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Abstract

In this paper, a rigorous MILP formulation for grass-root design of heat exchanger networks is developed. The methodology does not
rely on traditional supertargeting followed by network design steps typical of the Pinch Design Method, nor is a non-linear model based on
superstructures, but rather gives cost-optimal solutions in one step. Unlike most models, it considers splitting, non-isothermal mixing and
it counts shells/units. The model relies on transportation/transshipment concepts that are complemented with constraints that allow keeping
track of flow rate consistency when splitting takes place and with mechanisms to count heat exchanger shells and units. Several examples
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from the literature were tested, finding that the model usually obtains better solutions. In some cases, the model produced unknow
that were not found using superstructure optimization methods, even when the same pattern of matches is used.
© 2005 Published by Elsevier Ltd.
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1. Model for grass-root synthesis

The problem of designing heat exchanger networks is one of the oldest problems in process synthesis and perha
that has received the largest attention. The reader is referred to recent books (Biegler, Grossmann, & Westerberg, 1997; Seider,
Seader, & Lewin, 1999; Shenoy, 1995; Smith, 1995) for the complete background on all the variety of methodologies develo
throughout the years. In addition, the reader may consult three reviews on the topic of HENS byFurman and Sahinidis (2002,
Gundersen and Naess (1988)andJezowski (1994a, 1994b).

A well-known pinch design method emerged throughout the years as the easiest response to the challenge. It rel
steps, energy supertargeting and final network design. Energy supertargeting tries to determine the trade off betwe
and area cost before attempting the design. Once this trade off is determined, a single minimum approach temperatur
is established and a design is performed, by starting to place matches at the pinch and using a tick-off rule (Linnhoff and
Hindmarsh, 1983; Smith, 1995). Designs obtained using the pinch design methodology have been shown to be non-o
To ameliorate some of the shortcomings of the pinch design method, an alternative minimum temperature differe
exchanger minimum approach temperature (EMAT) was introduced and used. At the same time, superstructure-like n
mathematical programming models started to be proposed. A large variety of methodologies have been developed a
initial approaches using several alternative objective functions in sequential and one step, as well as iterative proce
these formulations are thoroughly reviewed byFurman and Sahinidis (2002).
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Nomenclature

Sets
B {(i, j)| more than one heat exchanger is permitted between hot streami and cold streamj}
Cz {j|j is a cold stream present in zonez}
Cz

n {j|j is a cold stream present in temperature intervaln in zonez}
CUz {j|j is a cooling utility present in zonez} (CUz ⊂ Cz)
Hz {i|i is a hot stream present in zonez}
Hz

m {i|i is a hot stream present in temperature intervalm in zonez}
HUz {i|i is a heating utility present in zonez} (HUz ⊂ Hz)
Mz {m|m is a temperature interval in zonez}
m0

i {m|m is the starting temperature interval for hot streami}

m
f
i {m|m is the final temperature interval for hot streami}

Mz
i {m|m is a temperature interval belonging to zonez, in which hot streami is present}

n0
j {m|m is the starting temperature interval for cold streamj}

n
f
j {m|m is the final temperature interval for cold streamj}

Nz
j {n|n is a temperature interval belonging to zonez, in which cold streamj is present}

NIH {i| non-isothermal mixing is permitted for hot streami}
NIC {j| non-isothermal mixing is permitted for cold streamj}
P {(i, j)| a heat exchange match between hot streami and cold streamj is permitted}
PH

im {i| heat transfer from hot streami at intervalm to cold streamj is permitted}
PC

jn {j| heat transfer from hot streami to cold streamj at intervaln is permitted}

SH {i| splits are allowed for hot streami}
SC {j| splits are allowed for cold streamj}
Z {z|z is a heat transfer zone}

