TOOLS FOR CHEMICAL PRODUCT DESIGN
FROM CONSUMER PRODUCTS TO BIOMEDICINE

Edited by
MARIANO MARTÍN
MARIO R. EDEN
NISHANTH G. CHEMMANGATTUVALAPPIL

COMPUTER-AIDED CHEMICAL ENGINEERING, 39
Contents

List of Contributors xvii

Section I
Basic Concepts and General Tools

1. Mathematical Principles of Chemical Product Design and Strategies 3
 L.Y. Ng, N.G. Chemmangattuvalappil, V.A. Dev, M.R. Eden
 1. Introduction 3
 2. Chemical Product Design Strategies 5
 2.1. Initial Efforts 5
 2.2. Design of Experiment and Mixture Design of Experiments 5
 2.3. Computer-Aided Molecular Design 8
 2.4. Molecular Signature Descriptors 13
 2.5. Enumeration Approach 14
 2.6. Mathematical Programming Approaches 16
 2.7. Metaheuristic Approaches 20
 2.8. Decomposition-Based Approaches 24
 2.9. Multiobjective Chemical Product Design 25
 2.10. Chemical Product Design Under Property Prediction Uncertainty 34
 3. Conclusions and Future Directions 36
 References 37

2. Integrated Consumer Preferences and Price/Demand-Driven Product Design: An Alternative to Stage-Gate Procedures 45
 M. Bagajewicz
 1. Introduction 45
 2. Product Design Integrated Model 46
 3. Consumer Satisfaction Score 48
 4. Consumer Preference Model 52
 5. Manufacturing and Distribution Costs 52
 6. Price–Demand Consumer Model 53
7. Profit Model and Optimization
8. Competitive Markets
9. Conclusions
References

3. VPPD-Lab: The Chemical Product Simulator

S. Kalakul, S. Cignitti, L. Zhang, R. Gani

1. Introduction
2. Systematic Framework for Chemical Product Design
 2.1. Modeling Module
 2.2. Product Design Module
 2.3. Product Analysis
 2.4. New Product Template
3. VPPD-Lab Software Implementation
4. VPPD-Lab Application Examples
 4.1. Stability Check of Solvent Mixtures
 4.2. Design of a Lubricant Blend
 4.3. Design of a Jet Fuel Blend
 4.4. Design of an Insect Repellent Lotion
5. Conclusion
References

4. Development of a Multiscale Strategy and Application to Chemical Vapor Deposition

L.E.K. Achenie, Y. Sharifi, D.G. Lee

1. Introduction
 1.1. Background
 1.2. Multiscale Modeling
2. Global Optimization of the Substrate Geometry in Zinc Sulfide Deposition
 2.1. Multipoints Arbitrary Shape Design Model
 2.2. Genetic Algorithms
 2.3. Multiobjective Optimization
 2.4. Multiobjective Genetic Algorithms
 2.5. Implementation of a Genetic Algorithm in Shape Design
 2.6. Results and Discussion
 2.7. Summary
3. Chemical Vapor Deposition Modeling Using Agent-Based Simulation
 3.1. Modeling
 3.2. Agent-Based Modeling in NetLogo
 3.3. Results and Discussions
 3.4. Summary
4. Conclusions (Overall)
References
5. Molecular Property Clustering Techniques

F. Eljack

1. Introduction 125
 1.1. Molecular Design 125
 1.2. Property Prediction and Group Contribution Methods 127
2. Property Integration 128
 2.1. Property Integration for Process Design 128
 2.2. Property Clusters and Group Contribution Methods 129
3. Visual Molecular Clustering Design Approach 129
 3.1. Conservation Rules for Molecular Property Clusters 131
 3.2. Graphical Representation of the Molecular Design Problem 132
 3.3. Example: Solvent Design 134
4. Algebraic Property Clustering Technique for Molecular Design 140
 4.1. Problem Statement 140
 4.2. Algebraic Property Clustering Method 140
 4.3. Proof of Concept: Algebraic Property Clustering Method 142
5. Conclusions 147

References 147

Section II
Molecular Design

R. Gani, L. Zhang, S. Kalakul, S. Cignitti

1. Introduction 153
2. Molecular Design: Problem Formulation 156
 2.1. Structural Constraints 157
 2.2. Property Constraints 159
 2.3. Process Model and Other Constraints 167
3. Molecular Design: Solution Methods 167
 3.1. Heuristic or Rule-Based Techniques 168
 3.2. Mathematical Programming Techniques 168
 3.3. Hybrid Techniques 169
 4.1. Step 1: Problem Definition 170
 4.2. Step 2: Computer-Aided Molecular Design Constraint Selection 172
 4.3. Step 3: Computer-Aided Molecular Design Formulation 173
 4.4. Step 4: Solution Strategy 173
5. Case Studies 177
 5.1. Refrigerant Design 177
 5.2. Surfactant Design as Emulsifier for Emulsified Ultraviolet Sunscreen 182
 5.3. Other Application Examples 185
6. Future Challenges and Concluding Remarks 186
Appendices 186
 Appendix A: List of Marrero and Gani (2001) First-Order Groups 186
 Appendix B: Refrigerant Design Computer-Aided Molecular Design Formulation 188
References 193

