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In natural gas pipeline systems, all product transactions are based on flow rate measurements.
Thus, it is essential to have good estimates of these variables. Currently, these variables are
estimated using data reconciliation based exclusively on material balances. To improve these
estimations, an approximate methodology that includes material balances as well as mechanical
energy balances is presented. This method is based on iterations between a simplified model
and a rigorous simulation model developed in SIMSCI’s PRO/II 5.55 system. A new method of
performing observability analysis is also developed to take into account the nonlinear mechanical
energy equations and pressure measurements. Finally, because temperature measurements are
used to define density, the influence of temperature measurement errors on the accuracy of the
estimators is analyzed. Several examples are presented to illustrate the effectiveness of the
methodology. The proposed technique proves to be very effective computationally and generates
better estimates than techniques in which only material balances are used.

Introduction

In pipelines systems, accurate flow rate data are
essential for the proper calculation of transactions.
Imbalances in these systems generate revenue losses
to companies every year. Biased instrumentation can
also affect the estimators, thus reducing the efficiency
of operations. Because readings from instruments do not
satisfy basic conservation laws, data reconciliation
considers the adjustment of measured values so that
unique estimates from all of the conflicting readings are
obtained and biases and leaks are detected and esti-
mated.

Data reconciliation is usually performed by minimiz-
ing a least-squares objective function, subject to model
equations, that comes from maximum likelihood for-
mulations and the assumption of normal error distribu-
tions. Such model equations range from simple material,
component, and energy balances to full models involving
all system variables and parameters. Even at the
commercial level, a variety of software systems exist
that are able to perform data reconciliation in full
nonlinear systems (DATACON, SIMSCI, etc.), including
gross error handling. However, most commercial data
reconciliation packages limit themselves to material
component and energy balances. One exception is
Chemplant Technology, s.r.o., who developed a software
package that also performs hydraulic calculations for
pipes. This software uses an isothermal Bernoulli equa-
tion and provides means of reconciling pressures. Nev-
ertheless, the details of the procedure and its accuracy
are not published. A complete background on these
techniques and their variants can be obtained from
three recent books.1-3

The governing equations for pipeline systems are the
material balances, the mechanical energy balances, and
the heat balance equation. Of these, only the first two
can be used to link redundant variables. The last
involves heat exchanges with the environment, and

therefore, it can be used only to estimate the heat
exchanged, which is of lesser practical importance.
Thus, temperature measurements can be used only to
obtain more accurate values of gas density close to the
flowmeters, but cannot be made redundant. This is not
the case for pressure measurements, which can be made
redundant through the mechanical energy balances and,
therefore, can improve the accuracy of the estimators
of mass flows.

Very little is available for systems where the mechan-
ical energy balance is also used to improve the material
balance data reconciliation. Only Coelho and Medeiros4

have presented an analysis of data reconciliation and
leak detection in pipelines with incompressible fluids.

The numerical difficulties associated with such prob-
lems are many. When performing data reconciliation in
large pipeline networks handling compressible fluids
(and possibly two phases), the nonlinear model can
become too large and computationally expensive. There-
fore, a method is needed to take these nonlinearities
into account in an efficient and computationally fast
manner. In this paper, the use of simple models as
pieces of a successive approximation scheme is proposed,
increasing the calculation speed. The method uses
simple expressions for the mechanical energy balances,
whose parameters are updated using rigorous simula-
tions on each piping section in an iterative manner. The
end result is then consistent with rigorous models.
Finally, the influence of temperature measurements
errors on the results is discussed.

Data Reconciliation with Rigorous Models

The data reconciliation model is
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min{[G̃r - Gr
+]T‚SG

-1‚[G̃r - Gr
+] +

[P̃r - Pr
+]T‚SP

-1‚[P̃r - Pr
+]} (1)

s.t.

f(G̃r,P̃r) ) 0
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where SG and SP are the variance matrices of mass flow
(G+) and pressure (P+) measurements, respectively, and
G̃ and P̃ represent the corresponding estimators. In
turn, f(G̃r,P̃r) represents material and rigorous mechan-
ical energy balances. Temperatures are not reconciled
because the total energy equation is not used.

Because the model should use compressible flow
expressions, these are usually integrated using numer-
ical algorithms along the length of each pipeline section.
Considering that these sections can be very long, the
computational time one expects is large. This is il-
lustrated next.

Motivating Example. Consider the flowsheet of
Figure 1. It represents a section of the Cerro Fortunoso
gas production and gathering field located in the
southern region of the province of Mendoza, in Argen-
tina.5 The system is composed of 25 different oil and
gas production wells connected to a main pipeline, which
transports the gas to processing plants.

Data reconciliation was performed for the Cerro
Fortunoso network assuming the pipe dimensions given
in Table 1. The flow rates presented in the figure are
at normal conditions (0 °C, 1 atm). The feeds are
considered to be pure methane at 25 °C. The flows of
all inlet and outlet streams are measured, as well as
the pressures of the inlet streams of the system. This
data reconciliation problem was set up in SIMSCI’s
PRO/II 5.55 process simulator using an optimizer. The
pressure drop in each section of piping was modeled
using the Beggs-Brill-Moody equation,6 the default

method for PRO/II recommended for most systems,
especially single-phase systems. Considering only the
first branch of the network, streams S1-S10, the simula-
tor takes 9 min and 38.03 s to solve the data reconcili-
ation on a Pentium III PC, 850 MHz, 128 MB RAM
computer.

Figure 1. Cerro Fortunoso gas production and gathering field.