Parameters
Az

ijmax maximum shell area for an exchanger matching hot streami and cold streamj in zonez

cA
ij variable cost for a new heat exchanger matching hot streami and cold streamj

cF
ij fixed charge cost for a heat exchanger matching hot streami and cold streamj

cH
i cost of heating utilityi

cC
j cost of cooling utilityj

Cpim heat capacity of hot streami at temperature intervalm
Cpjn heat capacity of cold streamj at temperature intervaln
Fi flow rate of hot process streami
Fj flow rate of cold process streamj
FU

i upper bound for the flow rate of heating utilityi
FU

j upper bound for the flow rate of cooling utilityj
hjn film heat transfer coefficient for cold streamj in intervaln
him film heat transfer coefficient for hot streami in intervalm
�H

z,H
im enthalpy change for hot streami at intervalm of zonez

�H
z,C
jn enthalpy change for cold streamj at intervaln of zonez

qL
ijm lower bound for heat transfer from hot streami at intervalm to cold streamj

qL
ijn lower bound for heat transfer from hot streami to cold streamj at intervaln

�Ti temperature range of streami
�Tj temperature range of streamj
TU

m upper temperature of intervalm
TL

m lower temperature of intervalm
�T ML

mn mean logarithmic temperature difference between intervalsm andn
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Variables
Az

ij area for an exchanger matching hot streami and cold streamj in zonez

Â
z,k
ij area of the kth exchanger matching hot streami and cold streamj in zonez

G
z,k
ijm auxiliary binary variable that determines whether thek-th exchanger between hot streami with cold streamj in

zonez exists at intervalm of when (i, j) ∈ B.
K

z,H
ijm determines the beginning of a heat exchanger at intervalm of zonez for hot streami with cold streamj. Defined

as binary when (i, j) ∈ B and as continuous when (i, j) /∈ B.
K

z,C
ijn determines the beginning of a heat exchanger at intervaln of zonez for cold streamj with hot streami. Defined

as binary when (i, j) ∈ B and as continuous when (i, j) /∈ B.
K̂

z,H
ijm determines the end of a heat exchanger at intervalm of zonez for hot streami with cold streamj. Defined as

binary when (i, j) ∈ B and as continuous when (i, j) /∈ B.
K̂

z,C
ijn determines the end of a heat exchanger at intervaln of zonez for cold streamj with hot streami. Defined as binary

when (i, j) ∈ B and as continuous when (i, j) /∈ B.
qz
im,jn heat transfer from hot streami at intervalm to cold streamj at intervaln in zonez

q̄
z,H
inm non-isothermal mixing heat transfer for hot streami between intervalsm andn in zonez

q̄
z,C
jmn non-isothermal mixing heat transfer for hot streami between intervalsm andn in zonez

q̂
z,H
ijm heat transfer from hot streami at intervalm to cold streamj in zonez

q̂
z,C
ijn heat transfer to cold streamj at intervaln from hot streamj in zonez

q̃
z,H
ijm auxiliary continuous variable utilized to compute the hot side heat load of each heat exchanger when several

exchangers exist between hot streami and cold streamj in zonez
q̃

z,C
ijn auxiliary continuous variable utilized to compute the cold side heat load of each heat exchanger when several

exchangers exist between hot streami and cold streamj in zonez
�
q

z

im,jn auxiliary continuous variable utilized to compute the area of individual heat exchangers between hot streami
with cold streamj in zonez when (i, j) ∈ B.

Uz
ij number of shells in the heat exchanger between hot streami and cold streamj in zonez

U
z,k
ij number of shells in thekth heat exchanger between hot streami and cold streamj in zonez

Xz
im,jn auxiliary continuous variable equal to zero when an exchanger ends at intervalm for hot streami and at interval

n for cold streamj. A value of one corresponds to all other cases.
Y

z,H
ijm determines whether heat is being transferred from hot streami at intervalm to cold streamj. Defined as binary

when (i, j) /∈ B and as continuous when (i, j) ∈ B.
Y

z,C
ijn determines whether heat is being transferred from hot streami to cold streamj at intervaln. Defined as binary

when (i, j) /∈ B and as continuous when (i, j) ∈ B.
α

z,H
ijm auxiliary continuous variable equal to one when heat transfer from intervalm of hot streami to cold streamj

occurs in zonez and it does not correspond to the beginning nor the ending of a heat exchanger. A value of zero
corresponds to all other cases.

