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Introduction

Planning under uncertainty is a common class of problems
found in process systems engineering. Some examples widely
found in the literature are capacity expansion, scheduling,
supply chain management, resource allocation, transportation,
unit commitment, and product design problems. The first stud-
ies on planning under uncertainty could be accredited to
Dantzig (1955) and Beale (1955), who proposed the two-stage
stochastic models with recourse, which provide the mathemat-
ical framework for this article.

The industrial importance of planning process capacity ex-
pansions under uncertainty has been widely recognized and
discussed by several researchers (Ahmed and Sahinidis, 2000b;
Berman and Ganz, 1994; Eppen et al., 1989; Liu and Sahinidis,
1996; Murphy et al., 1987; Sahinidis et al., 1989). In the
majority of industrial applications, capacity expansion plans
require considerable amount of capital investment over a long-
range time horizon. Moreover, the inherent level of uncertainty
in forecast demands, availabilities, prices, technology, capital,
markets, and competition make these decisions very challeng-
ing and complex. Therefore, several approaches were proposed
to formulate and solve this problem. They mainly differ in the
way uncertainty is handled, the robustness of the plans, and

their flexibility. This article follows the two-stage stochastic
programming approach with discretization of the uncertainty
space by random sampling of the parameter probability distri-
butions. In turn, the feasibility constraints for the problem are
enforced for every scenario in a deterministic fashion (taking
recourse actions with an associated cost) such that the resulting
plan or design is feasible under every possible uncertainty
realization.

A formal two-stage stochastic model for capacity planning in
the process industry was presented by Liu and Sahinidis (1996)
as an extension of the deterministic models developed by
Sahinidis et al. (1989). In the two-stage stochastic approach, it
is assumed that the capacity expansion plan is decided before
the actual realization of uncertain parameters (scenarios), al-
lowing only some operational recourse actions to take place to
improve the objective and correct any infeasibility. In this
formulation, the objective is usually to maximize the expected
profit or to minimize the expected cost over the two stages of
the capacity expansion project. Typically, the resulting objec-
tive function is accounted using the expected net present value
or ENPV. In addition to the two-stage optimization, other
approaches have been proposed to deal with uncertainties in the
model parameters such as chance-constrained optimization
(Charnes and Cooper, 1959), fuzzy programming (Bellman and
Zadeh, 1970; Zimmermann, 1987), and the design flexibility
approach (Ierapetritou and Pistikopoulos, 1994).

In the chance-constrained approach, some of the problem
constraints are expressed in terms of probabilistic statements,
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typically requiring that they be satisfied with a probability
greater than a desired level. This approach is particularly useful
when the cost and benefits of second-stage decisions are diffi-
cult to assess because the use of second-stage or recourse
actions is avoided.

In turn, fuzzy programming assumes that the uncertain pa-
rameters can be represented by fuzzy numbers, whereas con-
straints are considered fuzzy sets. This approach also allows
some constraint violation and their degree of satisfaction is
defined as the membership function of the constraint. A com-
parison of fuzzy and two-stage stochastic programming made
by Liu and Sahinidis (1996), in the context of capacity plan-
ning problems, showed that the latter offers several advantages
over the former.

Finally, Ierapetritou and Pistikopoulos (1994) proposed an
approach in which the plan or design is feasible only inside a
certain region of the uncertainty space rather than for all
possible uncertainty realizations. Then, a flexibility index is
used to measure the extent of the plan’s feasible uncertainty
region. In the cited article, the authors used a flexibility index
that represents the largest hypercube that can be inscribed
inside the plan’s feasible uncertainty region. In this approach,
however, it is difficult to assess the trade-off between cost and
flexibility.

A major limitation of all the mentioned approaches is that
they consider, in one way or another, “expected outcomes” of
the problem objective without explicitly taking into account its
variability. Specifically, the two-stage stochastic models do not
take into account the variability of the second-stage cost or
profit but only its expected value. This was first discussed by
Eppen et al (1989) in their work on automotive industry ca-
pacity planning. They proposed to use the concept of downside
risk to measure the recourse cost variability and obtain solu-
tions appealing to a risk-averse investor. Another approach to
deal with the second-stage cost variability was proposed by
Mulvey et al. (1995), who introduced the concept of robustness
as the property of a solution for which the objective value for
any realized scenario remains “close” to the expected objective
value over all possible scenarios. Originally, the models for
robust planning under uncertainty presented by Mulvey et al.
(1995) used the variance of the cost as a “measure” of the
robustness of the plan: that is, less variance corresponds to
higher robustness. More recently, Ahmed and Sahinidis (1998),
aiming at eliminating the nonlinearities introduced by the vari-
ance, proposed the use of the upper partial mean (UPM) as a
measure of the variability of the recourse costs. They also offer
a complete literature review on the problem. In addition to its
linearity, the main advantage of using the UPM, as opposed to
the variance, is its asymmetric nature that penalizes only the
unfavorable cases from a risk perspective. However, the UPM
suffers from limitations that make it an inappropriate measure
to assess and manage financial risk. Because of the way the
UPM is defined, a solution may falsely reduce its variability
just by not choosing optimal second-stage decisions. Making
nonoptimal second-stage decisions reduces the expected profit,
allowing the positive deviation between the expected second-
stage profit and the profit for that scenario (�s) to be zero for
some scenarios that otherwise would have a profit lower than
the actual expected value and therefore �s greater than zero.
Because nobody would want to obtain a lower profit when a
higher value is already attainable, operating with nonoptimal

second-stage policies does not make sense from a financial
point of view. This is discussed in detail by Takriti and Ahmed
(2003), who present sufficient conditions for the variability
measure of a robust optimization to ensure that the solutions
are optimal in profit.

A different perspective to evaluate risk is also presented in
the work of Ierapetritou and Pistikopoulos (1994). In that
article, the authors proposed to use regret functions as an
indirect measure of financial risk. For any realization of uncer-
tain parameters, the regret function measures the difference
between the objective function resulting from the actual plan or
design, and the plan that is optimal for that realization of
uncertain parameters. Then, the idea is to find plans that have
low regret for the set of feasible uncertain parameters. This
approach has two major difficulties. First, financial risk is
evaluated only indirectly because the regret functions measure
only the potential losses of the actual plan in comparison with
a hypothetical plan that is optimal for only a specific uncer-
tainty realization (no information is given about the feasibility
of that plan under other circumstances). Thus, the regret func-
tions do not provide any information about the financial risk.
The second disadvantage of this approach is that to construct
each regret function a separate optimization problem has to be
solved for each possible uncertainty realization, which greatly
increases the computational complexity of the problems.

Another approach, recently suggested by Cheng et al.
(2003), is to rely on a Markov decision process modeling the
design/production decisions at each epoch of the process as a
two-stage stochastic program. The Markov decision process
used is similar in nature to a multistage stochastic program-
ming where structural decisions are also considered as possible
recourse actions. Their solution procedure relies on dynamic
programming techniques and is applicable only if the problems
are separable and monotone. In addition, they propose to depart
from single-objective paradigms, and use a multiobjective ap-
proach, rightfully claiming that cost is not necessarily the only
objective and that other objectives are usually also important,
like social consequences, environmental impact, and process
sustainability, for example. Among these other objectives, they
include risk (measured by downside risk, as introduced by
Eppen et al., 1989), which under the assumption that decision
makers are risk-averse, they claim should be minimized.

Aside from the fact that some level of risk could be tolerable
at low profit aspirations to achieve larger gains at higher ones,
thus promoting a risk-taking attitude, this assumption has some
important additional limitations. As it will become apparent
later in this article, given that downside risk is a function not
only of the first-stage decisions but also of the aspiration or
target profit level, minimizing downside risk at one level does
not imply its minimization at another. Moreover, minimizing
downside risk does not necessarily lead to minimizing financial
risk for the specified target, a result that is discussed later in
this article. Thus, treating financial risk as a single objective
presents some limitations, and we propose that risk be managed
over the entire range of aspiration levels. Applequist et al.
(2000) proposed to manage risk at the design stages by using
the concept of risk premium. They observed that for a variety
of investments, the rate of return correlates linearly with the
variability, which leads to the definition risk premium. Based
on this observation, they suggest benchmarking new investments
against the historical risk premium mark. Thus, they propose a
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two-objective problem, where the expected net present value
and the risk premium are both maximized. The technique relies
on using the variance as a measure of variability and therefore
it penalizes scenarios at both sides of the mean equally, which
is the same limitation discussed above. Recently, Gupta and
Maranas (2003), while analyzing risk, also realized that sym-
metric measures were disadvantageous and therefore proposed
to use a function very similar to the one we discuss in this
article, but due to computational problems they resort to max-
imize the worst case scenario outcome. We point out that their
definition of risk similar to the one proposed earlier by Barbaro
and Bagajewicz (2003) have been used previously to assess
(but not manage) risk, one of the most notorious examples
being the petroleum exploration and production field (McCray,
1975).

The main objective of this article is to develop new mathe-
matical formulations for problems dealing with planning and
design under uncertainty that allow management of financial
risk according to the decision maker’s preference. A major step
toward this objective is the use of a formal probabilistic defi-
nition of financial risk. In addition to this, the connection
between downside risk, first introduced by Eppen et al. (1989),
and financial risk is discussed. Using these two definitions, new
two-stage stochastic programming models that are able to
manage financial risk are developed. The advantages of the
proposed approaches are that they maintain the original MILP
structure of the problem. The theory developed in this article is
of general application to any planning and design under uncer-
tainty problem that can be formulated using a two-stage sto-
chastic formulation.

The article is organized as follows. The “Two-Stage Sto-
chastic Programming” section reviews general aspects of the
two-stage stochastic formulation for planning under uncer-
tainty. A theoretical definition of financial risk is introduced in
the “Financial Risk Management” section, and the “Downside
Risk: An Advantageous Measure to Assess and Manage Finan-
cial Risk” and “Other Measure of Risk: Value at Risk and Risk
Adjusted Project Value” sections explore the connection be-
tween this definition and other risk measures. The “Two-Stage
Stochastic Programming with Financial Risk Constraints” and
“Two-Stage Stochastic Programming Using Downside Risk”
sections outline new two-stage stochastic programming models
to manage financial risk that are then applied to an illustrative
process planning problem in the “Illustrative Example” section.
Finally, “Computational Issues for Large-Scale Problems Us-
ing Model RO-SP-DR” discusses some issues related to the
computational performance of the proposed formulations.

Two-Stage Stochastic Programming

This kind of optimization problems is characterized by two
essential features: the uncertainty in the problem data and the
sequence of decisions. Some of the model parameters are
considered random variables with a certain probability distri-
bution. In turn, some decisions are taken at the planning stage,
that is, before the uncertainty is revealed, whereas a number of
other decisions can be made only after the uncertain data
become known. The first class of decisions is called the first-
stage decisions, and the period when these decisions are taken
is referred to as the first stage. On the other hand, the decisions
made after the uncertainty is unveiled are called second-stage

or recourse decisions and the corresponding period is called the
second stage. Typically, first-stage decisions are structural and
most of the time related to capital investment at the beginning
of the project, whereas the second-stage decisions are often
operational. Yet, some structural decisions corresponding to a
future time can be considered as a second stage, that is, one
may want to wait until some uncertainty (not necessarily all) is
realized to make additional structural decisions. This kind of
situations is formulated through the so-called multistage mod-
els, which are a natural extension of the two-stage case. Among
the two-stage stochastic models, the expected value of the cost
(or profit) resulting from optimally adapting the plan according
to the realizations of uncertain parameters is referred to as the
recourse function. Thus, a problem is said to have complete
recourse if the recourse cost (or profit) for every possible
uncertainty realization remains finite, independently of the
nature of the first-stage decisions. In turn, if this statement is
true only for the set of feasible first-stage decisions, the prob-
lem is said to have relatively complete recourse (Birge and
Louveaux, 1997). This condition means that for every feasible
first-stage decision, there is a way of adapting the plan to the
realization of uncertain parameters. Another important prop-
erty of certain two-stage problems, referred to as fixed re-
course, will be discussed later. These properties are highly
desirable and are found in most practical applications of this
kind of optimization problems.