Table 1. Pipe Dimensions for Cerro Fortunoso Network

stream
length

(m)

internal
diameter

(mm) stream
length

(m)

internal
diameter

(mm)

S1 515 90 S24 657 63
S2 615 102 S25 606 63
S3 781 90 Sout 1041 381
S4 821 128 I1 1132 154
S5 884 102 I2 1262 203
S6 989 90 I3 1239 203
S7 982 90 I4 1412 255
S8 569 63 I5 1134 255
S9 723 53 I6 1100 255
S10 732 90 I7 1170 303
S11 778 102 I8 1442 333
S12 606 102 I9 1217 303
S13 706 102 I10 1154 154
S14 924 102 I11 1186 255
S15 839 102 I12 1193 255
S16 695 90 I13 1234 203
S17 616 90 I14 1139 154
S18 848 90 I15 1299 154
S19 980 63 I16 1289 154
S20 654 78 I17 1124 128
S21 755 53 I18 1016 90
S22 874 102 I19 1029 90
S23 798 35

Ind. Eng. Chem. Res., Vol. 42, No. 22, 2003 5597



Considering that pipeline networks can have hun-
dreds of streams, the computational time of data
reconciliation can become unmanageable, especially
when information about leaks and biases is desired
quickly. Indeed, considering only the 25 oil and gas wells
of the Cerro Fortunoso Network, with a total of 45
process streams, the data reconciliation problem is
solved in 24 min and 34.92 s using PRO/II.

Using approximate models, such as the one presented
in this paper, the computational time to solve the same
Cerro Fortunoso Field problem of Figure 1 is about 40
s, both for the entire 25 oil and gas wells and for the
first 10 wells alone. Therefore, the use of approximate
models for the mechanical energy equation implies
important reductions of the computational time of the
data reconciliation problem.

Proposed Reconciliation Model

Instead of using a rigorous model, an approximation
is proposed. Assuming incompressible flow and neglect-
ing acceleration terms, one obtains the following expres-
sion of the mechanical energy balance

A discussion of this and other models is given in the
Appendix. To account for the error of this model, a term
∆ is introduced into the equation as follows

We rewrite eq 3 as

where

The iterative scheme consists of assuming certain
values for the model error ∆ and running the data
reconciliation using eq 2. Next, the process estimates
are updated, and new pressure-drop estimates are
obtained with rigorous models. The correction term ∆
is then calculated by comparing these last pressure-drop
values with the predictions of the simplified model
obtained using the current variable estimates. The
process is repeated until convergence is achieved.

Observability Analysis

Observability analysis is needed to classify the vari-
ables and perform data reconciliation using the correct
set of equations and variables to avoid singularities.
Such analysis can be made using approximate models
because the objective is only to classify the process
variables and not to obtain the value of the variables

themselves. In other words, approximate models are as
good at identifying redundant and observable variables
as rigorous models.

In general, the system of balance equations can be
written as

where M is the occurrence matrix of the system, A is a
diagonal matrix containing the ai coefficients, B is the
matrix of pressure coefficients (which are 1 or -1), and
c is the vector of ci coefficients. The term G X G is a
vector such that (G X G)i ) Gi

2. Pressure drops due to
fittings, especially tees, are incorporated as head losses
in the piping behind or ahead of the corresponding
fittings.

The procedure for observability analysis has three
main steps. The first step consists of finding what
observability and redundancy information can be ob-
tained from the mass balance equations. The second
step involves the energy balance equations and aims at
determining the observability and redundancy informa-
tion that can be obtained from these equations. Finally,
the third step combines the mass and energy balance
equations.

The only nonlinear term present in eq 6 is quadratic
in single variables (Gi

2). Therefore, in the observability
analysis involving the mechanical energy balance equa-
tion, one can treat Gi

2 as a new variable and perform
an observability analysis the same way as in linear
systems. Details of this procedure follow:

1. Construction of the Occurrence Matrix. Mass
balance equations are located in the upper side of the
matrix, and energy balance equations are below them.
Each row represents an equation, and each column
represents a variable. The matrix is constructed by
filling position (i,j) with the coefficient of the variable j
in the equation i or leaving it blank if that variable does
not appear in that particular equation. For quadratic
terms (Gi

2), the coefficients are ai, located on the
columns of their corresponding flow as follows

The procedure is illustrated using the system of
Figure 2, which is a straightforward gas gathering and
transportation system with nine streams, three split-
ters, and one mixer. The rectangles represent the
pipeline section to which the energy balances are
applied. The measured variables in this example are G1,
G2, G8, G9, P1, P2, P8, and P9, indicated by a star (f) in
the figure.

F1g(h1 - h2) + (p1 - p2) ) 1
2F1

ff(GA)2L
D

(2)

F1g(h1 - h2) + (p1 - p2) - 1
2F1

ff(GA)2L
D

) ∆ (3)

aG2 + (p1 - p2) + c ) ∆ (4)

a ) - 8
π2

ff

D4
1
F1

L
D

c ) F1g(h2 - h1)
(5)

M‚G ) 0 mass balances

A‚(G X G) + B‚P + c ) 0
mechanical energy balances

(6)

5598 Ind. Eng. Chem. Res., Vol. 42, No. 22, 2003



For this system, the occurrence matrix is as shown
in eq 8.

2. Rearrangement of the Occurrence Matrix. In
this step, measured variables are separated from un-
measured ones. The unmeasured flows are located first,
followed by the unmeasured pressures. Measured flows
are in the first columns, trailed by measured pressures
as shown in eq 9.

After the separation of the measured variables is
performed on the example of Figure 2, the occurrence
matrix is as given in eq 10.