α
z,C
ijn auxiliary continuous variable equal to one when heat transfer from hot streami to intervaln of cold streamj

occurs in zonez and it does not correspond to the beginning nor the ending of a heat exchanger. A value of zero
corresponds to all other cases.

Furman and Sahinidis (2002)discuss the “strong need for the development of approximation algorithms”. This stems from the
realization that heat exchanger network design is an NP-Hard problem (Furman & Sahinidis, 2001). They also suggest that the
simplifying assumptions that have been used (“isothermal mixing, no split stream following through more than one exchanger
and no stream bypass”) diminish the merits of some successful one-step methods. They call for a “truly complete formulation of
the HENS problem without any simplifying assumptions.” Some efforts in this direction have been made byJezowski, Shethna,
& Castillo (2003), who proposed linear models. We believe that we are responding to that challenge to a good extent, both
on the modeling aspect of limiting the simplifying assumptions to a minimum and proposing a MILP formulation that can be
attractive from a computational standpoint. This MILP model is based on the transportation–transshipment paradigm and it has
the following features:

• counts heat exchangers units and shells;
• approximates the area required for each exchanger unit or shell;
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• controls the total number of units;
• implicitly determines flow rates in splits;
• handles non-isothermal mixing;
• identifies bypasses in split situations when convenient;
• controls the temperature approximation (HRAT/EMAT or�Tmin) when desired;
• can address block-design through the use of zones;
• allows multiple matches between two streams.

All the above features are the result of a special transshipment/transportation scheme that is capable of precisely describing
the structure of the network using different sets of binary variables. Consequently, the model has a remarkable ability to
produce cost-optimal networks. The one-step structure of the formulation also presents important advantages in terms of user
intervention demand and allows achieving a high degree of design flexibility. Contrasting with to the traditional two-step
structure (Targeting/Supertargeting and Network Design) of most of the approximate methods, this new formulation directly
gives cost-effective solutions at once. Although there have been attempt to establish one-step procedures based on mathematical
programming (complete list provided byFurman & Sahinidis, 2002), our proposed procedure does not rely on any the simplifying
assumptions used so far. In addition, unlike others, it is MILP and is reasonably fast. Several examples from the literature were
tested, finding that the model usually obtains better solutions in terms of cost-optimality. In some cases, the model produced
unknown solutions that were not found using superstructure optimization methods, even when the same pattern of matches is
used.

2. Mathematical model

2.1. Set definitions

We now proceed to outline the general philosophy of the model. For this purpose, let us define a number of different sets that
w
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ill be used throughout the model. First, a set of several heat transfer zones is defined, namelyZ ={z|z is a heat transfer zone}.
This set allows the model to handle restrictions imposed by the designer on the heat transfer from certain temperatu

o others. For instance, if a designer wanted to explore a network using the pinch design method, two zones (above
he pinch) are defined. On the other hand, if the designer wants to explore a network that minimizes the total cos
ransferring heat across the process pinch, only one zone is required. Additionally, the use of zones can be used to s
esign in different sub-networks that are not interrelated, simplifying the network and the problem complexity.

Next, the following sets are used to identify hot, cold streams; and heating, cooling utilities.

Hz ={i|i is a hot stream present in zonez}
Cz ={j|j is a cold stream present in zonez}
HUz ={i|i is a heating utility present in zonez} (HUz ⊂ Hz)
CUz ={j|j is a cooling utility present in zonez} (CUz ⊂ Cz)

Additionally, several temperature intervals are considered in each zone, in order to perform the heat balances an
alculations. These intervals, are then sorted such that ifm1 < m2 thenTU

m1
> TU

m2
, where the superscriptU indicates the uppe

imit of the temperature interval. In addition, a shift of�Tmin is performed over all cold streams temperatures to guar
etwork feasibility. The value of�Tmin, however, can be set to zero or any small value, which would be equivalent to us
MAT. The different sets related to the temperature intervals are:

Mz ={m|m is a temperature interval in zonez}
Mz

i ={m|m is a temperature interval belonging to zonez, in which hot streami is present}
Nz

j ={n|n is a temperature interval belonging to zonez, in which cold streamj is present}
Hz

m ={i|i is a hot stream present in temperature intervalm in zonez}
Cz

n ={j|j is a cold stream present in temperature intervaln in zonez}
m0

i ={m|m is the starting temperature interval for hot streami}
n0

j ={n|n is the starting temperature interval for cold streamj}

m
f
i ={m|m is the final temperature interval for hot streami}

n
f
j ={n|n is the final temperature interval for cold streamj}

The model then uses the temperature intervals to perform energy balances and flow balances.Fig. 1 depicts one hot an
ne cold stream spanning some temperature intervals and exchanging heat. At each interval, the variables ˆq

z,H
ijm account for the
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Fig. 1. Basic scheme of the transportation/transshipment model.

overall heat exchanged in intervalm of hot streami and all the intervals of cold streamj, in zonez. Similarly, variables ˆq
z,C
ijn are

used to compute the overall heat received by cold streamj at intervaln from all intervals of hot streami. In turn, the variables
q̂

z,H
im,jn variables are used to account for the heat transportation from interval to interval between both streams.

Additionally, a number of sets are introduced to define all possible sources and destinations for heat transfer in this trans-
portation scheme.

P ={(i, j)|heat exchange match between hot streami and cold streamj is permitted}
PH

im ={j|heat transfer from hot streami at intervalm to cold streamj is permitted}
PC

jn ={i|heat transfer from hot streami to cold streamj at intervaln is permitted}

SetP defines all permitted heat exchange matches between hot and cold streams. In addition to an automatic membership of
a pair (i, j) for which exchange is thermodynamically possible, permitted and forbidden heat exchange matches can be set by
the designer. In addition, setsPH

im andPC
jn define feasible heat transfer flows at each temperature interval.

Finally, the following sets allow the designer to manage additional features of the formulation, according to his or her own
preference.

NIH ={i|non-isothermal mixing is permitted for hot streami}
NIC = {j|non-isothermal mixing is permitted for cold streamj}
SH = {i|splits are allowed for hot streami}
SC ={j|splits are allowed for cold streamj}
B = {(i, j)|more than one heat exchanger unit is permitted between hot streami and cold streamj}

The sets NIH and NIC are used to specify whether non-isothermal mixing of stream splits is permitted, while setsSH and
SC establish the possibility of stream splits. Finally, setB is used to allow more than one heat exchanger match between two
streams, as shown inFig. 2 for match (i1, j1). Thus, in contrast to previous formulations this new model is able to distinguish
situations where more than one heat exchanger unit is required to perform a heat exchange match.
Fig. 2. A case where more than one heat exchanger unit is required for a match (i, j).
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Having properly defined the previous collection of sets, we now introduce the different equations of the model for grass-root
design of heat exchanger networks.

2.2. Heat balance equations

These equations simply state that the total heat available on each hot streams or the total heat demand of cold streams is equal
to the heat transferred to the specific intervals. For heating and cooling utilities, these balances are described by the following
equations.

Heat balance for heating utilities:

FH
i

(
TU

m − TL
m

) =
∑

n ∈ Mz

TL
n <TU

m

∑
j ∈ Cz

n

J ∈ PH
im

i ∈ PC
jn

qz
im,jn z ∈ Z; m ∈ Mz; i ∈ Hz

m; i ∈ HUz (1)

Heat balance for cooling utilities:

FC
j

(
TU

n − TL
n

) =
∑

n ∈ Mz

TL
n <TU

m

∑
i ∈ Hz

m

i ∈ PC
n

j ∈ PH
m

qz
im,jn z ∈ Z; n ∈ Mz; j ∈ Cz

n; j ∈ CUz (2)

Notice that for utilities the flow rates are considered variable and will be optimally determined by the model. Thus, an a-priori
utility targeting stage is not necessary; even though a fixed value for utilities flow rates could still be specified if the designer
pleases. In turn, for process streams, the following equations represent the heat balances for cases where only isothermal mixing
o

T cause it is
r e presented
l

f splits is considered (non-isothermal mixing is covered later).