A large and useful collection of literature exists on two-stage
stochastic programming modeling and solution techniques.
Some excellent references are the books by Infanger (1994),
Kall and Wallace (1994), Higle and Sen (1996), Birge and
Louveaux (1997), Marti and Kall (1998), and Uryasev and
Pardalos (2001). In addition, the articles by Pistikopoulos and
Ierapetritou (1995), Cheung and Powell (1995), Iyer and
Grossmann (1998), and Verweij et al. (2003) provide very
good references on solution techniques for these problems.

The general extensive form of a two-stage mixed-integer
linear stochastic problem for a finite number of scenarios can
be written as follows (Birge and Louveaux, 1997).

Model SP

Max E�Profit� � �
s�S

psqs
Tys � cTx (1)

s.t.

Ax � b (2)

Tsx � Wys � hs � s � S (3)

x � 0 x � X (4)

ys � 0 � s � S (5)

In the above model, x represents the first-stage mixed-integer
decision variables and ys are the second-stage variables corre-
sponding to scenario s, which has occurrence probability ps.
The objective function is composed of the expectation of the
profit generated from operations minus the cost of first-stage
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decisions (capital investment). The uncertain parameters in this
model appear in the coefficients qs, the technology matrix Ts,
and in the independent term hs. In this article, the study was
restricted to the cases where W, the recourse matrix, is deter-
ministic. This is referred to in the literature as a problem with
fixed recourse and ensures that the second-stage feasible region
is convex and closed, and that the recourse function is a
piecewise linear convex function in x (Birge and Louveaux,
1997). Cases where W is not fixed are found for instance in
portfolio optimization when the interest rates are uncertain
(Dupacova and Römisch, 1998). The above formulation con-
siders the maximization of profit as an objective function but
the same concepts and analysis developed in this article are
valid for the case where the objective is the minimization of
cost.

When trying to analyze the usefulness of model SP in the
context of risk management one first notices that, even though
it maximizes the total expected profit, it does not provide any
control over the variability of the profit over the different
scenarios. For instance, consider the profit histogram of two
generic feasible solutions shown in Figure 1. The first design
has a higher expected profit (M$ 3.38) than the second one (M$
3.35); however, Design I is riskier than Design II because
financial loss can occur under several scenarios. On the other
hand, Design II renders positive profits for all scenarios.

Thus, a risk-averse investor would prefer Design II because
it gives almost the same expected profit level and exhibits
lower financial risk. This kind of preferences cannot be cap-
tured using model SP, because it does not contain any infor-
mation about the variability of the profit. Then, a proper mea-
sure of financial risk needs to be included in the formulation to
allow the decision maker to obtain solutions according to
his/her desired risk exposure level.

Financial Risk Management

This section introduces several theoretical aspects for risk
management. A formal definition of financial risk in the frame-
work of two-stage stochastic programming is first introduced
and then analyzed in terms of the profit probability distribution.

This is the core of the risk management strategies that will be
presented later in this article.

Probabilistic definition of financial risk

Financial risk associated with a planning project can be
defined as the probability of not meeting a certain target profit
(maximization) or cost (minimization) level referred to as �.
For the two-stage stochastic problem (SP), the financial risk
associated with a design x and a target profit � is therefore
expressed by the following probability

Risk�x, �� � P�Profit�x� � �� (6)

where Profit(x) is the actual profit, that is, the profit resulting
after the uncertainty has been unveiled and a scenario realized.
As stated above, this definition has been made before (McCray,
1975). For instance, if one revisits the examples shown in
Figure 1, one can see there is a 12% probability that Design I
does not make a positive profit (� � 0). Similarly, Design II
has no risk of yielding negative profits, that is, Risk(Design II,
0) � 0.

To obtain an explicit expression for financial risk, let the
profit corresponding to the realization of each scenario be

Profits�x� � qs
Tys � cTx � s � S (7)

where ys is the optimal second-stage solution for scenario s.
Because uncertainty in the two-stage formulation is represented
through a finite number of independent and mutually exclusive
scenarios, the above probability can be expressed in terms of
the probability of not meeting the target profit in each individ-
ual scenario realization

Risk�x, �� � �
s�S

P�Profits�x� � �� � �
s�S

P�qs
Tys � cTx � ��

(8)

Furthermore, for a given design the probability of not meet-
ing the target profit in each particular scenario is either zero or
one. That is, for any scenario, the profit is either greater or
equal than the target level, in which case the correspondent
probability P[Profits(x) � �] is zero, or the profit for the
scenario is smaller than the target, rendering a probability of
one. Therefore, the definition of risk can be rewritten as follows

Risk�x, �� � �
s�S

pszs�x, �� (9)

where zs is a new binary variable defined for each scenario, as
follows

zs� x, �� � �1 If qs
Tys � cTx � �

0 otherwise � s � S (10)

Equations 9 and 10 constitute a formal definition of
financial risk for two-stage stochastic problems with fixed
recourse and discrete scenarios. This definition can now be

Figure 1. Solutions for the model SP with different finan-
cial risk levels.

966 AIChE JournalMay 2004 Vol. 50, No. 5



used to assess and manage the amount of risk related to the
investment plan.

For conceptual purposes, the extension of this definition to
the case where the uncertainty is represented by a continuous
probabilistic distribution is now discussed. Intuitively, one may
think of this case as a limiting one, where the number of
scenarios becomes increasingly large, that is, Cardinality(S)3
	. Therefore, when profit has a continuous probability distri-
bution, financial risk—defined as the probability of not meet-
ing a target profit �—can be expressed as

Risk�x, �� ��

	

�

f�x, ��d� (11)

where f (x, �) is the profit probability distribution function
(PDF), which is shown in Figure 2. The equivalent of the PDF
in the discrete case is a histogram of frequencies similar to that
depicted in Figure 1. A formal connection between the risk
definition for the continuous case (Eq. 11) and the one for the
discrete scenario-based case (Eq. 9) is provided in Appendix A.

From the integral in Eq. 11, it follows that financial risk
associated to design x and a target profit � is given by the area
under the curve f (x, �) from � � 
	 to � � �, as shown in
Figure 2. Alternatively, in the discrete scenario case, financial
risk is given by the cumulative frequency obtained from the
profit histogram as depicted by Figure 3.

A more straightforward way of assessing and understanding
the trade-offs between risk and profit is to use the cumulative
risk curve, as depicted in Figure 4.

When only a finite number of scenarios are considered, a
discontinuous step-shaped cumulative risk curve is obtained.
However, when the number of scenarios increases, the curve
approaches continuous behavior, as shown in Figure 5.

For a given design x, the cumulative risk curve shows the
level of incurred financial risk at each profit level. The cumu-
lative risk curve is monotonically increasing because it is a
cumulative probability function. Intuitively, one can see that
the risk of not achieving relatively small profits will generally
be small, whereas very high profit levels will exhibit large risk.
Handling the shape and position of the curve is the main

concern of the decision maker. A risk-averse investor may
want to have low risk for some conservative profit aspiration
level, whereas a risk-taker decision maker would prefer to see
lower risk at higher profit aspiration level, even if the risk at
lower profit values increases. Figure 6 illustrates a hypothetical
example with two risk curves responding to these different risk
attitudes.

Relationship between financial risk and expected profit

It seems obvious that there exists a direct relationship be-
tween risk and expected profit. Qualitatively, one would think
that designs with large expected profits exhibit considerable
risk, although having a quantitative relation is more beneficial.
This relationship between financial risk and expected profit is
discussed next. For a continuous probability case, the expected
value of the profit can be written as

Figure 2. Probabilistic definition of financial risk: contin-
uous case. Figure 3. Probabilistic definition of financial risk: dis-

crete case.

Figure 4. Characteristic behavior of the cumulative risk
curve.
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E�Profit�x�� ��

	

�	

�f�x, ��d� (12)

At this point, the analysis is focused in cases where Profit(x)
is a bounded random variable, that is, there exist finite real
numbers

�
� and �� , such that

�
� � Profit(x) � �� for any realization

of uncertain parameters. Under these circumstances, Risk(x,
�) � 1 @ � � �� . Then, using the definition of financial risk
given by Eq. 11, the expected profit is

E�Profit�x�� ��
0

1

�dRisk�x, �� (13)

Finally, integrating by parts one arrives at

E�Profit�x�� � �� ��
�
�

��

Risk�x, ��d� (14)

Equation 14 is the quantitative relationship between ex-
pected profit and financial risk. Notice that a reduction in risk
over the entire range of profits translates into a larger expected
profit. In other words, this means that if Risk(x, �) is minimized
at every profit in the range

�
� � � � �� , then from Eq. 14 we

obtain that E[Profit(x)] is maximized, given that �� is just a
constant. A graphical representation of this expression is pro-
vided by Figure 7.

Similarly, for a discrete scenario-based case the expected
profit is given by

E�Profit�x�� � �
s�S

ps�s (15)

After some manipulations, described in detail in Appendix B,
the relationship between risk and expected profit is

E�Profit�x�� � �� � �
s�S

Risk�x, ����s�1 � �s� (16)

In this expression, the scenarios are sorted in ascending profit
order, such that �s�1 � �s. Therefore, the expected profit is also
obtained by subtracting the area under the cumulative risk
curve to the profit upper bound, as depicted in Figure 8.

Properties of financial risk curves

If risk is to be managed, one not only needs to measure it but
also understand how risk curves behave as different designs are
proposed. The following theorem, proven formally in Appen-
dix C, states that for some profit level, any feasible solution to
problem SP is riskier than the optimal solution.

Theorem 1 Let x* denote the optimal values of the first-stage
variables for problem SP and x the values of first-stage vari-
ables for any other feasible solution with E[Profit(x)] �
E[Profit(x*)] and E[Profit(x*)] � 	. Then, there exists � � �
such that Risk(x, �) � Risk(x*, �).

In other words, no feasible design x has a risk curve that lies
entirely below the risk curve of the optimal solution to problem

Figure 5. Risk curves obtained for different number of
scenarios.

Figure 6. Different kinds of financial risk curves.

Figure 7. Relationship between expected profit and fi-
nancial risk: continuous case.
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SP and both risk curves either cross at some point(s) or the latter
lies entirely above the former, as depicted in Figure 9.

Downside Risk: An Advantageous Measure to
Assess and Manage Financial Risk

This section explores the relationship between financial risk,
as defined earlier in this article, and another risk measure
referred in the literature as downside risk. This measure was
first introduced by Eppen et al. (1989) in the framework of
capacity planning for the automobile industry. To present the
concept of downside risk, let us first define 	(x, �) as the
positive deviation from a profit target � for design x, that is

	� x, �� � �� � Profit�x� If Profit�x� � �
0 otherwise (17)

Downside risk is then defined as the expected value of 	(x, �)

DRisk�x, �� � E�	�x, ��� (18)

To incorporate the concept of downside risk in the frame-
work of two-stage stochastic models let 	s(x, �) be the positive
deviation from the profit target � for design x and scenario s
defined as follows

	s� x, �� � �� � Profits�x� If Profits�x� � �
0 otherwise � s � S

(19)

Because the scenarios are probabilistically independent, the
expected value of 	(x, �) (i.e., downside risk) can be expressed
as the following linear function of 	

DRisk�x, �� � �
s�S

ps	s�x, �� (20)

Similarly, in the case where the profit has a continuous prob-
ability distribution, downside risk is given by

DRisk�x, �� ��

	

�

�� � �� f�x, ��d� (21)

Looking at the above definitions of downside risk, one must
notice that downside risk is an expectation in $, differing with
the definition of Risk(x, �) that represents a probability value.
Moreover, DRisk(x, �) is a continuous linear measure because
it does not require the use of binary variables in the two-stage
formulation because 	s is a positive continuous variable. This is
a highly desirable property to potentially reduce the computa-
tional requirements of the models to manage risk. Because of
its linear and continue nature, using DRisk(x, �) instead of
Risk(x, �) in the two-stage formulation framework allows the
use of decomposition techniques developed for linear-contin-
uous second-stage problems.