3. Canonical Representation of the Mass Bal-
ance Subset. Following the procedure proposed by
Madron,1 Gauss-Jordan factorization is used to obtain
the largest possible identity square matrix in the upper
left corner of the subset. The scheme of the occurrence
matrix with the mass balance section in its canonical
form is as shown in eq 11.

The matrix in eq 12 is the canonical representation
of the mass balance subset for the system of Figure 2.

For this example, G3 and G7 become observable using
mass balances only.

4. Separation of Observable Variables. The col-
umns corresponding to the flows determined observable
using only mass balance equations are put together with
the measured variables. The set of measured and
observable flows is now called the set of “known
variables”. Finally, the rows corresponding to redundant
flows are moved to the bottom. The structure of the
resulting incidence matrix is presented in eq 13.

For the example, take the columns corresponding to
G3 and G7 to the right side of the occurrence matrix, as
indicated next in eq 14.

Figure 2. Gas gathering and transportation system.
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5. Observability Analysis on the Energy Balance
Equations. Gauss-Jordan factorization is used next
to obtain the canonical of the energy balances. The
resulting structure is

The whole occurrence matrix after this step is

For the example, the canonical form equivalent to eq
16 is

Three different pressures become observable using
energy balances. Notice that only pressures become
observable by using energy balances in this particular
example.

Next, the row with the submatrix ER is taken to the
bottom of the occurrence matrix to join the rest of the
redundant equations as follows

At this point, the maximum information about the
observability and redundancy of the system has been
obtained from the energy balances and mass balances
independently. The task now is to determine whether
some of the remaining unobservable variables can be
made observable by combining mass and energy bal-
ances.

6. Combination of Balances. The first two columns
in the matrix in eq 18 contain observable variables and
are therefore moved to the known variables set

which can be rearranged to give the following structure

The rows and columns corresponding to the matrices
EUO2, KUO, and ZUO represent the combined subset that
is analyzed in the next step of the procedure.

In the example, the matrix corresponding to eq 20 is

The procedure to solve the remaining nonlinear
system is presented next.

7. Solution of the Nonlinear System. A technique
based on the work of Steward7,8 is used to classify the
variables in the remaining nonlinear system. The
method consists of performing a partitioning of the
columns containing unmeasured variables of the occur-
rence matrix. It classifies unmeasured variables into
observable and unobservable and measured variables
into redundant and nonredundant.

Steward’s Algorithm-Acyclic Precedence Or-
dering.

(a) Convert the combined subset into the occurrence
matrix to be solved by filling position ij with an X if
variable j appears in equation i and leaving it blank
otherwise.

(b) Find a row containing only one entry. This entry
represents a removable 1 × 1 subset. If this subset is
allowable, remove it by deleting the row and column in
which occurs and place it in the first open row and
column in the reordered matrix. Enclose that entry in
a box to indicate that this equation is to be solved for
this flow. Repeat step 2 until no more entries can be
made in the reordered matrix.

(c) Find all undeleted rows with only two entries. If
two rows have their entries in the same two columns, a
removable 2 × 2 subset has been found. If that subset
is allowable, remove it from the occurrence matrix, place
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it in the next two open rows and columns of the
reordered matrix, and enclose it in a box. Repeat steps
2 and 3 until no more entries can be made in the
reordered matrix.

(d) Repeat step c replacing two by three, that is, find
all undeleted rows with only three entries check whether
they form a removable 3 × 3 subset. Repeat replacing
three by four, etc., until the rank of the largest allowable
subset is reached.

For the example of Figure 2, the converted occurrence
matrix is

Finally, the reordered matrix for the example is

Hence, G4 and PN3 become observable, whereas G5,
G6, P5, and P6 remain unobservable. These are the only
variables that remain unobservable after the application
of the entire proposed procedure. Using only mass
balances, just two variables would have become observ-
able, G3 and G7. This illustrates the advantage of using
mechanical energy balances as part of the model equa-
tions.

Redundant Set of Equations

The redundant set is composed of the equations that
include only measured variables after the occurrence
matrix is in its canonical form. In the case of mass
balances, the redundant equations can be expressed as

where Gr is a vector composed only of measured and
redundant flow rates. Another set of redundant equa-
tions comes from the subsystem of mechanical energy
balances. This set can be written as

where Pr is composed of only measured and redundant
pressures. GO is the vector of observable flows from
mass balances, and c* is the original vector c when
modified through all of the Gauss-Jordan factorization
operations. However, GO is expressed as a function of
measured flows

where Gnr is a vector composed of only nonredundant
measured flows.

Material and Energy Balance Data
Reconciliation

As described above, this is the data reconciliation
problem expressed in terms of the approximate model

The objective is to find the proper value of the vector
∆, the model error factor, so that the equation above is
satisfied for the estimates obtained by data reconcilia-
tion. The value of ∆ is assumed to be equal to zero for
the first iteration, and the constants a and c are not
updated in the iterative process. They are calculated
with the measurements and by using the process
simulator to obtain the pipe and flow characteristics.
For the rest of the iterations, the following formula is
used

where ∆P̃i is evaluated using the estimates obtained
from the data reconciliation and ∆Pi

/ using the process
simulator. However, using the approximation (Pi

/ -
Pout

/ ) ≈ (P̃in - Pout
/ ), eq 28 becomes

This scheme is similar to, but more efficient than
successive linearization, a very well-known technique
in optimization theory. Nevertheless, because the con-
straints are not convex, global optimality is not guar-
anteed, either in the scheme using rigorous expression
directly or in the case where the approximate model is
used iteratively. This issue cannot be resolved easily and
is left outside the scope of this paper.