Heat balance for hot process streams—i /∈ NIH :

�H
z,H
im =

∑
n ∈ Mz

TL
n <TU

m

∑
j ∈ Cz

n

j ∈ PH
im

i ∈ PC
jn

qz
im,jn z ∈ Z; m ∈ Mz; i ∈ Hz

m; j /∈ HUz; i /∈ NIH (3)

Heat balance for cold process streams—j /∈ NIC:

�H
z,C
jn =

∑
m ∈ Mz

TL
n <TU

m

∑
i ∈ Hz

m

i ∈ PC
jn

j ∈ PH
im

qz
im,jn z ∈ Z; m ∈ Mz; j ∈ Cz

n; j /∈ CUz; j /∈ NIC (4)

he next sets of equations define the hot and cold cumulative heat transfer. This cumulative transfer is used be
elated to the equations that define the existence of heat exchangers in the different temperature intervals, which ar
ater.

Cumulative heat transfer from hot streami at intervalm to cold streamj:

q̂
z,H
ijm =

∑
n ∈ Mz;TL

n <TU
m

j ∈ Cz
n;i ∈ PC

jn

qz
im,jn z ∈ Z; m ∈ Mz; i ∈ Hz

m; j ∈ Cz; j ∈ PH
im (5)

Cumulative heat transfer to cold streamj at intervaln from hot streami:

q̂
z,C
ijn =

∑
m ∈ Mz;TL

n <TU
m

i ∈ Hz
m;j ∈ PH

im

qz
im,jn z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz

n; i ∈ PC
jn (6)
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Fig. 3. Non-isothermal split mixing.

2.2.1. Heat balance equations for streams allowed to have non-isothermal split mixing
To consider non-isothermal mixing of stream splits, a new variable (¯q) is introduced to account for heat flows between

intervals of the same stream that correspond to such mixing. In other words, heat is artificially transferred from one interval to
another within the same stream to account for non-isothermal mixing conditions. To illustrate this, considerFig. 3.

In this case, cold streamj has been split to exchange heat between streamsi1 and i2 and non-isothermal mixing between
these splits is allowed. Notice that the upper portion or the split in the cold stream spans temperature intervals 3 and 8, while
the lower portion spans from intervals 5–8. However, after mixing, the whole stream only spans from intervals 4–8, while the
non-split part spans the rest of the intervals. To accomplish the non-isothermal mixing, interval 3 receives more heat than its
demand (�H

z,C
j3 ) and transfer this surplus to intervals 4 and 5, as indicated in the figure allowing one branch to reach a larger

temperature. In turn, intervals 4 and 5 receive less than their demand from the hot streams, with the difference being transferred
from interval 3 by the heat ¯q. The corresponding heat balance equations are:

Heat balance for hot streams (non-isothermal mixing allowed):

�H
z,H
im =

∑
n ∈ Mz

TL
n <TU

m

∑
j ∈ Cz

n

j ∈ PH
im

i ∈ PC
jn

qz
im,jn+

∑
n ∈ Mz

n>m

∑
i ∈ Hz

n

q̄
z,H
inm−

∑
n ∈ Mz

n<m

∑
i ∈ Hz

n

q̄
z,H
imn z ∈ Z; m ∈ Mz; i ∈ Hz

m; i /∈ HUz; i ∈ NIH (7)

Heat balance for cold streams (non-isothermal mixing allowed):

�H
z,C
jn =

∑
m ∈ Mz

TL
n <TU

m

∑
i ∈ Hz

m

i ∈ PC
jn

j ∈ PH
im

qz
im,jn +

∑
m ∈ Mz

m<n

∑
j ∈ Cz

m

q̄
z,C
jmn −

∑
m ∈ Mz

m>n

∑
j ∈ Cz

m

q̄
z,C
inm z ∈ Z; m ∈ Mz; i ∈ Cz

n; j /∈ CUz; j ∈ NIC

(8)

at transfer
w rom
o

Additionally, constraints enforcing the condition that heat cannot be transferred within a stream unless there exist he
ith other stream(s) needs to be introduced in the model. In other words, ¯q is forced zero when there is no heat transferred f
r to other streams.