Now, a quantitative relationship DRisk(x, �) and Risk(x, �)
is explored. In the continuous distribution case, separating the
integral in Eq. 21 in two by distributing the product and
remembering that f (x, �)d� 
 dRisk(x, �), one obtains

DRisk�x, �� � � �
0

Risk� x,��

dRisk�x, �� ��
0

Risk� x,��

�dRisk�x, ��

(22)

The first integral in the above equation is just Risk(x, �), and
integrating by parts the second integral one obtains

DRisk�x, �� � �Risk�x, ��

� ��Risk�x, �� ��

	

�

Risk�x, ��d�� (23)

Canceling out the first two terms in Eq. 23 provides the sought
relationship between downside and financial risk

Figure 8. Relationship between expected profit and fi-
nancial risk: discrete case.

Figure 9. Possible risk curves.
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DRisk�x, �� ��

	

�

Risk�x, ��d� (24)

Therefore, downside risk is defined as the integral of finan-
cial risk or area under the cumulative risk curve from profits
� � 
	 to � � �, as shown in Figure 10.

In the previous section, Eq. 14 showed that the expected
profit is related to the area under the cumulative risk curve from
profits

�
� to �� . Considering that downside risk is also defined as

the area under the risk curve, we obtain a straightforward
relationship between expected profit and downside risk

E�Profit�x�� � �� � DRisk�x, ��� (25)

At this point, an interesting observation concerning the re-
lationship between downside and financial risk can be drawn
keeping in mind the decision maker’s intention to minimize
risk at every profit level. Because Risk(x, �) is an increasing
function of the profit target, an intuitive way for reducing it
over an entire continuous interval (

�
� � � � �� ) would be to

minimize the area under it, that is, to minimize the value of the
integral of Risk(x, �) from

�
� to �� . This is the exact definition

of downside risk as given in Eq. 24. Then, one may presume
that minimizing DRisk(x, �) would be a convenient way of
accomplishing the goal of minimizing financial risk. One must
notice, however, that reducing the downside risk at a target
profit � does not explicitly mean that financial risk is minimum
at every single value of profit in the interval 
	 � � � �. This
is because at a given value of � there might exist some risk
curves that having the same downside risk (that is, area) still
exhibit different financial risk at some profits below �. A
hypothetical example of this behavior is depicted in Figure 11
for a profit target � � 0.5.

In view of the above discussion, one needs to analyze what
should be the profit interval where minimizing downside risk
helps to find solutions that satisfy the risk preference of the
decision maker.

Other Measures of Risk: Value at Risk and
Downside Expected Profit

Financial risk measured using the Risk function provides the
probability of achieving any given aspiration level. In the risk
management literature it is also usual to report the expected
value of profit connected to such probability or confidence
level. A widely used measure of this kind is referred as Value
at Risk or VaR (Jorion, 2000), which was introduced by J. P.
Morgan (Guldimann, 2000) and is defined as the expected loss
for a certain confidence level, usually set at 5% (Linsmeier and
Pearson, 2000). A more general definition of VaR is given by
the difference between the mean value of the profit and the
profit value corresponding to the p-quantile. For instance, a
portfolio that has a normal profit distribution with zero mean
and variance 
, VaR is given by zp
, where zp is the number of
standard deviations corresponding to the p-quantile of the profit
distribution. Most of the uses of VaR are concentrated on
applications where the profit probability distribution is as-
sumed to follow a known distribution (usually the normal) so
that it can be calculated analytically. The relationship between
VaR and Risk is generalized as follows

VaR�x, p�� � E�Profit�x�� � Risk
1�x, �� (26)

where p� is the confidence level related to profit �, that is,
p� � Risk(x, �). Notice that VaR requires the computation of
the inverse function of Risk. Moreover, because Risk is a
monotonically increasing function of �, one can see from Eq.
26 that VaR is a monotonically decreasing function of p�.

For two-stage stochastic problems with a finite number of
scenarios, VaR can be easily estimated by sorting the scenarios
in ascending profit order and simply taking the profit value of
the scenario for which the cumulative probability equals the
specified confidence level; that is

VaR�x, p�� � E�Profit�x�� � Profitsp�x�

sp � �s� �
k�1

s

pk � p�� (27)

Figure 10. Interpretation of downside risk.

Figure 11. Downside and financial risk.
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Thus, calculating VaR as a postoptimization measure of risk
is a simple task and does not require any assumptions on the
profit distribution. The difficulty rises when one wants to
include VaR as a measure of risk inside the optimization,
whether in the objective or as a restrictive constraint, because
even though it could be handled through linear expressions, it
would require many additional constraints. This is attributed to
the fact that one would basically need to construct the logic for
the above describing scenario sorting by means of linear con-
straints. Given this computational shortcoming and the fact that
VaR is closely related to Risk, we conclude that it is more
convenient to use VaR as a risk indicator after the optimization
is performed rather than a measure used within the optimiza-
tion.

Another measure of risk that one can propose is the Down-
side Expected Profit (DEP) for a confidence level p�, defined
formally as follows

DEP� x, p�� � �

	

�

� f�x, ��d�

� �Risk�x, �� � dRisk�x, �� (28)

Notice that DEP is a monotonically increasing function of p�.
Because the profit distributions are not symmetric and usually
have different variance, plotting DEP as a function of the risk
can be revealing because at low risk values some feasible
solutions may exhibit larger expected profit. This measure is
illustrated later in an example. Another related risk adjusted
measure is the Risk Adjusted Return on Capital (RAROC),
which is the quotient of the difference between the expected
profit of the project adjusted by risk and the capital (or value)
at risk of an equivalent investment and the value at risk. This
value is known to be a multiple of the Sharpe ratio in portfolio
optimization. The intricacies of this relationship and its possi-
ble use in two-stage stochastic models to manage risk are left
for future work.

Two-Stage Stochastic Programming with
Financial Risk Constraints

This section introduces a new mathematical formulation to
assess and manage financial risk. The idea behind this formu-
lation is that the decision maker wants to maximize the ex-
pected profit and at the same time minimize the financial risk
at every profit level. At first sight this may appear as a two-
objective trade-off; however, it is interesting to note from the
relationship derived in Eq. 14 that a solution that minimizes
financial risk at every profit target also maximizes the expected
net present profit. We emphasize here the qualifier word every,
given that this statement is not true if only a subset of profit
targets is considered. Thus, minimizing Risk(x, �) @ � � �
and maximizing E[Profit(x)] are equivalent objectives. How-
ever, minimization of risk at some profit levels renders a
trade-off with expected profit. As discussed before, a risk-
averse decision maker will feel more comfortable with low risk
at low values of �, whereas a risk taker will prefer to lower the
risk at high values of �. The trade-off lies in the fact that
minimizing risk at low values of � (such as a loss) is in conflict

with the minimization of risk at high values of � (such as large
profits) and vice versa.

From a mathematical programming point of view, minimiz-
ing Risk(x, �) for a continuous range of profit targets � results
in an infinite multiobjective optimization problem. Even
though this model would be able to reflect the decision maker’s
intention, having an infinite optimization problem would be
computationally prohibitive. However, one can approximate
the ideal infinite optimization approach by a finite multiobjec-
tive problem that only minimizes risk at some finite number of
profit targets and maximizes the expected profit, as shown in
Figure 12.

In this case, the objective of maximizing expected profit
should be included because risk is minimized at some values
and not for the entire continuous range. Additionally, including
the expected profit as objective will tend to reduce the risk at
every profit because of the relationship given by Eq. 14. The
finite multiobjective formulation is detailed next.

Finite multiobjective formulation

Max E�Profit� � �
s

psqs
Tys � cTx (29)

Min Risk��1� � �
s

pszs1

···
Min Risk��i� � �

s

pszsi

s.t.
Constraints 2 to 5

qs
Tys � cTx � �i � Uszsi � s � S, i � I (30)

qs
Tys � cTx � �i � Us�1 � zsi� � s � S, i � I (31)

zsi � �0, 1� � s � S, i � I (32)

Figure 12. Multiobjective approach.
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In the above formulation, constraints 30 and 31 force the new
integer variable zsi to take a value of zero if the profit for
scenario s is greater than or equal to the target level (�i) and a
value of one otherwise. To do this, an upper bound of the profit
of each scenario (Us) is used. The value of the binary variables
is then used to compute and penalize financial risk in the
objective function.

To illustrate the usefulness of the above multiobjective for-
mulation, consider a set of hypothetical solutions, as depicted
in Figure 13, where Model SP was first solved to obtain the
solution that maximizes the expected profit and two profit
targets �1 and �2 were later used in the above multiobjective
model to manage financial risk.

In Figure 13, Solutions 2 and 3 maximize the expected profit
with minimum financial risk at profit targets �1 and �2, re-
spectively. Thus, minimizing financial risk at each profit target
independently of others targets will typically result in designs
that perform well around the specific target but do poorly in the
rest of the profit range. When risk, on the other hand, is
minimized for every target at the same time, solutions that
perform well in the entire range of interest may be found. Thus,
using a multiobjective approach all of the solutions 1, 2, 3, and
4 can be obtained giving different importance to each of the
objectives and, finally, it is up to the decision maker to make a
choice accordingly with his/her risk preference. This is an
important advantage over other approaches that are not able to
provide a full spectrum of solutions. Two models and an
algorithm to implement this multiobjective approach are intro-
duced next. These models are different multiparametric repre-
sentations of the above multiobjective model. The first one
includes a goal programming weight �i � 0 in the objective
function to obtain solutions where the relative importance of
expectation and risk is progressively changed, controlling the
shape of the risk curve. This is done by imposing a penalty for
risk at different target profits (�i), as presented next.

Model RO-SP-FR

Max �
s�S

psqs
Tys � cTx � �

s�S

�
i�I

ps�izsi (33)

s.t.
Constraints 2 to 5
Constraints 30 to 32

The second model to manage risk uses a restricted recourse
approach where a new constraint imposes an upper bound to
Risk(x, �i), with the objective function remains the same as in
model SP. This formulation is presented next.

Model RR-SP-FR

Max �
s�S

psqs
Tys � cTx (34)

s.t.
Constraints 2 to 5
Constraints 30 to 32

�
s�S

pszsi � �i � i � I (35)

In the above models the set I is corresponds to all the
targeted profits. Given that the number of binary variables and
the size of these formulations increase with the number of
profit targets one should evaluate for each specific problem
what are the benefits of considering multiple profit targets. In
some cases one may find that setting only one profit target is
sufficient to achieve the goal of obtaining solutions that match
the decision maker’s preference, as will be shown in later in an
illustrative example.

Observing the structure of the two multiparametric models
presented above, one realizes that model RO-SP-FR has the
highly desirable property of separability, that is, there are no
constraints linking different scenarios. On the contrary, formu-
lation RR-SP-FR is nonseparable due to constraint 35, which is
a first-stage constraint since the summation runs over all pos-
sible scenarios. This means that model RO-SP-FR should be
computationally more efficient than model RR-SP-FR because
many techniques have been developed for solving separable
two-stage stochastic problems efficiently (Birge and Louveaux,
1997). Thus, if both formulations were equivalent, meaning
that they have the same optimal solution for appropriate
choices of � and �, then formulation RO-SP-FR would be
preferable. As stated in Theorem 2 (Appendix D) it turns out
that these two formulations are equivalent.