The algorithm was implemented in MS Visual Basic.
The GAMS-MS Visual Basic Interface was used to solve
the nonlinear optimization and to find the estimates in
each iteration. No interface between PRO/II 5.55 and
MS Visual Basic exists that allows input values to be
entered into the flowsheet from Visual Basic. This was
done by hand. As a consequence, the comparison be-
tween the rigorous models and the approximate method
proposed in this paper was based on the calculation time
for each stage of the optimization process and not on
the interaction time among them.

The iterative process is terminated when the change
in ∆ becomes very small, that is, when (∆i - ∆i+1) eε,
with ε being a given small number. In the examples
presented in this paper, we used ε ) 0.01%. Two
different examples are presented next to illustrate the
use of the algorithm.

Example 1. Consider the flowsheet of Figure 2. Pure
methane at T ) 25 °C and P ) 25 atm is fed into the

ER‚Gr ) 0 (24)

KR‚(Gr X Gr) + ZR‚Pr + EOR‚(GO X GO) ) c* (25)

EOGO ) -EROGr - ENROGnr (26)

min{[G̃r - Gr
+]T‚Sf

-1‚[G̃r - Gr
+] +

[P̃r - Pr
+]T‚Sp

-1‚[P̃r - Pr
+]} (27)

s.t.

ER‚G̃r ) 0

KR‚(G̃r X G̃r) + ZR‚Pr + EOR‚(GO X GO) - c* ) ∆

EOGO ) -EROG̃r - ENROGnr

∆i+1 ) ∆P̃i - ∆Pi
/ + ∆i (28)

∆i+1 ) (Pout
/ )i - (P̃out)i + ∆i (29)
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pipes. The measured variables are the same as before
(G1, G2, G8, G9, P1, P2, P8, and P9). There is no elevation
change on the pipes. After the observability analysis is
performed, the redundant set of the system is

There are no elevation changes in the pipeline sec-
tions, that is, ci ) 0, ∀ i. Therefore, the data reconcili-
ation problem for each i iteration is

Pipe dimensions, pipe lengths, and internal diameters
are presented in Table 2.

The constants ci are equal to zero because there are
no elevation changes on the pipes. Measurement values
and the statistical data from the measurements are
given in Table 3. The algorithm required four iterations
to meet the termination criterion of |∆i - ∆i+1| < 0.01%.
The execution time on a Pentium III PC, 850 GHz, 128

Gb RAM computer was about 10 s. Iteration information
and results of the problem are summarized in Table 4,
with values in bold representing the final results of the
example.

Notice that, using only mass balances, there are no
redundant variables, and the estimates of the flows are
equal to the measured values. This leaves the system
without bias and leak detection capabilities.

Example 2: Cerro Fortunoso Field Case. Consider
the Cerro Fortunoso Field presented earlier in Figure
1.5 Inlets to the system are assumed to be pure methane
at T ) 25 °C. The flows of all inlet and outlet streams
are measured, as are the pressures of the inlet streams
of the system. There is no elevation change on the pipes.
The dimensions of the pipes assumed for the data
reconciliation are shown in Table 1, based on the stream
i.d.’s presented in Figure 1. Inlet pressures and flow rate
measurements are presented in Table 5.

The redundant set in this problem consists of 44
equations and is omitted here for simplicity. The
algorithm required five iterations to meet the termina-
tion criterion of |∆i - ∆i+1| < 0.01%. The execution time
on a Pentium III PC, 850 GHz, 128 Gb RAM computer
was about 40 s.

The results of the problem are summarized in Table
6. In this table, we compare the values obtained using
material and mechanical energy balances with those
obtained using material balances only. In this example,
Sout, perhaps the most important flow, is corrected to
give a reconciled flow that is 0.31% larger than the
measurement, whereas the combined material balance
and mechanical energy data reconciliation gives a value
that is 0.37% lower. The difference between one estima-
tor and the other is 0.68%. This is a significant differ-
ence that has a sizable economical impact in production
accounting. Finally, the errors of the model for each
iteration are shown in Table 7. All flows are redundant
in both cases. This example takes a total of 24 min and
34.92 s to be solved using the SIMSCI PRO/II process
simulator. Twenty-five iterations of approximately 59
s each are performed by PRO/II. Note that, although
the pressure drop in Table 6 has large deviations, these
deviations result from the difference of two pressures,

Table 2. Pipeline Dimensions and Constant Values for
Example 1

pipe
diameter

(mm)
length

(m) ai

1 477.82 10 000 -0.238
2 477.82 7500 -0.178
3 574.65 5000 -0.047
4 303.23 750 -0.203
5 202.72 300 -0.686
6 202.72 300 -0.686
7 381.00 2500 -0.208
8 202.72 600 -1.378
9 254.51 500 -0.350

Table 3. Measurements and Statistical Data for
Example 1

measurement
(kPa, kg/s)

standard dev
(kPa, kg/s)

variance
(kPa2, kg2/s2)

P1 2498.38 74.95 5618
P2 2576.55 77.30 5975
P8 2141.84 64.26 4129
P9 2139.06 64.17 4118

G1 19.66 0.59 0.348
G2 24.78 0.74 0.553
G8 7.46 0.22 0.050
G9 15.07 0.45 0.204

G3 ) G1 + G2

G7 ) G8 + G9

-a1G1
2 + a2G2

2 - P1 + P2 ) 0 (30)

a8G8
2 - a9G9

2 - P8 + P9 ) 0

a1G1
2 + a9G9

2 + P1 - P9 + a7G7
2 + a3G3

2 ) 0

Pi ) min{[G̃r,i - Gr
+]T‚SG

-1‚[G̃r,i - Gr
+] +

[P̃r,i - Pr
+]T‚SP

-1‚[P̃r,i - Pr
+]} (31)

s.t.