7. The Incorporation of Safety and Health Aspects as Design Criteria in a Novel Chemical Product Design Framework 197
J.Y. Ten, M.H. Hassim, D.K.S. Ng, N.G. Chemmangattuvalappil
1. Introduction 197
2. Computer-Aided Molecular Design 199
3. Integration of Inherent Safety and Health in a Computer-Aided Molecular Design Framework 201
 3.1. Problem Formulation 201
 3.2. Inherent Safety and Occupational Health Indexes Selection 201
 3.3. Model Development 206
 3.4. Molecular Design 208
 3.5. Multiple-Objective Optimization 209
4. Case Study: Solvent Design for Gas Sweetening Process 210
 4.1. Case Study: Problem Formulation 211
 4.2. Case Study: Fuzzy Optimization 213
5. Conclusions 216
References 218

8. Molecular Design in the Pharmaceutical Industries 221
K. Boone, F. Abedin, M.R. Anwar, K.V. Camarda
1. Introduction 221
2. General Concepts in Pharmaceutical Product Design 222
3. Design and Development of the Active Pharmaceutical Ingredient 223
 3.1. Overview 223
 3.2. Ligand Screening 225
 3.3. Structure-Based Drug Design 225
 3.4. Receptor-Based Approaches 226
 3.5. Ligand-Based Approaches 226
3. Integration of Molecular and Process Design With Process Operability Decisions 283
 3.1. Motivation 283
 3.2. Proposed Framework 284
 3.3. Application to Organic Rankine Cycles 287

4. Utilization of Advanced Grid and Cloud Computing Resources 294
 4.1. Motivation 294
 4.2. Existing Infrastructures and Challenges in the Deployment of Computer-Aided Process Engineering Tools 296
 4.3. Proposed Software-as-a-Service Architecture 297
 4.4. Workflows for Integrated Molecular and Process Design 298
 4.5. Implementation of Workflows 301

5. Conclusions 306

References 307

11. The Signature Molecular Descriptor in Molecular Design: Past and Current Applications 315

D.P. Visco, Jr., J.J. Chen

1. Molecular Descriptors 315
2. Introduction to Signature Molecular Descriptor 316
3. Advantages of Signature 319
 3.1. Advantages of Signature: Complete Documentation of Atomic Topography 319
 3.2. Advantages of Signature: Canonical Representation of Molecule 320
 3.3. Advantages of Signature: Tunable Specificity/Degeneracy 320
 3.4. Advantages of Signature: Efficiently Combine Atomic Signatures to Form New Structures 320

4. Applications of Signature 321
 4.1. Applications of Signature: QSARs 321
 4.2. Applications of Signature: QSAR/QSPR and Molecular Design 322
 4.3. Applications of Signature: QSAR/QSPR, Molecular Design, and Experimental Validation 323
 4.4. Applications of Signature: QSAR/QSPR and Classification 323
 4.5. Applications of Signature: Inclusion in Biological Software 324
 4.6. Applications of Signature: Industrial Bioreaction Pathway Design 324
 4.7. Applications of Signature: Signature as a 3D Molecular Descriptor 325
<table>
<thead>
<tr>
<th>Section III</th>
<th>Customer Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.</td>
<td>Integrated Process and Product Design Optimization</td>
</tr>
<tr>
<td></td>
<td>F.P. Bernardo</td>
</tr>
<tr>
<td>1.</td>
<td>Introduction</td>
</tr>
<tr>
<td>2.</td>
<td>Conceptual Model</td>
</tr>
<tr>
<td>2.1.</td>
<td>Decomposition of the Property Function for Product Operational Properties</td>
</tr>
<tr>
<td>2.2.</td>
<td>Basic Formulation of Product Design Problems</td>
</tr>
<tr>
<td>3.</td>
<td>Optimization Formulations for Product/Process Design</td>
</tr>
<tr>
<td>3.1.</td>
<td>Two-Stage Approach to Invert the Property Function</td>
</tr>
<tr>
<td>3.2.</td>
<td>Integrated Product/Process Design</td>
</tr>
<tr>
<td>3.3.</td>
<td>Computational Implementation</td>
</tr>
<tr>
<td>4.</td>
<td>Examples</td>
</tr>
<tr>
<td>4.1.</td>
<td>Perfumes</td>
</tr>
<tr>
<td>4.2.</td>
<td>A Cosmetic Emulsion</td>
</tr>
<tr>
<td>4.3.</td>
<td>Formulation of a Pharmaceutical Ointment</td>
</tr>
<tr>
<td>5.</td>
<td>Conclusions</td>
</tr>
</tbody>
</table>