Proving the equivalence between both formulations also
allows proving that their optimal solutions are not stochasti-
cally dominated by any other solutions. A formal definition for
stochastic dominance is the following: a solution I is stochas-
tically dominated by other solution II if for every scenario the
profit of solution II is at least as large as the correspondent to
solution I and strictly greater for at least one scenario. This
concept is also known in the multiobjective literature as Pareto
Optimality. Hence, a solution is said to be Pareto-optimal if it
is not stochastically dominated by any other solution. Clearly,
if solution I is stochastically dominated by solution II then the
expected profit of the latter is strictly greater than the one of the
former. The Pareto optimality of the solutions is a desirable
property because it guaranties that solutions with the maximum
expectation possible are obtained. Theorem 3 in Appendix E
proves that the solutions of both of the risk management

Figure 13. Spectrum of solutions obtained using a mul-
tiobjective approach.
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models presented above are always Pareto-optimal. Taking a
closer look at models RO-SP-FR and RR-SP-FR, one realizes
that constraints 30 and 31 break the original fixed-recourse
property of the problem because in these constraints the coef-
ficients of the second-stage variables ys are stochastic. Given
that having a fixed recourse matrix ensures the feasible region
of the second-stage problem is convex and closed (Birge and
Louveaux, 1997), breaking this property seems at first sight to
be a considerable disadvantage of the proposed formulations.
However, Theorem 4 in Appendix F proves that the feasible
region of the model RO-SP-FR is the same as the feasible
region of model SP and therefore it is still convex and closed.
This is also true for model RR-SP-FR, given that the values of
�i make this model equivalent to model RO-SP-FR.

Next, an algorithm for the implementation of the multiob-
jective approach to financial risk management is presented. In
view of the advantages mentioned in the previous discussion,
model RO-SP-FR is used in this procedure.

Risk Management Procedure Using the Multiobjective
Model RO-SP-FR

(1) Solve the SP problem to obtain a solution that maxi-
mizes the expected profit.

(2) Construct the corresponding risk curve. If the decision
maker is satisfied with the current level of risk, then stop;
otherwise, go to Step 3.

(3) Let the decision maker choose an arbitrary set of profit
targets �i for which financial risk is to be reduced, if possible.
Additionally, for every target define a sequence of ki weights
�i

ki � {�i
1, . . . , �i

ki} to manage the trade-off between expected
profit and risk.

(4) Generate a set of n � �i ki instances of problem RO-
SP-FR corresponding to all combinations of weights � for the
different profit targets. Solve all instances and construct the
resulting risk curves associated with the optimal solution of
each instance.

(5) Let the decision maker evaluate the results. If the deci-
sion maker is satisfied with the risk curve of one or more
solutions, then stop; otherwise, go to Step 3.

In summary, the formulations presented in this section ad-
dress the problem of controlling the financial risk curve of the
solutions to the two-stage stochastic problem such that the
decision maker can satisfy his/her risk preference. Computa-
tionally, however, the inclusion of new integer variables could
in some cases represent a major limitation of these formula-
tions. Adding integer second-stage variables eliminates the
possibility of using efficient decomposition techniques devel-
oped for linear problems with continuous variables. Ap-
proaches to solve stochastic programs with mixed-integer first-
and second-stage variables were introduced by Caroe and
Schultz (1997) and by Ahmed et al. (2000). However, the
computational expense to solve large-scale problems using
these methods is still significant. In additions, using General-
ized Bender’s Decomposition to solve these models can guar-
antee optimality only when the integer variables zsi are treated
as first-stage decisions because nonconvex second-stage sub-
problems would arise otherwise. This limits the efficiency of
the method for problems with large number of scenarios and
first-stage decision variables that include integers. Thus, more
research effort should be directed to efficiently solve these
mixed-integer stochastic formulations. Nonetheless, for some
applications the computational limitations can be overcome

using presampling methods, such as the stochastic average
approximation (Verweij et al., 2001), which yield modest size
MILP instances. To ameliorate some of these problems an
alternative measure of risk is discussed next.

Two-Stage Stochastic Programming Using
Downside Risk

In this section we suggest that DRisk(x, �) be the measure
used to control financial risk at different profit targets. In
addition, Eq. 14 indicates that E[Profit(x)] may also be taken as
a measure of financial risk at higher profit levels. Including the
expected profit in the objective would also help the model
choose the solution with higher expectation in cases where two
or more solutions exhibit the same downside risk at a target �.
The proposed model is as follows.

Model RO-SP-DR

Max 
��
s�S

psqs
Tys � cTx	 � �

s�S

ps	s (36)

s.t.
Constraints 2 to 5

	s � � � cTx � qs
Tys � s � S (37)

	s � 0 � s � S (38)

In this case also a procedure that generates a full spectrum of
solutions is presented. This is accomplished by varying the
profit target � from small values around � � mins

{Profits( x*SP)} up to higher values around � � maxs

{Profits( x*SP)}. In this way, solutions obtained for lower val-
ues of � will generally respond to a risk-averse investor and
solutions obtained with higher � will be more appealing to
risk-taker investors.

Parametric algorithm for financial risk management
using downside risk

(1) Solve the SP problem to obtain a solution that maxi-
mizes the expected profit.

(2) Construct the corresponding risk curve. If the decision
maker is satisfied with the current level of risk, then stop;
otherwise, let k � 1 and go to Step 3.

(3) Define �0 � mins{Profits�x*SP)} and 
 � 0.001 (or
an equivalent small number).

(4) Choose a profit target �k � �k
1. Let lk � 1.
(5) Generate and solve problem RO-SP-DR using �k. Add

the new solution to the cumulative risk curve chart.
(6) Let the decision maker evaluate the results. If the deci-

sion maker is satisfied with the risk curve of one or more
solutions, then stop; otherwise, let k � k � 1 and go to Step 4.

Quite clearly, different values of 
 can possibly lead to
different solution, even for the same profit target. The same is
true for different values of �i

ki in the case of the the RO-SP-FR
model. Models with smaller value of 
 will likely provide
smaller ENPV. This is clearly another tool that the decision
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maker has to obtain more risk curves to choose from, as we
shall see below.

Illustrative Example

This section illustrates the usefulness of the proposed risk
management models using a capacity-planning problem. Con-
sider the two-stage stochastic model presented by Liu and
Sahinidis (1996), which is an extension of the deterministic
mixed-integer linear programming formulation introduced by
Sahinidis et al. (1989).

Model PP

Max ENPV � �
s�1

NS �
t�1

NT

psLt��
l�1

NM �
j�1

NC

��jltsSjlts � �jltsPjlts�

� �
i�1

NP

	itsWits� � �
i�1

NP �
t�1

NT

��itEit � �itYit� (39)

s.t.

YitEit
L � Eit

L � YitEit
U i � 1, . . . , NP t � 1, . . . , NT

(40)

Qit � Qi�t
1� � Eit i � 1, . . . , NP t � 1, . . . , NT

(41)

�
t�1

NT

Yit � NEXPi i � 1, . . . , NP (42)

�
i�1

NP

��itEit � �itYit� � CIt t � 1, . . . , NT (43)

Wits�Qit

i � 1, . . . , NP t � 1, . . . , NT s � 1, . . . , NS (44)

�
l�1

NM

Pjlts � �
i�1

NP

�ijWits � �
l�1

NM

Sjlts � �
i�1

NP


ijWits

j � 1, . . . , NC t � 1, . . . , NT s � 1, . . . , NS (45)

ajlts
L � Pjlts � ajlts

U j � 1, . . . , NC l � 1, . . . , NM

t � 1, . . . , NT s � 1, . . . , NS (46)

djlts
L � Sjlts � djlts

U j � 1, . . . , NC l � 1, . . . , NM

t � 1, . . . , NT s � 1, . . . , NS (47)

Yit � �0, 1� i � 1, . . . , NP t � 1, . . . , NT (48)

Eit, Qit, Wits, Pjlts, Sjlts � 0 � i, j, l, t, s (49)

In this model, the objective function 39 maximizes the
expected net present value (ENPV) over the two stages of the
capacity expansion project, defined as the difference between
sales revenues and the investment, operating and raw material
costs. The investment cost in terms of the design variables is
represented by a variable term that is proportional to the
capacity expansion E and a fixed-charge term that taken into
account using binary decision variables Y. The second stage or
recourse cost is described as the expectation of the sales rev-
enues and the expectation of the second-stage operating costs
over finitely many, mutually exclusive scenarios s for each
time period. Constraint 40 enforces lower and upper bounds in
the capacity expansion by means of the binary variables Y.
Constraint 41 defines the total capacity available for process i
during time period t. Limits on the number of expansions of
processes and the capital budget are imposed by inequalities 42
and 43, respectively. Constraint 44 ensures that the operating
level of a process does not exceed the installed capacity. In
turn, Eq. 45 expresses the material balances for each process,
whereas constraints 46 and 47 enforce lower and upper bounds
for raw materials availability and products sales on each mar-
ket. Observe that constraints 40 through 43 are expressed only
in terms of first-stage variables; hence they are referred as
first-stage constraints. On the other hand, constraints 44
through 47 are indexed over all possible scenarios and are then
called second-stage constraints. In the above formulation the
different scenarios between different time periods have been
treated independently because there are no second-stage con-
straints linking time periods. Thus, a total of NS independent
scenarios per time period are considered. Next, two models to
manage financial risk are presented, the first one using Risk(x,
�) and the second one DRisk(x, �) as measures of risk.

Model RO-PP-FR

Max �
s�1

NS �
t�1

NT

psLs��
l�1

NM �
j�1

NC

��jltsSjlts � �jltsPjlts� � �
i�1

NP

	itsWits�
� �

i�1

NP �
t�1

NT

��itEit � �itYit� � �
s�1

NS �
n�1

NR

�npszsn (50)

s.t.
Constraints 40 to 49

�
t�1

NT

Lt� �
l�1

NM �
j�1

NC

��jltsSjlts � �jltsPjlts� � �
i�1

NP

	itsWits�
� �

i�1

NP �
t�1

NT

��itEit � �itYit�

� �n � Us�1 � zsn�
n � 1, . . . , NR
s � 1, . . . , NS (51)
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�
t�1

NT

Lt� �
l�1

NM �
j�1

NC

��jltsSjlts � �jltsPjlts� � �
i�1

NP

	itsWits�
� �

i�1

NP �
t�1

NT

��itEit � �itYit� � �n � Uszsn

n � 1, . . . , NR
s � 1, . . . , NS

(52)

zsn � �0, 1�
n � 1, . . . , NR
s � 1, . . . , NS (53)

Model RO-PP-DR

Max 
��
s�1

NS �
t�1

NT

psLt��
l�1

NM �
j�1

NC

��jltsSjlts � �jltsPjlts�

� �
i�1

NP

	itsWits� � �
i�1

NP �
t�1

NT

��itEit � �itYit�� � �
s�1

NS

ps	s (54)

s.t.
Constraints 40 to 49

	s � � � �
i�1

NP �
t�1

NT

��itEit � �itYit� � �
t�1

NT

Lt� �
l�1

NM �
j�1

NC

��jltsSjlts

� �jltsPjlts� � �
i�1

NP

	itsWits� s � 1, . . . , NS (55)

	s � 0 s � 1, . . . , NS (56)

Example

This example consists of an investment project involving
five chemical processes and eight chemicals arranged in a
process network, as shown in Figure 14. The project is staged
in three periods of length one, two and a half, and three and a
half years, respectively. The maximum number of expansions
allowed for each process is two and the capital limits at each
period are 100, 150, and 200 M$, respectively. The upper
bound on capacity expansion is 100 kton/yr for all processes in
all periods and none of the processes had initial capacity
installed. Tables 1 and 2 show the fixed and variable invest-
ment costs for each process, respectively, and Table 3 gives the
operational costs. Mass balance coefficients for products and
raw materials are given in Tables 4 and 5. All these parameters
are considered deterministic (i.e., nonstochastic). On the other
hand, market prices, availabilities, and demands were consid-
ered as uncertain parameters characterized by a normal prob-
ability distribution, with mean value and standard deviation as
given in Tables 6 to 9. The uncertainty realizations for this
problem were simulated through 400 independent scenarios
generated by random sampling from the probability distribu-
tions of the problem parameters.