G̃3,i ) G̃1,i + G̃2,i

G̃7,i ) G̃8 + G̃9,i

-a1G̃1,i
2 + a2G̃2,i

2 - P̃1,i + P̃2,i ) ∆2,i - ∆1,i

a8G̃8,i
2 - a9G̃9,i

2 - P̃8,i + P̃9,i ) ∆8,i - ∆9,i

a1G̃1,i
2 + a9G̃9,i

2 + P̃1,i - P̃9,i + a7G̃7,i
2 + a3G̃3,i

2 )
∆9,i + ∆7,i + ∆1,i + ∆3,i

Table 4. Results of Example 1a

iteration number

0 1 2 3

P1 (kPa) 2470.591 2470.054 2470.047 2470.045
P2 (kPa) 2488.523 2487.849 2487.792 2487.794
P8 (kPa) 2183.518 2184.557 2184.618 2184.618
P9 (kPa) 2178.549 2178.371 2178.353 2178.353

G1 (kg/s) 19.705 19.705 19.705 19.705
G2 (kg/s) 24.898 24.899 24.899 24.899
G8 (kg/s) 7.459 7.459 7.459 7.459
G9 (kg/s) 15.130 15.131 15.131 15.131

∆P1 (GAMS) 92.29 94.78 94.80 94.80
∆P2 (GAMS) 110.23 112.34 112.37 112.38
∆P8 (GAMS) 76.68 75.28 75.29 75.29
∆P9 (GAMS) 80.18 78.94 78.99 78.99

∆P1 (PRO/II) 94.78 94.80 94.80 94.80
∆P2 (PRO/II) 112.33 112.37 112.38 112.38
∆P8 (PRO/II) 75.28 75.29 75.29 75.29
∆P9 (PRO/II) 78.93 78.99 78.99 78.99

∆1 (kPa) 0 2.489 2.512 2.512 2.512
∆2 (kPa) 0 2.105 2.137 2.140 2.140
∆8 (kPa) 0 -1.398 -1.385 -1.388 -1.388
∆9 (kPa) 0 -1.256 -1.201 -1.202 -1.202

a Values in bold indicate the final results of the example.
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estimators that are, in turn, well within the standard
deviation of the measurements.

As the problem size increases, the number of itera-
tions also increases for both rigorous and approximate
approaches. Nevertheless, the time per iteration does
not increase much in the case of the approximate models
because of the low level of nonlinearity of the problem.
Indeed, when only the first branch of the Fortunoso
Field Case is taken into account (streams S1-S10, see
Figure 1), the data reconciliation problem (with the
same characteristics as example 2) takes approximately
40 s to converge with the proposed methodology. In
contrast, it takes almost 10 min for the process simula-
tor to solve the optimization problem (same PC as

before). Therefore, in larger cases, the rigorous model
approach is still less effective than the one proposed
here.

Precision of Estimates

Once the data reconciliation algorithm is completed,
it is desirable to know the precision of the estimators
obtained. Because the relationship between estimators
and measurements is nonlinear (through the iterative
model), the classical relationship used for linear systems
no longer applies.

One way to find the precision of estimates is by
linearization. Assuming that the measurements (x)

Table 5. Pipe Dimensions and Measurements for Example #2

measurement
(kPa)

standard
dev (kPa)

variance
(kPa2)

measurement
(kg/s)

standard
dev (kg/s)

variance
(kg2/s2)

P1 3028 76 5731 G1 1.1860 0.0297 0.000 879
P2 3039 76 5773 G2 2.1960 0.0549 0.003 014
P3 3021 76 5702 G3 0.8680 0.0217 0.000 471
P4 3060 76 5852 G4 2.2270 0.0557 0.003 100
P5 3018 75 5692 G5 1.4250 0.0356 0.001 269
P6 3005 75 5643 G6 0.5720 0.0143 0.000 204
P7 3019 75 5695 G7 0.7610 0.0190 0.000 362
P8 3005 75 5643 G8 0.3700 0.0093 0.000 086
P9 2992 75 5596 G9 0.1930 0.0048 0.000 023
P10 3010 75 5661 G10 0.7500 0.0188 0.000 352
P11 3124 78 6100 G11 1.7089 0.0427 0.001 825
P12 3549 89 7872 G12 1.7767 0.0444 0.001 973
P13 3224 81 6497 G13 1.7545 0.0439 0.001 924
P14 3209 80 6437 G14 1.8525 0.0463 0.002 145
P15 3164 79 6256 G15 1.6707 0.0418 0.001 745
P16 3089 77 5963 G16 1.0817 0.0270 0.000 731
P17 2981 75 5553 G17 1.0364 0.0259 0.000 671
P18 2985 75 5567 G18 1.2048 0.0301 0.000 907
P19 3184 80 6337 G19 0.3828 0.0096 0.000 092
P20 3456 86 7466 G20 0.6353 0.0159 0.000 252
P21 3377 84 7128 G21 0.2566 0.0064 0.000 041
P22 3534 88 7808 G22 1.3777 0.0344 0.001 186
P23 3487 87 7599 G23 0.0727 0.0018 0.000 003
P24 3410 85 7270 G24 0.4614 0.0115 0.000 133
P25 3029 76 5734 G25 0.4549 0.0114 0.000 129