13.	Tools for Formulated Product Design
	M. Martín, A. Martínez
1.	Introduction: Formulated Products and Raw Materials
2.	Mathematical Formulations
2.1.	Pooling Problem
2.2.	Chemical Process Design
3.	Cases of Study
3.1.	Formulated Product Design: Laundry Detergents
3.2.	Formulated Raw Materials: Algae Design
4.	Conclusions

References

373
14. Simulation-Based Food Process Design

T.E. Moxon, S. Bakalis

1. Introduction 393
2. Stomach 396
 2.1. Gastric Emptying Rate 397
 2.2. Gastric Secretions 399
 2.3. Gastric Breakup 401
3. Small Intestine 404
 3.1. Mass Transfer Phenomena 404
4. Conclusion 411
References 412

15. A Structured Approach for Product-Driven Process Synthesis in Foods Manufacture

C. Almeida-Rivera, P. Bongers, E. Zondervan

1. Introduction 417
2. Process Synthesis in the Food Industry 420
3. A Product-Driven Process Synthesis Approach 422
 3.1. Generalities 422
 3.2. Structure of the Methodology 424
4. Case Study: Synthesis of Ice Cream by Cold Extrusion 429
 4.1. Framing Level 429
 4.2. Consumer Wants and Product Function 432
 4.3. Input–Output Level 437
 4.4. Task Network 437
 4.5. Equipment Selection and Design 438
5. Conclusions 438
References 439

L.J. Zeballos, C.A. Méndez

1. Introduction 443
2. Literature Review 445
3. Problem Description 446
4. Problem Formulation 447
5. Example 452
6. Results 452
 6.1. Sensitivity Analysis Study 456
7. Conclusions 461
Appendix A 461
Appendix B 465
Acknowledgments 473
References 473
17. Optimization of Blending-Based Products 475
 N.A. Yunus, Z.A. Manan
 1. Introduction 475
 2. Designing Liquid Blended Products 475
 3. Solution Approach: Optimization 477
 4. A Case Study: Gasoline Blends 478
 4.1. Problem Definition 478
 4.2. Problem Formulation 479
 4.3. Solution Strategy 480
 4.4. Results and Discussion 482
 5. Conclusions 485
 References 485

18. Decomposition-Based Optimization of Tailor-Made Green Diesel Blends 487
 L.Y. Phoon, H. Hashim, R. Mat, A.A. Mustaffa
 1. Introduction 487
 2. Tailor-Made Green Diesel Blend Design Algorithm 488
 2.1. Phase 1: Problem Formulation 488
 2.2. Phase 2: Decomposition-Based Computer-Aided Optimization 492
 2.3. Phase 3: Fuel Enhancement 495
 2.4. Phase 4: Experimental Validation 496
 3. Application 496
 3.1. Phase 1, Task 1.1: Problem Definition of Tailor-Made Green Diesel Blends 496
 3.2. Phase 1, Task 1.2: The Property Models 497
 3.3. Phase 2, Task 2.1: The Feasible Blends Candidates 499
 3.4. Phase 2, Task 2.2: The Feasible Blends 500
 3.5. Phase 2, Task 2.3: The Optimum Green Diesel Blends 501
 3.6. Phase 3, Task 3.1: The Fuel Additives 501
 4. Results and Discussions 503
 5. Conclusions 504
 Acknowledgments 504
 References 505

Section IV
Design of Structured Products

 C. Amador, L. Martin de Juan
 1. Relevance of Structured Particle Products in Industry 509
 2. Scales of Structured Particle Product 511
2.1. Spray-Dried Detergent Particles 512
2.2. Spray-Dried Milk Powder 514

3. Supramolecular Structure 515
 3.1. Crystalline and Amorphous Structure Phase Composition 515
 3.2. Water Activity (a_w) 521
 3.3. Thermal Phase Transitions 523
 3.4. Mechanical Properties, Viscoelasticity, and Rheology 527
 3.5. Particle Size Distribution (PSD) 529

4. Particle Structure 532
 4.1. Volume Fraction and Size Distribution of the Domains That Constitute the Particle Structure 535
 4.2. Spatial Distribution of the Domains that Constitute the Particle Structure 538
 4.3. Porosity and Pore Size Distribution 540
 4.4. Specific Surface Area 541
 4.5. Surface Energy 542
 4.6. Surface Forces 542
 4.7. Surface Roughness 543
 4.8. Formation of Particle Structure During Drying 544
 4.9. Modeling of Particle Structure During Drying 546

5. Mesostructure 549
 5.1. Size and Shape Distribution of Each of the Different Particulate Components 550
 5.2. Contact Points 555
 5.3. Particle Spatial Distribution 557
 5.4. Liquid Spatial Distribution 559
 5.5. Particle Packing 560
 5.6. Permeability and Wetting 561
 5.7. Bulk Flow Properties 562
 5.8. Compaction Curves: Elastic and Plastic Deformation of Particle Systems 565
 5.9. Particle Attrition 566