Heat balance for hot streams—i ∈ NIH :∑
n ∈ Mz

n<m

∑
i ∈ Hz

n

q̄
z,H
inm ≤

∑
n ∈ Mz

TL
n <TU

m

∑
j ∈ Cz

n;j ∈ PH
im

i ∈ PC
jn

qz
im,jn z ∈ Z; m ∈ Mz; i ∈ Hz

m; i /∈ HUz; i ∈ NIH (9)
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Heat balance for cold streams—j ∈ NIC:∑
m ∈ Mz

m>n

∑
j ∈ Cz

m

q̄
z,C
inm ≤

∑
m ∈ Mz

TL
n <TU

m

∑
i ∈ Hz

m;i ∈ PC
jn

j ∈ PH
im

qz
im,jn z ∈ Z; m ∈ Mz; j ∈ Cz

n; j /∈ CUz; j ∈ NIC (10)

2.3. Heat exchanger definition and counting

The model considers a heat exchanger is defined as a consecutive series of heat exchange shells between a hot and a cold
stream. For each temperature interval, heat transfer is accounted using the cumulative heat (ˆq), while the existence of a heat
exchanger for a given interval is defined by a new variable (Y), which determines whether heat exchange takes place or not at
that interval. Additionally, two new variables (K and k̂), which are closely related to theY variables, are introduced in order
to indicate whether a heat exchanger begins or ends at a specific interval. The use of these new variables to count units has
been previously proposed byBagajewicz and Rodera (1998)and later used byBagajewicz and Soto (2001, 2003)andJi and
Bagajewicz (2002).

Multiple shells placed consecutively are treated as a single heat exchanger. Nevertheless, there are cases where non-
consecutive series of shells could be allowed. In those cases, different heat exchanger units have to be defined for each series.
Therefore, additional equations need to be included to consider the possibility of multiple heat exchangers between the same
pair of streams. SetB controls this, as described above.

Consider hot streami. When only one exchanger is allowed between streamsi and j; this is, when (i, j) /∈ B, then binary
variableYz,H

ijm and two continuous variablesKz,H
ijm ,K̂z,H

ijm are used. The binary variableYz,H
ijm indicates that there is a match between

streami at intervalm receiving heat from some intervals of streamj. In turn,Kz,H
ijm andK̂

z,H
ijm indicate the beginning and end of a

string of intervals for which the binary variable is active. Conversely, when (i, j) ∈ B, Y
z,H
ijm is declared as continuous andK

z,H
ijm ,

K̂
z,H
ijm are declared binary. It will be shown later that in this last case, theY variables may take a value greater or equal than one

i the results.
A ms
a

f streams
a atch.
C
(
a

f a heat exchanger exists for the correspondent streams and interval. This, however, does not have any effect on
lternatively, a value of zero corresponds to all variablesYijm, K

z,H
ijm , K̂

z,H
ijm when no heat exchanger exists matching streai

ndj.
The following group of constraints is used to determine the existence of a heat exchanger for a given pair o

nd temperature intervals. Constraints(15)–(19)and(20)–(24)are used when only one heat exchanger is allowed per m
onversely, Equation(25) applies in cases where more than one exchanger is permitted. Notice also that Equations(15) and

20) only apply to the first and last interval of a hot stream, respectively, while the sets of Equations(16)–(19)and(21)–(24)
re used for all intervals.

Bounds on cumulative heat transfer for hot process streams:

qL
ijmY

z,H
ijm ≤ q̂

z,H
ijm ≤ �H

z,H
im Y

z,H
ijm z ∈ Z; m ∈ Mz; i ∈ Hz

m; i /∈ HUz; j ∈ Cz; j ∈ PH
im (11)

Bounds on cumulative heat transfer for cold process streams:

qL
ijnY

z,C
ijn ≤ q̂

z,C
ijn ≤ �H

z,C
jn Y

z,C
ijn z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz

n; j /∈ CUz; i ∈ PC
jn (12)