Gout 26.1910 0.6569 0.431 507

Table 6. Results of Example 2

flow rate (kg/s)
pressure (kPa)

stream measurement estimate measurement estimators
estimators

(material balance only)

1 3076 2812 1.186 1.168 1.186
2 3440 2810 2.196 2.133 2.195
3 3084 2820 0.868 0.858 0.868
4 3466 2836 2.227 2.167 2.226
5 3219 2871 1.425 1.403 1.425
6 2910 2930 0.572 0.569 0.572
7 3001 2997 0.761 0.757 0.761
8 2904 3078 0.370 0.369 0.370
9 2772 3166 0.193 0.193 0.193
10 3011 3256 0.750 0.749 0.750
11 3114 3161 1.709 1.708 1.709
12 3479 3165 1.777 1.775 1.776
13 3233 3171 1.754 1.754 1.754
14 3145 3171 1.853 1.852 1.852
15 3194 3171 1.671 1.670 1.670
16 3062 3246 1.082 1.082 1.082
17 2963 3245 1.036 1.037 1.036
18 2928 3357 1.205 1.206 1.205
19 3204 3371 0.383 0.383 0.383
20 3540 3373 0.635 0.636 0.635
21 3331 3368 0.257 0.257 0.257
22 3558 3363 1.378 1.379 1.377
23 3464 3356 0.073 0.073 0.073
24 3371 3336 0.461 0.462 0.461
25 2963 3333 0.455 0.455 0.455
out - - - - 26.191 26.094 26.271
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are related to the estimates (z) by some nonlinear
function z ) f(x), then linearization gives z ≈ f(x0) +
f′(x0)(x - x0). Then, the standard linear approach can
be applied to the linearized z to obtain the precision of
the estimates. Nevertheless, this method involves the
error of truncating the Taylor series. Thus, instead of
using linearization, a sufficient number of measurement
samples is taken and used to obtain the corresponding
group of estimators from which the precision and
variance is obtained. An example illustrating the pro-
cess is presented next.

Example 3. Consider example 1 with the same
characteristics and requirements. Two groups of mea-
surement samples were generated, one with 10 samples
and one with 15 samples. The samples were obtained
with a normal distribution random number generator
assuming 3% error in the measurements and a mean
equal to the “true value” of the variable. The mean
values and standard deviations of variables are pre-
sented in Table 8.

The results for both sample groups are presented in
Table 9. First, it can be verified that the estimates
(<2.7%) are more precise than the measurements (3%),
as predicted by statistics theory. Second, when going
from 10 to 15 samples, the results are similar, although
still fluctuating. Hence, although a large number of
measurements is needed to obtain more stable values
for the precision of the estimators, one can obtain a good
idea by using a relatively small number of samples. In
addition, because the precision of the instruments does

not change in time, for a given system, such a study
has to be done only periodically (when the precision of
the instruments change), but not associated with each
data reconciliation.

Use of Temperature Measurements

Even though temperature cannot be made redundant
using the proposed model, there are many temperature
measurements along the pipelines, and those measure-
ments have certain errors, which affect the accuracy of
the estimators. Errors in temperature measurements
have a weak effect on the data reconciliation of pipeline
systems. Indeed, consider eq 4. Temperature has an
effect on parameters a and c through the density.
Assume that we have an error of two standard devia-
tions in the measured temperature. This allows us to
rewrite eq 4 as

where T* is the true value of temperature, εT is the error
in the temperature measurement, a(T*+εT) and c(T*+εT)
are the corresponding model parameters a and c calcu-
lated at T ) T* + εT, GT and pT are the corresponding
reconciled values for a different temperature, and ∆T is
the corresponding error. Expanding the terms a(T*+εT)
and c(T*+εT) using Taylor series, we rewrite eq 32 as

Thus

where ∆′(T*) ) a(T*)GT
2 + c(T*). We notice that, in the

case where (∂∆′/∂T*)εT , ∆, that is, when the correction
to the equation due to changes in temperature is
negligible, we can also expect GT ≈ G and pT ≈ p.
However, when (∂∆′/∂T*)εT is not negligible compared
to ∆, then an effect of temperature is seen. Whether this
will affect the flows more than the pressures or both
equally depends on the relative weights in the objective
function (precision of measurements). It would be nice
to have better tests that would indicate whether tem-
peratures are an issue. Nevertheless, in practice, after
reconciliation is completed, one can simply check the
effect of temperatures by repeating the run for other
temperatures, as in the example below, which illustrates
a case in which temperature errors have a negligible
effect in reconciled flows.