6. The Grand Challenge on Structured Particle Product Design: An Integrated Approach 569
 6.1. Modeling Approach on Structured Particle Product Design 570

References 572

Section V
Biomedicine

20. Computational Tools for the Study of Biomolecules 583
 P.G. Jambrina, J. Aldegunde

 1. Introduction 583
 1.1. The Ideal Scenario: Quantum Mechanical Treatment 584
2. Energy Calculations for Molecules 587
 2.1. Ab-Initio Methods 587
 2.2. Density Functional Theory (DFT) 597
 2.3. Semiempirical Methods 603
 2.4. Force Fields 607
 2.5. Hybrid Methods: Quantum Mechanics/Molecular Mechanics 618
 2.6. Beyond Atomistic Simulations: Coarse-Grained Methods 624
3. Preparing a Molecular Dynamics Simulation 625
 3.1. Experimental (Crystal) Structures 626
 3.2. Homology Modeling 629
 3.3. Docking 630
4. Dynamics Simulations 631
 4.1. Purely Quantum Mechanical Techniques 631
 4.2. Classical Trajectories 632
 4.3. Nonadiabatic Processes 633
 4.4. Canonical Molecular Dynamics Simulations 634
 4.5. Enhanced Sampling Methods 637
5. Conclusions 641
Acknowledgments 642
References 642

21. Walk-In Brain: Virtual Reality Environment for Immersive Exploration and Simulation of Brain Metabolism and Function 649

G. Hartung, A. Alaraj, A. Linninger

1. Summary 649
2. Medical Images 651
 2.1. Overview 651
 2.2. Three-Dimensional Brain Imaging Modalities 652
 2.3. Extracting Vectorized Data 652
 2.4. Calculations of Physiological Metrics 653
3. Virtual Patient Simulation 653
 3.1. Overview 653
 3.2. Simulating Patient-Specific Structures in Three Dimensions 654
 3.3. Modification and Re-Simulation of Structures 655
4. Immersive Virtual Reality Environment 655
 4.1. Overview 655
 4.2. Design of Virtual Reality Environment 656
 4.3. Subject-to-Subject Automated Recognition of Points of Interest 656
 4.4. Manipulation of Original Structures with the Addition of Medical Devices 657
5. Conclusion 657
References 658

Index 659
1. INTRODUCTION

Product design requires the collaboration of marketing experts, economists, and engineers, and has been advocated to be one of the new frontiers opened for chemical engineers (Westerberg and Subrahmanian, 2000; Cussler and Morridge, 2001). Hill (2004) and Stephanopoulos (2003) argued that this renewed interest in products has obvious impact on research and education (Seider et al., 2004; Cussler, 2003), while others advocate that this is just an expansion of the competency that will include the commodity supply chain, and will incorporate the new performance-based constraints of a product (Joback and Stephanopoulos, 1995; Bagajewicz, 2005; Costa et al., 2006a,b; Ng et al., 2006; Siddhaye et al., 2000, 2004; among many others).

Typically, while marketing experts identify consumer “needs and wants” and economists provide means to assess costs and profit, engineers try to advance a product structure/formulation that will achieve the product functionality that targets some of these needs and wants in some optimal way (in the current western economy, it is usually maximum profit). In other words, the needs and wants are not always fully met by the products marketed to these consumers. These needs and wants are usually expressed using consumer-related properties, in terms of properties defined in plain language that are not many times the same as the ones used by engineers to describe the product.
Product design procedures, like the one proposed in the area of process systems engineering by Cussler and Moggridge (2001) or Seider et al. (2004), are the ones that insist on the identification of consumer wants and needs first using them as targets for the product design, while considering consumer response to price as well as optimality (profit or other objective) later. Similarly, the Stage-Gate™ Product Development Process (SGPDP) (Cooper, 2001, 2002, 2005) proceeds in a similar manner by using so-called phases sequentially (first concept, then feasibility, development, manufacturing, and finally product marketing). The first two help shape up the product based on consumer needs and wants using market surveys and tests. At this point, the SGPDP method also suggests building a business case for each product option. The main assumption is that once the concept and the feasibility have been tested, then one product, which could be later refined, emerges.

The claim made in this chapter is that identifying the product first and determining its impact on economics of a company (or other societal areas) later prevents the design of achieving an optimal product. Instead, simultaneously treating product quality (measured by consumer preferences), behavior against price, as well as manufacturing costs, is the right way to identify such profit-optimal product structure (composition, form, functionalities, effectiveness, etc.), and prevents making decisions that can later face manufacturing roadblocks (especially cost) or marketing problems (lack of or smaller profitability or other societal impacts). To reinforce the idea, recent case studies (Street et al., 2008; Heflin et al., 2009) suggested answers where the innovation is discouraged because the market preferences and consumer behavior towards prices do not anticipate higher profitability.

