 i=1, …, s (D2)

Add up all equations in Eqs. (D1) and (D2) to obtain:

(n+1) %
s

i=0

zi0+ %
s

k=1

%
n

j=1

j k %
s

i=0

zik= (n+1) %
s

i=0

zi0+ %
n

j=1

%
s

k=1

j k %
s

i=0

%
s

i=0

zik

= %
s

i=0

zi0+ %
n

j=1

%
s

k=0

j k %
s

i=0

zik=I (D3)

Multiply by mi both sides of Eq. (D2)

(n+1)mizi0+ %
s

k=1

%
n

j=1

j kmizik=0 i=1, …, s ; m=2, …, n (D4)

Add up all equations from Eqs. (D2), (D3) and (D4) to obtain:

%
s

i=0

mizi0+ %
n

j=0

%
s

k=0

j k %
s

i=0

mizik=I (D5)

Q.E.D.
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