To manage financial risk for the above-described problem,
model PP was solved first, obtaining the solution that maxi-
mizes the expected net present value, without taking financial
risk into account. This solution, the risk curve for which is
shown in Figure 15, is detailed in Table 10 and graphically
represented in Figure 16.

After solving model PP the idea is then to explore the risk
behavior of other solutions by using models RO-PP-FR and
RO-PP-DR. In this way, the decision maker is provided a series
of solutions reflecting different levels of risk exposure to make
a selection according to his/her criteria. First, the results using
model RO-PP-FR are presented.

Results using model RO-PP-FR

To explore different alternatives using this model, financial
risk at several NPV targets from 600 to 1500 M$ was mini-
mized (with weight � � 10,000) considering one target at a
time. The results for each target are shown in Table 11, where

Figure 14. Process network for the example.

Table 1. Fixed Investment Cost Coefficients

Process

�it (k$)

t1 t2 t3

i1 20,000 19,000 18,000
i2 21,000 19,000 17,000
i3 40,000 39,500 39,000
i4 44,000 42,500 40,000
i5 48,000 46,000 44,000

Table 2. Variable Investment Cost Coefficients

Process

�it (k$ � yr/kton)

t1 t2 t3

i1 800 795 790
i2 780 770 760
i3 1400 1360 1320
i4 1360 1340 1320
i5 1300 1290 1280

Table 3. Operation Cost Coefficients

Process

	it (k$ � yr/kton)

t1 t2 t3

i1 2000 2200 2400
i2 2100 2000 1900
i3 1500 1400 1300
i4 1300 1300 1300
i5 1400 1200 1100
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the solution for model PP is also included for comparison
purposes. The risk curves corresponding to the different solu-
tions are shown in Figure 17. A total of 200 scenarios was used
in all instances of problem RO-PP-FR.

Observe that for this example, solutions obtained by mini-
mizing financial risk at targets below the maximum expected
net present value of M$ 1140 exhibit lower risk of realizing a
small NPV. On the other hand, when risk was minimized at
higher NPV targets the solutions showed considerably higher
risk at small profits and only a small reduction in risk at higher
NPV values with respect to the solution given by model PP.
Thus, minimizing risk at large NPV targets brings about higher
risk at lower NPV values. This is in agreement with the theo-
retical behavior described in previous sections. Then, one can
conclude that for this example it does not seem worthwhile to
choose solutions that minimize risk at NPV targets higher than
M$ 1000.

To further analyze the results, notice from Table 12 that as
the NPV target (�) is incremented, the expected net present
value of the solutions approaches to the maximum value ob-
tained with model PP. This is attributed to the relationship
between financial risk and expected profit established by Eq.
14, which shows that as the profit target increases and financial
risk approaches unity, minimizing risk becomes equivalent to
maximizing the expected profit.

So far, a set of solutions showing different risk characteris-
tics was obtained. This set should next be analyzed by the
decision maker and some solution(s) selected. In a situation
where none of the solutions satisfies the decision maker’s
preference, more solutions should be explored using different
targets � and weights � as described in “Two-Stage Stochastic
Programming with Financial Risk Constraints.” The procedure
should be repeated until the decision maker is satisfied or
financial risk cannot be managed further. One can conclude
from Figure 17 that most of the risk behavior for this example
has been already captured by the shown solutions.

One final observation can be made regarding the risk behav-
ior of the decision makers: it is usually assumed that decision
makers are risk-averse, that is, they want to lower their expo-
sure to losses. However, this characteristic may be problem-
dependent: for instance, in this example all solutions guarantee

profit under every scenario. Moreover, solutions reducing risk
to almost zero at a target of � � 600 M$ also exhibit a
probability greater than 50% of not making a profit larger than
M$ 1000. On the other hand, the solution obtained without
penalizing risk (using model SP), has only around 10% risk at
this profit target, but a respectable chance of making much
higher profits. Therefore, even a risk-averse decision maker
may become a risk taker under these circumstances. This
reasoning shows the importance of obtaining a full spectrum of
solutions such as the one generated using the proposed models,
and the need to present them to the decision maker so he/she
can make the final choice.

Results using model RO-PP-DR

This section presents the results obtained with model RO-
PP-DR. The strategy in this case was to handle the risk curves
by minimizing the downside risk at several NPV targets from
600 to 1500 M$ with weight 
 � 0.001 for the expected NPV.
The results for each target are shown in Table 12 and the
corresponding risk curves plotted in Figure 18. The total num-
ber of scenarios in all instances was 400.

Looking at Figure 18 one may notice that some risk curves
are similar to those presented in the previous section; however,
in this case all the curves lay below the curve with maximum
ENPV (obtained with model PP) for small NPV values. Recall
that when model RO-PP-FR was used to minimize financial
risk at high NPV targets it produced solutions with high risk at
small NPV values. These solutions were not found using model
RO-PP-DR because they lead to such a small reduction in risk
for large NPV values that the area under the risk curve (that is,
the downside risk) turns out to be almost always higher than
that of other solutions. Not finding these curves is not disad-
vantageous for this problem because they show no improve-
ment from a risk perspective.

Two different kinds of probability distributions can be well
identified in Figure 18: solutions for � � 600–900 M$ behave
as normally distributed random variables, whereas the rest of
the solutions respond to a different kind of distribution. Three
solutions have been selected to more clearly depict this obser-
vation in Figures 19 and 20. A schematic representation of the
solutions for � � 900 and 1100 is given in Figures 21 and 22,
respectively.

Table 4. Raw Material Stoichiometric Coefficients

Process


ij

j1 j2 j3 j4 j5 j6 j7 j8

i1 1
i2 1
i3 1
i4 1
i5 1

Table 5. Product Stoichiometric Coefficients

Process

�ij

j1 j2 j3 j4 j5 j6 j7 j8

i1 1
i2 1 1
i3 1
i4 1
i5 1 1

Table 6. Expected Purchase Prices and Availabilities

Market l1

Chemical

Price (k$/kton)
Availability

(kton/yr)

t1 t2 t3 t1 t2 t3

j1 4000 4300 4600 50 60 70
j2 5000 5500 6000 60 80 100
j3 6000 6100 6200 40 42 44

Table 7. Expected Sale Prices and Demands

Market l1

Chemical

Price (k$/kton) Demand (kton/yr)

t1 t2 t3 t1 t2 t3

j5 6000 6200 6400 75 90 105
j6 14000 14500 15000 30 60 90
j7 8000 8100 8200 80 85 90
j8 24000 24200 24400 120 130 140
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A final observation based on Figure 17 is that as the NPV
targeted is increased, the resulting risk curves approach to the
curve with maximum ENPV. This is predicted by Eq. 25 of the
first part, which establishes the relationship between downside
risk and expected profit and shows that minimizing downside
risk at high profit targets is equivalent to maximizing the
expected profit.

Finally, one can conclude that using model RO-PP-DR al-
lows managing financial risk because a set of solutions show-
ing different risk curves was obtained. In the next section, this
model is used to examine the effect of inventory on the risk
curves.

Downside expected profit

The DEP is shown in Figure 23 for the optimal solution of
model PP and a solution obtained using model RO-PP-FR with
� � 900, which has an expected value of M$ 908. Consider for
instance any level of risk, say 50%. The risk downside ex-
pected profit DEP(x, 50%) is the expected profit with a level
risk of 50%. Notice that in this way, the actual expected profit
(ENPV) is given by DEP(x, 100%). For this reason, the PP
solution (which has the maximum expected net present value)
has the highest value of DEP(x, 100%). However, at other
levels of confidence (from 0% up to about 67%) the solution
for � � 900 has a higher expected profit. This kind of plots,
therefore, provides the decision maker additional insight about
the risk exposure of each solution.

Computational Issues for Large-Scale Problems
Using Model RO-SP-DR

Two methods are presented in this section aiming at obtain-
ing improved computational performance when solving large-
scale risk management problems with a large number of sce-
narios. First the Sampling Average Approximation method is
introduced and later a solution algorithm that exploits the
decomposable structure of model RO-SP-DR is described.

Sampling average approximation (SAA) method

In large-scale optimization of stochastic problems, sampling
methods coupled with mathematical decomposition have been
widely applied to many applications and incorporated in sev-

eral algorithms [see Birge and Louveaux (1997), Higle and Sen
(1996), and Infanger (1994) for reviews of these techniques].
Recently, Verweij et al. (2001) reported excellent computa-
tional results for different classes of large-scale stochastic
routing problems using the sampling average approximation
method (SAA). Additionally, the stochastic decomposition
method (L-shaped) using Monte Carlo sampling (Higle and
Sen, 1996) or importance sampling (Infanger, 1991) may show
improved computational efficiency in some cases. In this arti-
cle, the SAA method using Monte Carlo sampling was imple-
mented and tested.

In the SAA technique, the expected second-stage profit (re-
course function) in the objective function is approximated by
an average estimate of NS independent random samples of the
uncertain parameters, and the resulting problem is called the
“approximation problem.” Here, each sample corresponds to a
possible scenario and so NS is the total number of scenarios
considered. Then, the resulting approximation problem is
solved repeatedly for M different independent samples (each of
size NS) as a deterministic optimization problem. In this way,
the average of the objective function of the approximation
problems provides an estimate of the stochastic problem ob-
jective. Notice that this procedure may generate up to M
different candidate solutions. To determine which of these M
(or possibly less) candidates is optimal in the original problem,
the values of the first-stage variables corresponding to each

Figure 15. Solution that maximizes the expected net
present value.

Table 8. Standard Deviation of Purchase
Prices and Availabilities

Market l1

Chemical

Price (k$/kton) Availability (kton/yr)

t1 t2 t3 t1 t2 t3

j1 1000 1075 1150 12.5 15 17.5
j2 1250 1375 1500 15 20 25
j3 300 305 310 2 2.1 2.2

Table 9. Standard Deviation of Sale Prices and Demands

Market l1

Chemical

Price (k$/kton) Demand (kton/yr)

t1 t2 t3 t1 t2 t3

j5 1500 1550 1600 18.75 22.5 26.25
j6 3500 3625 3750 7.5 15 22.5
j7 400 405 410 4 4.25 4.5
j8 1200 1210 1220 6 6.5 7

Table 10. Solution Using Model PP

Process Expanded at Period

i1 t1, t3

i2 t3

i3 t1

i4 t2

i5 t2

E[NPV] 1140 M$
E[Sales] 5833 M$
E[Purchases] 3131 M$
E[Operation Cost] 1162 M$
Investment 400 M$
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candidate solution are fixed and the problem is solved again
using a larger number of scenarios NS� �� NS to distinguish
the candidates better. After solving these new problems, an
estimate of the optimal solution of the original problem (x̂*) is
obtained. Therefore, x̂* is given by the solution of the approx-
imate problems that yields the highest objective value for the
approximation problem with NS� samples. This algorithm is
presented next.

SAA algorithm

Select NS, NS�, M
For m � 1 to M

For s � 1 to NS
Use Monte Carlo sampling to generate an independent
observation of the uncertain parameters, �s,m � (qs, Ts,
hs). Define ps � 1/NS.