Then, the main idea is not to develop the best product as seen by the study of consumer needs and wants, but the optimal one, eventually (or not) balancing the wants and needs with the costs (company cost and/or societal costs), as well as projected revenues. The most obvious objective in our current western economic system is profit, and we will use it here without loss of generality. When and if one wants to add societal objectives, those ought to be treated as constraints or “costs.” Otherwise, if profit is confronted with societal objectives, the problems become multiobjective. By contrast, we claim that in the SGPDP context, the (many times) wrong product would continue to be developed until the lack of optimality (profitability or other) is discovered at later stages.

2. PRODUCT DESIGN INTEGRATED MODEL

We consider the following to be the key elements:

- Product identification: type and functionality. This requires identifying consumer needs and wants first, as in SGPDP. We keep in mind that there are products that can be introduced in the market without them being wants
and/or not even perceived needs, generating artificially, so to speak, new wants and needs that did not exist before. Examples of this artificial generation of needs and wants abound.

- Identification of product attributes: These are typically the functionalities that are given value by consumers. For example, in the specific case of skin lotions (Bagajewicz et al., 2011), an example we use frequently in this chapter, one would identify its effectiveness, thickness, smoothness, color, creaminess, scent, etc. In devices such as cars, one talks about power, acceleration, comfort, accessories, etc. In medical devices, one talks about its accuracy, its false positives/false negative. We claim that such a list can be made for every product!

- Consumer preferences: Establish a quantitative measure of how much a consumer prefers a product (regardless of its price) given the attributes. This is where we depart slightly from what economists call “hedonic value” and “hedonic pricing,” started by studies like those on “revealed preference theory” pioneered by Samuelson (1938) and continued through time (see Baltas and Freeman, 2001). In all these cases, the underlying idea is that the consumer makes choices that are influenced by (1) perceived preference of one product versus others, (2) price(s), and (3) budget. In other words, when price and affordability are not considered, consumers will almost always declare preference for the product that has their best-perceived quality, but when price and budget are included, the choice is different. Thus, consider cars: asked what car would one like, one may, for example, choose a fancy sport car; when budget is considered, the choices are based on the car type and model they can afford (accessible range of prices), and within that range, preferences play a role, so many times, one “pays for quality.”

- Consumer buying behavior: A price demand relationship that incorporates the consumer preferences.

- Optimization: A procedure that is capable of identifying the attributes that achieve the “right” product to manufacture given a certain criteria [we use the maximization of profit here, but it could be as stated above any other (set of) criteria].

Fig. 2.1 shows the linkage between the components. Consumer preferences, prices, demands, and budget feed the consumer model as parameters. The optimization variables are the product structure/composition/design, which, in turn, are used to compute the cost. Both the cost and the consumer model are then used to evaluate the profit. An optimization procedure, be it mathematical programming, stochastic procedures, genetic algorithms, or other ad hoc procedures, can be used to find the optimal product. In a model that is more amenable to readers that prefer mathematical programming schemes, one can summarize (and generalize) the scheme of Fig. 2.1 by maximizing net present value as a function of all marketing decisions made together with the product structure.
3. CONSUMER SATISFACTION SCORE

We first start with defining the consumer satisfaction score of product candidate, \(i \) \((H_i)\), as a function of certain parameters \((r_{i,j})\) and normalized scores of different consumer-related “properties” \((y_{i,j})\):

\[
H_i = f(r_{i,j}, y_{i,j})
\]

(2.1)

We believe that satisfaction (and later preferences) ought to be established without incorporating prices in the analysis first, and then use relative preferences in a price/demand model of choice. Until now, we used the simplest form for satisfaction, a linear one, as follows:

\[
H_i = \sum w_{i,j} y_{i,j}
\]

(2.2)

where \(w_{i,j}\) are weights (Bagajewicz, 2007). The weights represent how much a specific attribute contributes to the overall satisfaction. To determine those, one needs to perform marketing surveys on products without factoring the price. In turn, the scores, defined in the range from zero to one together with the weights, determine an overall score, \(H_i\), in the range from zero to one.

Consumer properties are defined in plain terms that the product user defines in plain language. In the case of a few published examples, these properties are shown in Table 2.1. In turn, these consumer properties have to be expressed in terms of engineering properties \((x_{i,k})\).