Table 7. Model Errors for Example 2

iteration numbermodel error
(kPa) 0 1 2 3 4 5

∆1 0 3.414 3.381 3.382 3.367 3.367
∆2 0 4.482 4.412 4.421 4.400 4.401
∆3 0 2.591 2.571 2.576 2.559 2.560
∆4 0 6.042 5.901 5.915 5.886 5.887
∆5 0 1.756 1.749 1.754 1.739 1.739
∆6 0 0.518 0.522 0.525 0.516 0.516
∆7 0 0.228 0.238 0.242 0.227 0.227
∆8 0 -0.515 -0.505 -0.503 -0.511 -0.511
∆9 0 -0.412 -0.409 -0.408 -0.411 -0.411
∆10 0 -2.005 -1.983 -1.980 -1.990 -1.990
∆11 0 -0.517 -0.499 -0.493 -0.512 -0.511
∆12 0 3.837 3.804 3.809 3.793 3.794
∆13 0 0.669 0.671 0.677 0.659 0.659
∆14 0 0.647 0.652 0.659 0.633 0.634
∆15 0 -0.109 -0.095 -0.090 -0.109 -0.108
∆16 0 -2.481 -2.432 -2.426 -2.447 -2.446
∆17 0 -3.511 -3.459 -3.454 -3.471 -3.471
∆18 0 -9.054 -8.845 -8.841 -8.871 -8.870
∆19 0 -2.036 -2.006 -2.002 -2.017 -2.016
∆20 0 0.345 0.347 0.349 0.343 0.343
∆21 0 0.024 0.027 0.029 0.024 0.024
∆22 0 1.391 1.386 1.390 1.378 1.378
∆23 0 0.123 0.124 0.124 0.122 0.123
∆24 0 0.176 0.178 0.179 0.175 0.175
∆25 0 18.846 27.802 -3.255 -2.993 -2.995
∆out 0 -1.315 -1.295 -1.297 -1.292 -1.292

Table 8. Parameters for Measurement Samples

mean σ

P1 (kPa) 2533.13 75.99
P2 (kPa) 2533.13 75.99
P8 (kPa) 2143.58 64.31
P9 (kPa) 2142.17 64.26

G1 (kg/s) 20.00 0.600
G2 (kg/s) 25.00 0.750
G8 (kg/s) 7.50 0.225
G9 (kg/s) 15.00 0.450

Table 9. Precision of Estimates for Different Sample
Group Sizes

10 samples 15 samples

average σ (%) average σ (%)

P1 (kPa) 2470.88 1.371 2482.85 1.400
P2 (kPa) 2492.05 1.458 2502.83 1.482
P8 (kPa) 2188.09 1.628 2194.58 1.503
P9 (kPa) 2179.11 1.650 2187.12 1.566

G1 (kg/s) 19.67 2.527 19.87 2.665
G2 (kg/s) 25.27 2.118 25.33 2.701
G8 (kg/s) 7.51 2.138 7.52 1.985
G9 (kg/s) 14.97 2.616 15.07 2.518

a(T*+εT)GT
2 + (pT,1 - pT,2) + c(T*+εT) ) ∆T (32)

a(T*)GT
2 + (pT,1 - pT,2) + c(T*) ≈

∆T - [ ∂a
∂T*

GT
2 + ∂c

∂T*]εT (33)

∆T ) ∆ + ∂∆′
∂T*

εT (34)
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Example 4. Consider example 1 with the same
characteristics and requirements. Two different cases
are studied here, one with a 2.5% standard deviation
in temperature measurements and one with a 7.5%
standard deviation. The temperature measurements
used for the numerical experiment are presented in
Table 10.

For this case, the effect of gross errors in temperature
measurements is summarized in Table 11. These results
indicate that temperature measurements have a moder-
ate effect on the model errors, as indicated by Table 12.
However, in this example, the reconciled values of flows
obtained with the proposed iteration procedure are not
significantly altered by gross errors in temperature
measurements, as discussed below in detail. We leave
a more detailed investigation of this issue for future
work.

The results presented in Table 11 show that gross
errors in temperature measurements as large as 7.5%
do not significantly distress the outcome of the proposed
iterative process. The changes in the reconciled values
are no larger than 0.02% for any of the redundant
variables. It can also be noticed that there is no sig-
nificant increase in the inaccuracy of the model when
going from a 2.5 to a 7.5% deviation in the temperature
measurements; it is equally irrelevant in both cases.
Thus, very large gross errors in temperature measure-
ments are needed to generate noticeable effects in the
results of the data reconciliation scheme proposed.

Conclusions

In this paper, mechanical energy balances in an
approximate form are used as model equations in
addition to mass balances for data reconciliation in
pipeline systems. An observability analysis based on the
use of both material balances and mechanical energy
equations is proposed. It is shown that the use of energy

equations increases the amount of redundant and
observable variables. An iterative process to solve the
data reconciliation problem is proposed to account for
the error of the approximate model. It is revealed that
using approximate models for the mechanical energy
equations reduces the execution time for the data
reconciliation problem. Finally, the effect of gross errors
in temperature on the data reconciliation process is
studied, revealing that this effect is insignificant for
gross errors of 10% or lower.
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Nomenclature

a ) flow rate coefficient in the model
A ) internal pipe area
c ) independent term coefficient in the model
D, d ) pipe internal diameter
ε ) termination criterioncriteria for iteration process
ff ) friction factor
δF ) friction energy loss differential
g ) gravity constant ()9.8 m/s2m2/sec)
G ) flow rate
GT, PT ) reconciled values of flow rate and pressure,

respectively, for temperature T
G̃, P̃ ) flow rate estimate, pressure estimate
G+, P+ ) flow rate measurement, pressure measurement
h ) pipe elevation of the pipe
L ) pipe length
Mi ) measurement sample
P, p ) fluid pressure
R ) universal gas constant [)8.314 51 J/(gmol K)]
Re ) Reynolds number
SG ) variance matrix of flow rates
SP ) variance matrix of pressures
T ) fluid temperature
T* ) true fluid temperature
V ) fluid velocity
δW ) work differential
x ) vector of measurements
z ) gas compressibility factor
z ) vector of estimators
εT ) gross error in temperature measurements
κR ) nondimensional threshold value for the error resil-

ience
F ) fluid density
∆ ) model error
∆T ) model error when temperature measurements are

included

Appendix: Mechanical Energy Balance
Equation

The mechanical energy balance on a differential pipe
length is

No work is done by the pipeline against the surround-
ings or by the surroundings against the pipeline; thus,
the work term can be disregarded. Multiplying both
sides of eq A1 by the density squared gives