Next s
Solve problem RO-SP-DR with NS scenarios. Let the x̂m

be the optimal first-stage solution.
Next m
For m � 1 to M

For s � 1 to NS�
Use Monte Carlo sampling to generate an independent
observation of the uncertain parameters, �s,m � (qs, Ts,
hs). Define ps � 1/NS�.

Next s
Solve problem RO-SP-DR with NS� scenarios, fixing x̂m

as the optimal first-stage solution.
Next m
Use x̂* � argmax{Obj(x̂m) 
 m � 1, 2, . . . , M} as the
estimate of the optimal solution to the original problem
where Obj(x̂*) is the estimate of the optimal objective value.
End

Results

The performance of the above SAA algorithm was evaluated
for the illustrative example considering the stochastic program-

Figure 16. Solution that maximizes the expected net
present value.

Figure 17. Solutions obtained using model RO-PP-FR.

Table 11. Solutions Obtained Using Formulation RO-PP-FR

�1 PP 600 700 800 900 1000 1100 1200 1300 1400 1500
�1 — 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

Process Period(s) in Which Capacity Expansion Is Performed
i1 t1, t3 t1 t1 t1, t3 t1, t2 t1, t2 t1, t2 t1, t2 t1, t2 t1, t2 t1

i2 — t3 t3 t1, t2 t1, t2 t1, t2 t1, t2 t1, t2 t1, t2 t1, t3 t2

i3 t1 t1 t1 t1 t2 t2 T2 t2 t2 t2 t2

i4 t2 t2 t2 t2 t3 t3 T3 t3 t3 t3 t3

i5 t2 t2 t2 t2 t3 t3 T3 t3 t3 t3 t3

E[NPV] M$ 1140 876 906 1000 1064 1081 1081 1071 1066 1069 1075
E[Sales] M$ 5833 3693 3971 4702 6191 6220 6169 6201 6173 6314 6226
E[Purchases] M$ 3131 1947 2104 2509 3387 3387 3349 3381 3363 33495 3403
E[Operation Cost] M$ 1162 624 689 868 1343 1358 1345 1352 1348 1370 1362
Investment M$ 400 247 272 325 397 394 394 397 396 439 385
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ming and the downside risk models. Eight different sample
sizes (i.e., total number of scenarios) from 50 to 400 were
considered and the problems for each sample were repeatedly
solved 20 times (M � 20). Finally, the optimal first-stage
solution (referred to here as Sol1) was determined by solving
the models for each of the candidate solutions with NS� �
2000. The rest of the candidate solutions are labeled Sol2, Sol3,
and so forth, according to their frequency. For this problem, the
structure of the candidate solutions is given by the binary
variables Yit, representing the decision of constructing or ex-
panding process i at period t. For each model, the sample
average and standard deviation of the ENPV were computed as
follows

ENPV Average � �
m�1

M

ENPVm (57)

ENPV Std Dev � �¥m�1
M �ENPVm � ENPV Average�2

M � 1

(58)

Similar equations were used to compute the average and
standard deviation for DRisk, as shown next

DRisk Average � �
m�1

M

DRiskm (59)

DRisk Std Dev � �¥m�1
M �DRiskm � DRisk Average�2

M � 1

(60)

The results for the different models are presented in Tables 13
through 15.

By analyzing the results presented in the above tables one
can see that in this example the SAA method performs very
well in terms of differentiating the optimal first-stage solution
(Sol1) from the rest of the candidates. Notice that in all cases
the optimal solution appears with a much higher frequency than
that of the rest of the candidates and that for samples with NS �
150 it is almost the only solution found. Additionally, in most
cases only two solutions are selected as candidates, which is a

Figure 18. Solutions obtained using model RO-PP-DR.
Figure 19. Selected solutions obtained using model RO-

PP-DR.

Table 12. Solutions Obtained Using Formulation RO-PP-DR (Downside Risk Approach)

Profit Target

�

PP 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Process Period(s) in Which Capacity Expansion Is Performed

i1

t1,
t3 — t1 t1 t1 t1

t1,
t3

t1,
t3

t1,
t3

t1,
t3

t1,
t3

t1,
t3

i2 t3 — — t3 t3 t3 t3 t3 t3 t3 t3 t3

i3 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1 t1

i4 t2 t2 t2 t2 t2 t2 t2 t2 t2 t2 t2 t2

i5 t2 t2 t2 t2 t2 t2 t2 t2 t2 t2 t2 t2

E[NPV] 1140 855 875 897 908 9008 1032 1074 1099 1107 1122 1125
E[Sales] 5833 3472 3698 3916 3977 3981 4936 5221 5407 5378 5591 5610
E[Purchases] 3131 1843 1946 2072 2108 2110 2637 2795 287 2867 2999 3010
E[Operation Cost] 1162 551 631 675 689 690 932 1005 1052 1039 1099 1104
Investment 400 222 246 271 273 273 334 348 358 363 370 372
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remarkably small number, considering that the possible ar-
rangements could be as many as 218.

Another evident observation is that the standard deviation
for both ENPV and DRisk decreases as the sample size in-
creases; however, the rate of convergence does not seem very
steep. In relative terms, the downside risk shows a higher

standard deviation. Notice also that for samples with NS � 300
the expected net present value and the downside risk show little
deviation from the optimal values obtained with NS� � 2000.

Generalized Benders Decomposition algorithm

For problems with a large number of scenarios and first-
stage integer variables it is often thought that exploiting the

Figure 20. Probability distribution functions of selected
solutions.

Figure 21. Solution obtained with model RO-PP-DR and
� � 900.

Figure 22. Solution obtained with model RO-PP-DR and
� � 1100.

Figure 23. Downside expected profit of two different so-
lutions.
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decomposable structure of the problem could help reduce the
computational effort to solve it. In this sense, Generalized
Benders Decomposition (GBD) (Benders, 1962; Geoffrion,
1972) has been found to be efficient to solve some MILP
problems arising in stochastic programming (Liu and Sahini-
dis, 1996). Generally, the computational efficiency of this
algorithm is highly dependent on the specific structure and
characteristics of the problem. Hence, strategies that combine
the GBD algorithm with other approaches such as branch and
cut (Verweij et al., 2001), addition of integer cuts (Iyer and
Grossman, 1989), or heuristics (Ahmed and Sahinidis, 2000a),
designed for the specific application, may greatly improve
computational performance.

As a first step, the incorporation of GBD to solve large-scale
instances of risk management model RO-SP-DR in the pro-
posed SAA algorithm is suggested, and two different GBD
algorithms are explored. In the first one, the first-stage vari-
ables are taken as complicating variables, rendering a Benders’
Primal problem with only second-stage constraints and vari-
ables, which is then solved simultaneously for all scenarios.
This algorithm will be referred to in this article as “Benders.”
In addition, the second GBD algorithm also considers the
first-stage variables as complicating ones, although the result-
ing Benders’ Primal problem is solved separately for each
scenario, taking advantage of the decomposable structure of the
problem. This algorithm is referred to here as “Benders-SD”
and corresponds to a stochastic decomposition of the original
problem. Before presenting the structure of the GBD algo-
rithms, the optimization problems that are used inside the
algorithm are defined.

Optimality Primal P(k)

Max 
 �
s�S

psqs
Tys

k � �
s�S

ps	s
k (61)

s.t.

Wys
k � hs � Tsx

k � s � S (62)

	s
k � qs

Tys
k � � � cTxk � s � S (63)

ys
k, 	s

k � 0 � s � S (64)

Feasibility Primal F(k)

Min �
s�S

�eT�s
� � eT�s � eT�s


� (65)

s.t.

Wys
k � I�s

� � I�s

 � hs � Tsx

k � s � S (66)

	s
k � qs

Tys
k � I�s � � � cTxk � s � S (67)

ys
k, 	si

k , �s
�, �s


, �s � 0 � s � S (68)

Master Problem M(k)

Max � (69)

s.t.

Axk � b (70)

Table 13. SAA Method Results for Model PP

NS
NS� M ENPV Average ENPV Std Dev

Candidate Solutions Frequency

Sol1 Sol2 Sol3 Sol4

50 20 1177.1 78.3 13 4 2 1
100 20 1144.4 56.7 18 2 — —
150 20 1144.7 31.9 20 — — —
200 20 1152.3 33.1 20 — — —
250 20 1156.2 30.5 20 — — —
300 20 1150.3 24.2 20 — — —
350 20 1157.6 30.8 20 — — —
400 20 1154.3 30.9 20 — — —

2000 — 1152.4 — — — — —

Table 14. SAA Method Results for Model RO-PP-DR (� � 900, � � 0.001)

NS
NS� M ENPV Average ENPV Std Dev DRisk Average DRisk Std Dev

Candidate Solutions Frequency

Sol1 Sol2 Sol3 Sol4

50 20 972.7 78.5 53.1 12.7 8 6 4 2
100 20 932.9 42.5 57.0 7.1 15 5 — —
150 20 917.6 28.7 56.5 5.3 19 1 — —
200 20 927.4 48.7 58.6 4.0 16 3 — 1
250 20 931.0 36.6 57.6 6.2 16 4 — —
300 20 919.6 27.8 57.6 5.1 18 2 — —
350 20 924.5 33.2 56.6 5.3 18 2 — —
400 20 915.3 22.5 58.6 4.1 18 2 — —

2000 — 914.2 — 58.1 — 1 — — —
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� � 
cTxk � �
s�S

��s
1,k�hs � Tsx

k� � �s
2,k�� � cTxk��

k � Ko (71)

0 � �
s�S

�
s
1,k�hs � Tsx

k� � 
s
2,k�� � cTxk�� k � Kf

(72)

xk � 0 xk � X (73)

The above problems are used in each iteration (k) of the
Benders algorithm. The first problem, P(k) or Optimality Pri-
mal is used to generate an optimality cut constraint that is a
linear approximation of the recourse function. If subproblem
P(k) turns out to be infeasible, then a feasibility primal problem
F(k) is solved to generate a feasibility cut that reduces the
feasible region of the master problem, eliminating infeasibili-
ties in the second-stage. Finally, the master problem M(k) is
iteratively solved to update the first-stage decisions until opti-
mality is achieved.

The optimization problems for the Benders-SD algorithm are
presented next. In this case, the optimality and feasibility
problems are solved independently for each different scenario.

Optimality Primal P(k, s)

Max 
qs
Tys

k � 	s
k (74)

s.t.

Wys
k � hs � Tsx

k (75)

	s
k � qs

Tys
k � � � cTxk (76)

ys
k, 	s

k � 0 (77)

Feasibility Primal F(k, s)

Min eT�s
� � eT�s � eT�s


 (78)

s.t.

Wys
k � I�s

� � I�s

 � hs � Tsx

k (79)

	s
k � qs

Tys
k � I�s � � � cTxk (80)

ys
k, 	si

k , �s
�, �s


, �s � 0 (81)

Master Problem M(k)

Max � (82)

s.t.

Axk � b (83)

� � 
cTxk � �
s

ps��s
1,k�hs � Tsx

k� � �s
2,k�� � cTxk��

k � Ko (84)

0 � 
s
1,k�hs � Tsx

k� � 
s
2,k�� � cTxk� s � Sk, k � Kf (85)

xk � 0 xk � X (86)

Having properly defined the correspondent optimization
problems, the GBD algorithms are presented next.

Benders algorithm

Initialization Set k3 1 and choose x1 � {x 
 Ax � b, x � 0}.
Set UB 3 	 and LB 3 
	. Let the set of optimality and
feasibility cuts be Ko 3 {�} and Kf 3 {�}, respectively.

Step 1 Solve optimality primal P(k).
If P(k) is feasible, then:

● Let �s
1,k and �s

2,k be the optimal Lagrange multipliers
associated with constraints 62 and 63, respectively.