In unpublished work performed by several groups of undergraduate chemical engineering students, we have tested these ideas for a variety of products, using their corresponding attributes, later connected to engineering properties: hospital oxygen generators (ease of use, noise, appearance, maintenance frequency, reliability, durability, etc.), carbohydrate vaccines

\[\text{FIGURE 2.1 Integrated product design procedure.}\]
<table>
<thead>
<tr>
<th>TABLE 2.1 Consumer Properties of Selected Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin Lotion (Bagajewicz et al., 2011)</td>
</tr>
<tr>
<td>Properties</td>
</tr>
<tr>
<td>Effectiveness</td>
</tr>
<tr>
<td>Thickness</td>
</tr>
<tr>
<td>Greasiness</td>
</tr>
<tr>
<td>Smoothness</td>
</tr>
<tr>
<td>Creaminess</td>
</tr>
<tr>
<td>Spreadability</td>
</tr>
<tr>
<td>Absorption rate</td>
</tr>
<tr>
<td>Color</td>
</tr>
<tr>
<td>Scent</td>
</tr>
</tbody>
</table>

Associated Engineering—Manipulated Properties

- Composition
- Dose
- Material and radius particles
- Composition
- Grape
- Barrel type and burn
- Time
- Etc.
- Sensor(s) type (MV)
- Geometry
- Materials

Engineering Properties Used for Assessment

- Diffusivities
- Viscosity
- Surface tension
- Density
- Release time duration
- | Size
- Weight
(efficacy, side effects, delivery method, etc.), cholesterol inhibitor (efficacy, side effects, etc.), vodka (clarity, aroma, sensation, aftertaste), roach killers (durability, speed, odor, toxicity, etc.), automotive hydrophobic coating (texture, frequency of application, water retention, application method), flame retardants (retardancy time, number of applications, odor, setting time, biodegradability, toxicity), osteoarthritis alleviation treatment (frequency, pain upon application, etc.), cartilage tissue repair method seeding chondrocytes (long-term outcome, invasiveness, recovery time), anticavity toothpaste (effectiveness, thickness, cooling effect, abrasiveness, sweetness, foaminess, creaminess, etc.), new refrigerants (safety, global warming potential, ozone depletion impact, compatibility with existing system, stability, explosion potential, etc.), and polymer composite gasoline tank (weight, gasoline diffusion, potential spillage, emission tests, strength upon impact, rupture), each one presenting its own set of challenges, but adhering to the same concepts.

Thus, in general, we write:

$$y_{i,j} = f(x_{i,j})$$ \hspace{1cm} (2.3)

where $x_{i,j}$ are engineering properties. Thus, we can finally define a product using the aforementioned manipulated properties.

We now present a procedure to determine this relationship for the case of the humidifying skin lotion (Bagajewicz et al., 2011). We first note that in this case, the composition is the manipulated variable, and all other properties are the result of this choice. Composition is described in this case by humectants (bind water), occlusives (prevent loss of water), exfoliants (dead skin removal), emollients (fillers of intercellular space), perfumes, and many other inactive ingredients (solvents, thickeners, preservatives, buffers, emulsifiers, colorants, etc.) that help achieve the desired degree of satisfaction through the manipulation of viscosity, density, diffusivity, and surface tension (Bagajewicz et al., 2011). To illustrate the connections between manipulated variables and satisfaction, we show how the consumer preference for effectiveness (the ability to humidify the stratum corneum) is related by consumers to skin appearance. To establish the preference score, one needs to poll a certain number of potential customers of the targeted market segment. Thus, in our example, the effectiveness is rated (Fig. 2.2A) and connected to the skin water content (Fig. 2.2B) and later to the presence of humectants in the skin (Fig. 2.2C). The resulting connection between preference and amount of humectants in the skin is seen in Fig. 2.2D. Thus, the amount of humectants per lotion application can later be defined in terms of the lotion composition of humectant compounds.

Similar connections can be made for other properties. For example, for thickness, consumers are asked to rank how different mixtures flow (ketchup, mayonnaise, cream, etc.), and connections are made to the resulting viscosity
FIGURE 2.2 (A) Preference versus skin appearance, (B) skin appearance versus water content, (C) water content versus humectants, (D) preference versus humectants content.
obtained by the composition (thickness is proportional to the square root of viscosity). In turn, for greasiness, consumers are asked to rank several different products (grease, baby oil, suntan lotion, alcohol) regarding their perceived feeling of greasiness and connections are made to the fatty oil contents. Smoothness is related to greasiness and thickness (it is a metadescriptor, a descriptor composed of other descriptors); so is creaminess. Finally, spreadability identifies the ease of a fluid to displace another fluid on a given surface. Consumers are asked to rate their satisfaction to this product attribute by comparing to other substances (glue, syrup, detergent, ketchup, oil, water). This is connected to surface tension. Absorption rate, related to the ease or speed with which a product disappears on application, is related to diffusivity in the stratum corneum. We omit for reasons of space connections and derived engineering properties for other products in the above table. They are described in the associated papers.

We now turn our attention to the weights in Eq. (2.2). To establish these, there are several marketing survey techniques that we omit discussing here in detail. In the simplest form, without loss of generality, one could ask several consumers to rate the product properties outlined in Table 2.1 as most important, second importance, third importance and so on, and then use this information to obtain the weights.