Table 10. Temperature (°C) Measurements for Example 4

stream original case 2.5% std dev 7.5% std dev

S1 25.00 25.67 23.07
S2 25.00 24.43 23.12
S8 25.00 25.58 26.75
S9 25.00 24.40 26.82

Table 11. Comparison of the Outcome of the Algorithm
for Different Temperature Measurement Errors

temperature standard deviation

0% 2.5% 7.5%

P1 (kPa) 2470.045 2469.526 2469.925
P2 (kPa) 2487.794 2487.601 2487.607
P8 (kPa) 2184.618 2185.127 2184.841
P9 (kPa) 2178.353 2178.360 2178.348

G1 (kg/s) 19.705 19.706 19.706
G2 (kg/s) 24.899 24.899 24.899
G8 (kg/s) 7.459 7.459 7.459
G9 (kg/s) 15.131 15.131 15.131

Table 12. Effect of Temperature Measurements on Model
Errors

εT (°C) (∂∆/∂T)*εT (kPa)

pipe
∂∆/∂T

(kPa/°C) 2.5% 7.5% 2.5% 7.5%
∆

(kPa)

1 -0.377 0.670 -1.930 -0.253 0.728 2.512
2 -0.434 -0.570 -1.880 0.247 0.816 2.14
8 -0.317 0.580 1.750 -0.184 -0.554 -1.388
9 -0.274 -0.600 1.820 0.164 -0.499 -1.202

g dh + dp
F

+ V dV + δW + δF ) 0 (A1)

F2g dh + F dp + F2V dV + F2 δF ) 0 (A2)
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However V ) G/FA and

Therefore, eq A2 becomes

Using the gas law p ) zFRT, one obtains

Equation A5 can be integrated along a defined section
of a pipe to obtain the integral form of the mechanical
energy balance. A different expression is found depend-
ing on the type of assumptions made. The particular
case of natural gas pipelines is a compressible gas
flowing at velocities mostly below 50 m/s, which are
considered low velocities. For low-velocity compressible
gas flow, the pressure loss causes a slow density change.
In addition, it can also be shown that, in the absence of
large heat losses (that is, assuming that the flow is
adiabatic), this type of flow is almost isothermal.
Therefore, one approximation is to assume that the
temperature is constant. Next, elevation changes are
neglected. Thus, one obtains

This expression is implicit for p2, and therefore, if p1 is
known, then numerical methods are needed to solve
for p2.

Simpler expressions of similar accuracy can be ob-
tained. For instance, the error caused by neglecting the
kinetic energy change due to expansion (V dV) is always
lower than 1% for pressure drops lower than 40% of the
inlet pressure, i.e., ∆P/Pin < 0.4.9 Indeed, for natural
gas at a temperature of 20 °C and a velocity of 50 m/s,
the error is about 1.2%. For superheated steam at
400 °C and 50 m/s, it is 0.83%. Then, the integration of
A5 gives

which is explicit.
When the elevation change in the pipeline is consid-

erable, gravity effects must be taken into account. Then,
if the acceleration term V dV is neglected, from eq A5,
one obtains (after some omitted intermediate steps)

where R is the angle of elevation of the pipe.
The error generated by using eq A7 or A8 is less than

1% for pressure drops lower than 40% of the inlet
pressure, i.e., for ∆P/Pin < 0.4. The problem with these
formulations is their level of nonlinearity.

Finally, if one assumes incompressible flow and
neglects the kinetic energy change due to expansion, the
integration of eq A5 gives

Equation A9 generates errors smaller than 10% for
∆P/Pin < 0.3, which is worse than those obtained using
eq A7, but the nonlinearity in pressures is eliminated.

To perform the data reconciliation, eq A9 is used. To
account for the error of this model, a term ∆ is
introduced into the equation

The correction term ∆ is calculated through an iterative
process during the data reconciliation scheme, which is
explained in detail in the Material and Energy Balance
Reconciliation section of this paper.

We rewrite eq A10 as follows

where

and

Flow rates and pressures are considered to be the only
variables of eq A11. All other variables are considered
to be known and constant during each data reconcilia-
tion step. To calculate the friction factor, ff, a variety of
expressions can be used, e.g., Prandtl formula.6
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δF ) - ff
V 2

2
dL
D

) - 1
2
ff[ G

FA]2 dL
D

(A3)

F2g dh + F dp + (GA)2
F d(1F) - 1

2
ff(GA)2 dL

D
) 0 (A4)

F2g dh + p
zRT

dp + (GA)2
F d(zRT

p ) - 1
2
ff(GA)2 dL

D
) 0

(A5)

(p1
2 - p2

2) - 2(GA)2p1

F1
ln(p1

p2
) - ff(GA)2p1

F1

L
D

) 0 (A6)

(p1
2 - p2

2) ) ff(GA)2p1

F1

L
D

(A7)

(p2

p1
)2

) [1 -
ff

2Dg sin R( G
F1A)2] ×

exp(-
2LF1g sin R

p1
) -

ff

2Dg sin R( G
F1A)2

(A8)

F1g(h1 - h2) + (p1 - p2) ) 1
2F1

ff(GA)2L
D

(A9)

F1g(h1 - h2) + (p1 - p2) - 1
2F1

ff(GA)2L
D

) ∆ (A10)

aG2 + (P1 - P2) + c ) ∆ (A11)

a ) - 8
π2

ff

D4
1
F1

L
D

(A12)

c ) F1g(h2 - h1) (A13)
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