● Set Ko 3 Ko � {k}.
● Let ys

k* and 	s
k* be the optimal values of the variables in

P(k) and go to Step 2.
Else,

● Solve the feasibility cut primal F(k).
● Let 
s

1,k and 
s
2,k be the optimal Lagrange multipliers

associated with constraints 66 and 67, respectively.
● Set Kf 3 Kf � {k} and go to Step 3.
Step 2 Let LB � max{LB, 
(¥s psqs

Tys
k* 
 cTxk) 
 ¥s

ps	s
k*}. If UB 
 LB � tolerance, then terminate with xk being

an optimal solution to the problem.

Table 15. SAA Method Results for Model RO-PP-DR (� � 1100, � � 0.001)

NS
NS� M ENPV Average ENPV Std Dev DRisk Average DRisk Std Dev

Candidate Solutions
Frequency

Sol1 Sol2 Sol3

50 20 1055.5 74.5 176.8 25.9 14 4 2
100 20 1055.5 59.2 180.0 23.6 19 1 —
150 20 1076.4 36.5 172.0 13.5 20 — —
200 20 1073.7 47.2 175.0 17.8 20 — —
250 20 1074.8 35.0 171.8 14.2 20 — —
300 20 1088.2 23.3 167.8 11.6 20 — —
350 20 1086.1 27.9 169.0 10.5 20 — —
400 20 1081.0 28.4 172.0 9.3 20 — —

2000 — 1092.9 — 168.2 — 1 — —
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Step 3 Solve the master problem M(k). If this problem is
infeasible, then terminate; the original problem is infeasible.
Else, let xk�1 be a new first-stage decision and UB � �* be a new
upper bound of the solution. Set k3 k � 1 and go to Step 1.

Benders-SD algorithm

Initialization Set k 3 1 and choose x1 � {x 
 Ax � b, x �
0}. Set UB 3 	 and LB 3 
	. Let the set of optimality and
feasibility cuts be Ko 3 {�} and Kf 3 {�}, respectively.

Step 1 For each s solve optimality primal P(k, s).
If P(k, s) is feasible @ s, then:

● Let �s
1,k and �s

2,k be the optimal Lagrange multipliers
associated with constraints 75 and 76, respectively.

● Set Ko 3 Ko � {k}.
● Let ys

k* and 	s
k* be the optimal values of the variables in

P(k, s) and go to Step 2.
Else,

● Let Sk be the set scenarios for which P(k, s) is infeasible.
● Solve the feasibility cut primal F(k, s) @ s � Sk.
● Let 
s

1,k and 
s
2,k be the optimal Lagrange multipliers

associated with constraints 79 and 80, respectively.
● Set Kf 3 Kf � {k} and go to Step 3.
Step 2 Let LB � max{LB, 
(¥s psqs

Tys
k* 
 cTxk) 
 ¥s

ps	s
k*}. If UB 
 LB � tolerance, then terminate with xk being

an optimal solution to the problem.
Step 3 Solve the master problem M(k). If this problem is

infeasible, then terminate; the original problem is infeasible.
Else, let xk�1 be a new first-stage decision and UB � �* be a new
upper bound of the solution. Set k3 k � 1 and go to Step 1.

Results

The performance of the GBD algorithms was evaluated for
the example using the stochastic programming (PP) and the
downside risk (RO-PP-DR) models, considering eight different
numbers of scenarios ranging from 50 to 400. The algorithms

were coded in GAMS (Brooke et al., 1988) and benchmarked
with CPLEX 7.0 (CPLEX, 2000) using default options. In each
case, the total computational time to solve the problem was
accounted for. In addition, the time required to solve the
optimization problems and time consumed in pre- and postpro-
cessing tasks was also recorded. This latter is the accumulation
of times of startup, compilation, execution, and closedown for
each subproblem. The results are summarized in Tables 16 to
18 and Figures 24 to 26.

Some insightful observations can be derived from the results
presented in the previous tables and figures. First, we can
conclude that Benders-SD is by far the most inefficient tech-
nique for this test problem using GAMS. This is mainly a
consequence of the excessive time required for pre- and post-
processing tasks such as startup, compilation, execution, and
closedown for each subproblem. Notice that this time is in most
cases larger than the actual time required to solve the problems
to optimality. Apparently, GAMS is not very efficient for these
tasks and the pre- and postprocessing times could be reduced if
another platform were used.

Another observation is that the Benders algorithm becomes
more efficient as the number of scenarios increases. Even
though the total time is always increasing with the number of
scenarios, the slope for this technique seems to be rather flat.
This becomes more evident by looking at Figures 24 to 26 and
noticing that the curves for Benders do not only lie below those
for CPLEX but also have a flatter increase trend.

Finally, it should be noted that CPLEX solver is very effi-
cient for problems with few scenarios (NS � 200). This is a
very important property in view of the results obtained by use
of the SAA algorithm presented in the previous section. Be-
cause the SAA algorithm showed very good performance in
terms of differentiating the optimal first-stage solution, even
for problems with small number of scenarios, one promising
strategy to reduce the computational times would be to con-
sider a large number of repetitions, using CPLEX to solve

Table 16. Computational Performance for Model PP

NS

CPLEX BENDERS BENDERS-SD

Total Time (s) Optimization Processing Total Time (s) Optimization Processing Total Time (s) Optimization Processing

50 14 13 1 175 120 55 1798 932 866
100 77 76 1 272 181 91 3835 1800 2035
150 169 167 2 297 189 108 5768 2597 3171
200 344 341 3 427 268 159 — — —
250 466 462 4 427 256 171 — — —
300 631 626 5 460 269 191 — — —
350 821 814 7 554 326 228 — — —
400 1327 1319 8 762 453 310 — — —

Table 17. Computational Performance for Model RO-PP-DR (� � 900, � � 0.001)

NS

CPLEX BENDERS BENDERS-SD

Total Time (s) Optimization Processing Total Time (s) Optimization Processing Total Time (s) Optimization Processing

50 33 32 1 274 198 76 2271 1160 1111
100 152 151 1 369 254 115 4600 2191 2409
150 302 300 2 385 254 131 5886 2570 3316
200 644 641 3 443 281 162 — — —
250 1001 997 4 575 362 213 — — —
300 2081 2076 5 612 375 237 — — —
350 1459 1449 10 836 523 313 — — —
400 3550 3541 9 866 526 340 — — —
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problems with fewer scenarios. The computational assessment
of such a strategy is left for future work.

Conclusions

This article has addressed several issues related to financial
risk management in the framework of two-stage stochastic
programming models, developing new formulations that allow
the decision maker to obtain solutions that are in agreement
with his/her risk preference. First, the theoretical aspects of risk
management, including a formal definition of risk as well as
mathematical models that manage financial risk, were devel-
oped. The trade-offs between risk and profitability were dis-
cussed and the cumulative risk curves were found to be an
appropriate way to visualize the risk behavior of different
alternatives. Furthermore, the concept of downside risk was
examined, finding a close relationship with financial risk. Con-
sequently, it was suggested that downside risk be used to
measure financial risk, given that it eliminates the need to
introduce new binary variables that increase the computational
burden. An illustrative example showed that the maximization
of the expected net present value by itself is not an appropriate
objective and that solutions with higher risk exposure are
obtained. Also, a preliminary study of the computation issues
related to risk management for large-scale problems was pre-
sented. In this regard, the sample average approximation
method was tested obtaining promising results. Additionally,
two Generalized Benders Decomposition algorithms were pre-

sented, fundamentally because they represent the theoretical
foundations for future research of more advanced stochastic
decomposition methods. For the test problem, it was observed
that the use of GBD without scenario decomposition requires
less computational time than the CPLEX standard optimization
solver when the number of scenarios increases. On the other
hand, GBD with scenario decomposition had a poor perfor-
mance, mainly because the pre- and postprocessing times be-
come increasingly large for problems with a large number of
scenarios. Finally, it was observed that CPLEX solver is very
efficient for problems with few scenarios (NS � 200), suggest-
ing that using this solver in the SAA algorithm with large M
and small NS could be computationally efficient.

Notation
Indices

i � for the set of processes (i � 1 to NP)
j � for the set of chemicals ( j � 1 to NC)
k � Bender’s Decomposition iteration index
l � for the set of markets (l � 1 to NM)
t � for the set of time periods (t � 1 to NT)
s � for the set of scenarios (s � 1 to NS)

Sets

I � profit targets

Figure 24. Computational performance for model PP.
Figure 25. Computational performance for model RO-

PP-DR (� � 900, � � 0.001).

Table 18. Computational Performance for Model RO-PP-DR (� � 1100, � � 0.001)

NS

CPLEX BENDERS BENDERS-SD

Total Time (s) Optimization Processing Total Time (s) Optimization Processing Total Time (s) Optimization Processing

50 18 17 1 254 186 68 2015 1015 1000
100 94 93 1 353 246 107 4248 2009 2239
150 116 114 2 433 287 146 7013 3075 3938
200 273 270 3 489 319 170 — — —
250 477 473 4 623 397 226 — — —
300 569 564 5 614 380 234 — — —
350 731 725 6 843 526 317 — — —
400 985 977 8 762 458 304 — — —
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Ko � set of optimality cuts in the Generalized Benders De-
composition algorithm

Kf � set of feasibility cuts in the Generalized Benders De-
composition algorithm

S � set of scenarios
Sk � set of scenarios with infeasible optimality sub problems

at iteration k in GBD
X � feasibility set for first-stage decision variables

Parameters

A � matrix of deterministic coefficients of the first-stage
constraints

ajlts
L � lower bound for purchases of chemical j in market l

within period t under scenario s
ajlts

U � upper bound for purchases of chemical j in market l
within period t under scenario s

b � vector of deterministic independent terms of the first-
stage constraints

c � vector of deterministic first-stage cost coefficients
CIt � maximum capital investment allowed in period t

djlts
L � lower bound for sales of chemical j in market l within

period t and under scenario s
djlts

U � upper bound for sales of chemical j in market l within
period t under and scenario s

Eit
L � lower bound for the expansion capacity of process i at

the beginning of period t
Eit

U � upper bound for the expansion capacity of process i at
the beginning of period t

hs � vector of stochastic independent terms of the second-
stage constraints

Lt � length of period t (in years)
LB � objective function lower bound for GBD algorithm

NEXPi � maximum number of expansions allowed for process i
ps � probability of occurrence of scenario s
qs � vector of stochastic coefficients of the recourse function
Ts � technology matrix of the second-stage constraints

UB � objective function upper bound for the GBD algorithm
�it � expansion cost per unit of capacity for process i at the

beginning of period t
�it � fixed cost of establishing or expanding process i at the

beginning of period t
�jlts � sales price of chemical j in market l within period t under

scenario s
	it � operating cost coefficient of process i within period t

under scenario s

�jlt � purchase price of chemical j in market l within period t
under scenario s

�ij � stoichiometric coefficient representing the amount of
chemical j produced per unit of capacity of process i


ij � stoichiometric coefficient representing the amount of
chemical j consumed per unit of capacity of process i


 � goal programming weight for downside risk formula-
tions

� � goal programming weight for financial risk formulations
� � upper bound for the upper partial mean or financial risk

in RR formulations
� � profit target
�� � profit upper bound

�
� � profit lower bound

Variables

Eit � expansion in capacity of process i at the beginning of
period t

ENPV � expected net present value
Pjlt � units of chemical j purchased in market l within period

t under scenario s
Qit � capacity of process i at the beginning of period t
Sjlt � units of chemical j sold in market l within period t under

scenario s
Wit � operating capacity of process i at the beginning of period

t under scenario s
Yit � binary variable set to one only if process i is expanded

at the beginning of period t
x � first-stage decision variables. The values of these vari-

ables define a “design” or “plan”
ys � second-stage decision variables for scenario s
zsi � binary variable equal 1 if the profit of scenario s is

smaller than the profit target �i

	s � positive profit deviation from the target for scenario s
�s

1,k, �s
2,k � optimal Lagrange multipliers for optimality subproblem

of GBD
�s

�, �s

, �s � variables for feasibility subproblem of GBD


s
1,k, 
s

2,k � optimal Lagrange multipliers for feasibility subproblem
of GBD

� � objective function for master problem of GBD
� � profit

Functions

DRisk(x, �) � downside risk of solution x at a profit target �
f(x, �) � profit probability distribution function

Profit(x) � profit for design x
Risk(x, �) � financial risk of solution x at a profit target �

DEP(x, p�) � downside Expected Profit for a risk level p�

VaR(x, p�) � value at Risk for a risk level p�

zs(x, �) � probability of the profit for design x under scenario s
being lower than �

	(x, �) � positive deviation from the profit target � for design x
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Appendix

A. Continuous behavior of the cumulative risk curves

This appendix proves formally that, if Profit(x) has a con-
tinuous probability distribution, then, when the number of
scenarios becomes increasingly large [Cardinality(S)3 	], the
cumulative risk curves calculated using scenarios approach
continuous behavior.