4. CONSUMER PREFERENCE MODEL

We now turn into the determination of consumer preference score to quantify how much a consumer prefers one product, i, over another product, j. This is done by defining:

$$\beta_{i,j} = f(H_i, H_j)$$

Without loss of generality of the product design procedure, we used $\beta_{i,j} = \frac{H_i}{H_j}$ so far. Thus, for example, $\beta_{i,j} = 1$ indicates that there is indifference, $\beta_{i,j} = 0.5$ indicates that product i provides the consumer twice the satisfaction of product j, and $\beta_{i,j} = 0$ that product j does not satisfy consumers at all (i.e., $H_j = 0$), which is an extreme that is hardly found in practice. Finally, $\beta_{i,j} > 1$ would indicate that product j is better than product i for the consumer.

5. MANUFACTURING AND DISTRIBUTION COSTS

In our example, lotions are emulsions that can be either oil-in-water or water-in-oil. The choice is mainly dictated by practical considerations, such as ease of application and consumer perception (Wibowo and Ng, 2001). The oil-in-water emulsions, which are less sticky on application, predominate in the market and are the choice for our study. Emulsifying agents are used to stabilize the oil-in-water mixture. The most common type of emulsifier are
surfactants, which decrease the interfacial tension between the two phases. The actual manufacturing procedure is simple and consists of mixing the oil and water phases together. The following steps show how the lotion is made:

1. Heat and mix the aqueous and oil phases separately.
2. Combine both phases into one batch.
3. Perform posttreatment modifications (i.e., decrease drop size using a sonificator, followed by a colloid mill and homogenizer). As we shall see later, drop size plays a role in some properties.

6. PRICE—DEMAND CONSUMER MODEL

To determine demand as a function of price, we use the constant elasticity of substitution demand model presented by Bagajewicz (2007)

\[
p_1 d_1 = \left(\frac{\alpha}{\beta} \right)^\rho p_2 \left[\frac{Y - p_1 d_1}{p_2} \right]^{1-\rho} d_1^\rho \tag{2.5}
\]

\[
d_2 = \frac{Y - p_1 d_1}{p_2} \tag{2.6}
\]

where \(\beta \) is the previously defined preference score and \(\alpha \) is the level of awareness of the new product (zero when consumers are not aware of the new product and one when they are fully aware), \(p_1 \) and \(p_2 \) the new product and the competition prices, \(d_1 \) and \(d_2 \) the corresponding demands, \(Y \) the total budget of the consumers, and \(\rho \) is a parameter related to the elasticity. Without loss of generality, we use \(\rho = 0.75 \) and consider \(\alpha = 1 \).

We realize that the market in this case has a maximum demand (\(D \)) given by the number of people that would actually seek moisturizing lotions in the market in question. Thus, Eq. (2.5) can only be used if the market is unsaturated, i.e., when \(d_1 + d_2 < D \). In a saturated market, consumers have enough budget to buy either product, and the demand will be driven by preferences, not preferences and budget anymore. In such case, maximizing consumer utility, (Bagajewicz, 2007) renders:

\[
D = d_1 + d_2 \tag{2.7}
\]

\[
d_1 = \frac{D}{1 + \gamma} \tag{2.8}
\]

\[
\gamma = \left(\frac{\alpha}{\beta} \right)^{\frac{\rho}{1-\rho}} \tag{2.9}
\]

Thus, the way we establish demand as a function of the rest of the parameters (\(\alpha, \beta, \gamma, D \) and \(\rho \)) by obtaining \(d_1 \) and \(d_2 \) using Eqs. (2.5) and (2.6). If these do not satisfy \(d_1 + d_2 < D \), then we use (7) through (9).
For our example of the skin lotion, the market was determined by looking at what areas of the US have signs and symptoms of xerosis and ichthyosis vulgaris that are the worst (see Bagajewicz et al., 2011 for more details). Also, for the example in question, a fixed capital investment, working capital, and total capital investment were determined as a function of total manufacturing capacity. The demand as a function of price was calculated for different values of b and is shown in Fig. 2.3 (we used $D = 500,000$ bottles/month). It can be inferred that for prices less than $10, the consumer budget is not a limiting factor. At prices around $10, we reach the maximum demand we could have for our product, and it will not increase for lower prices.

Then the total product cost for each value of b was computed by looking at what ingredients can match the selected value of b at minimum cost. They vary from $7.5/bottle for $b = 0.97$ to $8.00/bottle for $b = 1.11$. The competitor’s lotion cost is $9.40/bottle.

One can also consider the possibility of multiple competitors; in such case, one can reformulate the consumer utility function and perform its maximization subject to the budget constraint, assuming $\alpha = 1$, one gets (Street et al., 2008):

$$d_j = \beta_j^{\rho/(1-\rho)} \left(\frac{p_1}{p_j} \right)^{1/(1-\rho)} d_1 \quad j \neq 1$$

(2.10)
where \((\beta_{j,1} = H_j/H_1)\), which, with the help of the (active) budget constraint

\[
\sum_j p_j d_j = Y
\]

(2.11)

provides the different demands as a function of all prices. Both equations are solved for different process, \(p_1\), and if the sum of the demands is larger than the natural maximum demand \(D\) (in our case, the total number of households that could use some carpet deodorizer), then the demands are no longer driven by the consumer budget and are only driven by preferences in which case the consumer preference function is maximized subject to the demand constraint \((\sum_i d_i = D)\). Using this model, Street et al. (2008), showed that a proposed carpet disinfectant/deodorizer that is superior to others is not worth pursuing.

7. PROFIT MODEL AND OPTIMIZATION

In a very general form, one can pose the problem one of maximizing of expected profit, using a two-stage stochastic model

\[
\text{Max} \sum_s pr_s \text{NPVR}_s - \text{Fixed Capital Investment}
\]

\[
s.t. \quad \text{NPVR}_s = \text{Sales}_s - \text{Manufacturing Costs}_s - \text{Supply Chain Costs}_s - \text{Marketing Costs}_s
\]

where \(pr_s\) is the probability of scenario \(s\), which includes consumer budgets, total demands, and even preferences! The model has “here and now” decisions (first-stage variables) and “wait and see” or recourse decisions (second-stage variables). The former are decided upfront, and the latter are taken in response to certain scenario materializing as illustrated by Barbaro and Bagajewicz (2004). We also treated uncertainty in wine manufacturing (Whitnack et al., 2009).

Instead of formalizing everything in a large numerical method, we realize that the problem can be nicely decomposed: if the value of \(\beta\) is fixed, one can calculate the net present worth (NPW) for all products that have that value of \(\beta\). In principle, there might be more than one product corresponding to each value of \(\beta\), a situation we believe is infrequent.

For our illustrating example, with the cost computed and demand, one can now compute the profit (NPW) for a 10-year lifespan as a function of price for different values of \(\beta\) (Fig. 2.4). The “best lotion” (82% preference, \(\beta = 0.97\)), is not the most profitable one, while a lotion with 80% of consumer preference would be more profitable, with a selling price between $9 and $10.
8. COMPETITIVE MARKETS

Once our product is introduced to the existing market, some of the market will leave their current suppliers to use our product instead. This essentially takes the demand away from our competitors, decreasing their cash flow. The competitors can respond to the introduction of our product in four ways to earn some of their demand back:

1. change their amount of advertising
2. change their composition
3. change their production costs
4. change their price

The first one, change in their amount of advertising, would affect the awareness function (α). The second competitor’s response, changing their composition, affects directly β. If the competitor changes his product in such a way that he will attract more of the market, our NPW will be also affected. We do not discuss these here either. The third action the competitor can take in response to our product is to minimize their manufacturing costs. This would not directly affect our product. The last action the competitor can take is to change their sales price to gain back some of the market. The new price the competitor is described by the function as follows:

$$p_2 = p_{2,0} - \gamma(p_{2,0} - C_2) \left(\beta \frac{d_{2,0} - d_2}{d_{2,0}} \right)^{\alpha_1/\alpha_2}$$ \hspace{1cm} (2.12)
where $p_{2,0}$ is the competitor’s original price, γ is a proportionality constant (we use $\gamma = 0.28$), C_2 is the competitor’s manufacturing cost per bottle, β is the usual relative preference, d_2 is the new demand for the competitor’s product, $d_{2,0}$ is the original demand of the competitor’s product, and α_i is the respective awareness of the products (we assumed them to be equal to one). Thus, the new price is adjusted by multiplying the difference in cost and old price ($p_{2,0} - C_2$) by a function of the relative demand drop. After this is done, a new equilibrium is achieved and a new cycle is started. To assess this process, we built a discrete dynamic model that considers monthly price adjustments over a 10-year horizon. Finally, for the cases we looked at, the maximum demand D was never surpassed. The NPW was then calculated as a function of the initial price. Fig. 2.5 shows the NPW for each beta, indicating that a product of similar quality than the competition is now the most profitable, with the best starting price being $8. In Fig. 2.6, we plot both prices and show them reaching equilibrium within 1.5 years. In all cases, equilibrium is achieved within a 2-year period. All prices converged to the same equilibrium, regardless of the starting price.
9. CONCLUSIONS

This chapter presents an alternative approach to product design. We claim that one needs to use an integrated model, which looks over a time horizon and determines, simultaneously, the product. In several cases, we found that the best product is not necessarily the most profitable one. However, a product with slightly less of consumers’ preference is more profitable.

We finished applying different strategies to predict selling price and demand in a competitive market, looking for the maximization of profit. We found that the equilibrium price in a competitive market depends on the preference and total product cost, but not on the starting selling price.

REFERENCES