Mathematically, the mentioned observation comes from the
fact that the continuous and discrete definitions of financial risk
yield the same value, that is

lim
Card�S�3	

�
s

pszs�x, �� ��

	

�

f�x, ��d� (A1)

Using the definition of risk, one can relate the probability
distribution function f (x, �) with a probability as follows

Risk�x, �� � P�� � �� ��

	

�

f�x, ��d� (A2)

Now assume that one takes NS random samples of the
uncertainty space using the probability distributions of the
uncertain parameters for the problem. Then, each sample s
constitutes a possible scenario with a probability of occurrence
defined as ps � 1/NS, rendering ¥s�S ps � 1.

From probability theory, it is well known that when the
number of samples (scenarios) becomes increasingly large, the
sample distribution approximates the actual distribution of the
original probability space. Then, the profit distribution obtained
using the sampled parameters will approximate to the actual
profit distribution.

Assume now that one has solved the two-stage stochastic
problem with NS scenarios obtaining the resulting profit for
each scenario, �s, among which there are N different values,
with N � NS. Afterward, the scenarios were sorted in ascend-
ing profit order such that �n�1 � �n for n � 1 to N. In turn, the
total number of scenarios having a profit less or equal than the
target � is denoted as N�. Because of the convergence of the
sample distribution to the actual distribution of the uncertainty
space, it follows that when the profit has a continuous proba-
bility distribution and NS3 	, then N3 	, N�3 	, and the
difference ��n � �n�1 
 �n tends to zero.
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Now, given that f (x, �) is a continuous function, the Mean
Value Theorem may be used to approximate its value at any
given value of profit �. Then, from Eq. A2, one obtains

f� x, �n� � lim
NS3	

P�� � �n�1� � P�� � �n�

��n�1 � �n�
(A3)

From probability theory, it follows that the numerator on the
right-hand side of Eq. A3 is just the probability of the profit
being between �n and �n�1 [i.e., P(�n � � � �n�1)]. Using this
result, the integral defining financial risk in Eq. A2 becomes

�

	

�

f� x, ��d� � lim
NS3	

�
n�1

N� �P��n � � � �n�1�

��n
���n

� lim
NS3	

�
n�1

N�

P��n � � � �n�1� (A4)

In order to calculate the probability P(�n � � � �n�1), we
define the set �n as follows: �n � {s 
 �n � �s � �n}. Then

P��n � � � �n�1� � lim
NS3	

Card��n�

NS
(A5)

In turn, the cardinality of the set �n can be calculated using
binary numbers for each scenario, as follows

�sn � �1 If �s � �n

0 otherwise � s � S, 1 � n � N (A6)

Then,

Card��n� � �
s

��s,n�1 � �s,n� (A7)

Using this result together with Eq. A5 and the definition of
ps, Eq. A4 becomes

�

	

�

f� x, ��d� � lim
NS3	

�
n�1

N� �
s

ps��s,n�1 � �s,n�

� lim
NS3	

�
s

ps �
n�1

N�

��s,n�1 � �s,n� (A8)

Now the possible values for the last summation in the above
equation are

�
n�1

N�

��s,n�1 � �s,n� � �1 If �s � �
0 otherwise � s � S (A9)

Notice that Eq. A9 coincides with the definition of zs given
in Eq. 10. Then, using this observation to replace the last
summation into Eq. A8 the result sought is finally achieved

�

	

�

f� x, ��d� � lim
NS3	

�
s

pszs (A10)

B. Relation between expected profit and financial risk
for scenario-based cases

This appendix derives the relationship between expected
profit and financial risk for the case where the profit has a
discrete probability distribution obtained from a finite number
of scenarios. Assume that the two-stage stochastic problem
with NS scenarios is solved obtaining the resulting profit for
each scenario, �s. Therefore, the expected value of the profit
and the financial risk are given by

E�Profit�x�� � �
s�S

ps�s (B1)

Risk�x, �� � �
s�S

pszs�x, �� (B2)

Afterward, the scenarios were sorted in ascending profit
order, such that �s�1 � �s. Additionally, for the last scenario
[the one with the highest profit and Ordinal(s) � NS] �NS�1 is
defined as �� , with �� being any value larger than �NS. Similarly,
�� is defined as the lowest scenario profit [Ordinal(s) � 1].
Using these definitions, the incurred financial risk at a profit �s

can be expressed as

Risk��x, �s� � Risk��x, �s
1� � ps (B3)

Here, the superscript “�” stands for the limit coming from the
right, given that in the scenario-based cases Risk(x, �) is a
discontinuous step-shaped function at �s for all s � S. Solving
for ps and replacing in Eq. B1 yields

E�Profit�x�� � �
s�S

Ord�s��1

�Risk��x, �s� � Risk��x, �s
1���s

� Risk��x,
�
��

�
� (B4)

By distributing the summations and rearranging, this last
expression becomes

E�Profit�x�� � � �
s�S

Ord�s��1

Risk��x, �s��s � Risk��x,
�
��

�
��

� �
s�S

Ord�s��1

Risk��x, �s
1��s (B5)

Notice that the term between parentheses in Eq. B5 is equal to
�s�S Risk�(x, �s)�s. In turn, the last term can be written as

�
s�S

Ord�s��NS

Risk��x, �s��s�1

or simply
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�
s�S

Risk��x, �s��s�1 � ��

Finally, using these expressions in Eq. B5, the relationship
sought is obtained:

E�Profit�x�� � �� � �
s�S

Risk��x, �s���s�1 � �s� (87)

The summation in this expression represents the area under
the cumulative risk curve, as illustrated in Figure 8.

C. Behavior of the risk curves

Theorem 1 Let x* denote the optimal values of the first-stage
variables for problem SP and x the values of first-stage vari-
ables for any other feasible solution with E[Profit(x)] �
E[Profit(x*)] and E[Profit(x*)] � 	. Then, there exists � � �
such that Risk(x, �) � Risk(x*, �).

Proof: The proof is by contradiction. Consider the case where
the profit has a continuous probability distribution, given that
the discrete distribution case can be seen as a particular case of
the former. Assume that there exists a solution x for which
Risk(x, �) � Risk(x*, �) @ � � �. Then, the strategy is to
show that this yields E[Profit(x)] � E[Profit(x*)], which is
impossible because x* is the optimal solution to model SP.
Under these assumptions

Risk�x, �� ��

	

�

f�x, ��d� (C1)

Risk�x*, �� ��

	

�

f�x*, ��d� (C2)

E�Profit�x�� � lim
�3	

�

�

�

�f�x, ��d� � lim
�3	

�
Risk� x,
��

Risk� x,��

�dRisk�x, ��

(C3)

E�Profit�x*�� � lim
�3	

�

�

�

�f�x*, ��d�

� lim
�3	

�
Risk� x*,
��

Risk� x*,��

�dRisk�x*, �� (C4)

Integrating by parts, the expected values can be rewritten as

E�Profit�x�� � lim
�3	

��Risk�x, ��

�
� ��


�

�

Risk�x, ��d�� (C5)

E�Profit�x*�� � lim
�3	

��Risk�x*, ��

�
� ��


�

�

Risk�x*, ��d��
(C6)

The difference between the expected values is

E�Profit�x*�� � E�Profit�x�� � lim
�3	

���Risk�x*, ��

� Risk�x, ���

�
� ��


�

�

�Risk�x, �� � Risk�x*, ���d�� (C7)

The first term in the righthand side of Eq. C7 vanishes, given
that Risk(x*, �) � Risk(x, �) � 1 and Risk(x*, 
�) � Risk(x,

�) � 0 for some sufficiently large value of �. In addition,
because of the assumption that Risk(x, �) � Risk(x*, �) @ � �
�, the integrand in the second term is negative @ � � �. Thus,
one arrives at E[Profit(x)] � E[Profit(x*)], which is the con-
tradiction sought.

Corollary 1 It is impossible to obtain a feasible design x
having a risk curve that lies entirely below the risk curve of the
optimal design of problem SP.

D. Equivalence of models RO-SP-FR and RR-SO-FR

Theorem 2 For a given �i � 0, (x*, y*, z*) is an optimal
solution of problem RR-SP-FR if and only if there exist �i � 0
such that (x*, y*, z*) is an optimal solution of problem RO-
SP-FR.

Proof: The approach for this proof was first presented in
Ahmed and Sahinidis (1998), applied to the robustness formu-
lations. Consider the following Lagrangian relaxation (LR) of
problem RR-SP-FR where constraints 35 are relaxed and �i are
the corresponding Lagrange multipliers.

LR

Max �
s�S

psqs
Tys � cTx � �

i�I

�i��
s�S

pszsi � �i	 (88)

s.t.
Constraints 2 to 5
Constraints 30 to 32

Because the set of constraints 35 is convex, the strong
duality theorem proves that a solution (x*, y*, z*) is optimal to
RR-SP-FR if and only if it is optimal to the above relaxed
problem (LR) with �i � 0. The proof follows by realizing that
RO-SP-FR is equivalent to LR for positive �i.

E. Pareto optimality of the solutions of risk
management models

Theorem 3 An optimal solution to models RO-SP-FR and
RR-SP-FR is not stochastically dominated by any other solu-
tion; that is, the solution is Pareto optimal.
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Proof: Assume solution I to be an optimal solution to model
RR-SP-FR. Furthermore, assume I is stochastically dominated
by another feasible solution II. Then, by definition of stochastic
dominance, II has an expected profit strictly greater than that of
I. However, this contradicts the assumption that solution I is
optimal. Thus, an optimal solution to RR-SP-FR cannot be
stochastically dominated by any other solution. The proof for
model RO-SP-FR follows from the equivalence derived in
Theorem 2.

F. Feasible region of problems SP and RO-SP-FR

Theorem 4 Any first-stage solution x that is feasible for prob-
lem SP with Profit(x) � 	, is also feasible in problem RO-SP-
FR; that is, the problems have the same feasible region.

Proof: Clearly, if solution x is feasible in problem SP it must
satisfy constraints 2 to 5, which are also present in problem
RO-SP-FR. In addition, constraints 30 to 32 are satisfied for
any value of x provided Us is a valid profit upper bound.
Consequently, all constraints of problem RO-SP-FR are satis-
fied and, thus, x is feasible in RO-SP-FR. Then, if every
feasible solution to problem SP is also feasible in problem
RO-SP-FR, it follows that the feasible region of the latter
includes the feasible region of the former. In turn, any feasible
solution of problem RO-SP-FR has to satisfy constraints 2 to 5
and is therefore feasible in SP. From this it follows that both
feasible regions are equal.
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