Bounds on cumulative heat transfer for heating utilities:

qL
ijmY

z,H
ijm ≤ q̂

z,H
ijm ≤ FU

i (TU
m − TL

m ) z ∈ Z; m ∈ Mz; i ∈ Hz
m; i ∈ HUz; j ∈ Cz; j ∈ PH

im (13)

Bounds on cumulative heat transfer for cooling utilities:

qL
ijnY

z,C
ijn ≤ q̂

z,C
ijn ≤ FU

j (TU
n − TL

n ) z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz
n; j ∈ CUz; i ∈ PC

jn (14)

Heat exchanger beginning for hot streams—(i, j) /∈ B:

K
z,H
ijm ≥ Y

z,H
ijm z ∈ Z; m ∈ Mz; m = m0

i ; i ∈ Hz; j ∈ Cz; j ∈ PH
im; (i, j) /∈ B (15)

K
z,H
ijm ≤ 2 − Y

z,H
ijm − Y

z,H
ijm−1 z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m−1; j ∈ Cz; j ∈ PH

im ∩ PH
im−1; (i, j) /∈ B (16)

K
z,H
ijm ≤ Y

z,H
ijm z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m−1; j ∈ Cz; j ∈ PH

im ∩ PH
im−1; (i, j) /∈ B (17)

K
z,H
ijm ≥ Y

z,H
ijm − Y

z,H
ijm−1 z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m−1; j ∈ Cz; j ∈ PH

im ∩ PH
im−1; (i, j) /∈ B (18)
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Fig. 4. Heat exchanger definition when (i, j) /∈ B.

K
z,H
ijm ≥ 0 z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m−1; j ∈ Cz; j ∈ PH

im ∩ PH
im−1; (i, j) /∈ B (19)

Heat exchanger ending for hot streams—(i, j) /∈ B:

K̂
z,H
ijm ≥ Y

z,H
ijm z ∈ Z; m ∈ Mz; m = m

f
i ; i ∈ Hz; j ∈ Cz; j ∈ PH

im; (i, j) /∈ B (20)

K̂
z,H
ijm ≤ 2 − Y

z,H
ijm − Y

z,H
ijm+1 z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m+1; j ∈ Cz; j ∈ PH

im ∩ PH
im+1; (i, j) /∈ B (21)

K̂
z,H
ijm ≤ Y

z,H
ijm z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m+1; j ∈ Cz; j ∈ PH

im ∩ PH
im+1; (i, j) /∈ B (22)

K̂
z,H
ijm ≥ Y

z,H
ijm − Y

z,H
ijm+1 z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m+1; j ∈ Cz; j ∈ PH

im ∩ PH
im+1; (i, j) /∈ B (23)

K̂
z,H
ijm ≥ 0 z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m+1; j ∈ Cz; j ∈ PH

im ∩ PH
im+1; (i, j) /∈ B (24)

To illustrate how the previous sets of constraints works, consider the example presented inFig. 4 for a match (i, j) /∈ B, that
is, when only one exchanger is permitted. The hot side of heat exchanger spans intervals 3 through 8 of streami, the transfer of
heat to cold streamj not shown. Since only one exchanger is allowed for this match, variablesY

z,H
ijm are defined as binary, while

K
z,H
ijm andK̂

z,H
ijm are continuous. The values of these variables for this example are given in table in the right ofFig. 4. These

numbers are consistent with the set of constraints(15)–(19)and(20)–(24)and are uniquely defined by them.
From the figure one can see that wheneverY

z,H
ijm = 0, then it follows thatKz,H

ijm = 0, K̂z,H
ijm = 0 (constraints(17)and(22)). In

turn, at any interval whereYz,H
ijm−1 = 1, constraint(18)becomes trivial and thus,K

z,H
ijm is forced to zero. Indeed, whenYz,H

ijm = 1,

constraint(16) forcesK
z,H
ijm to zero and whenYz,H

ijm = 0, K
z,H
ijm is forced to zero by means of constraint(17). Similarly, when

Y
z,H
ijm+1 = 1 thenK̂

z,H
ijm is forced to be zero. Now, when a heat exchanger begins (interval 3 in this example), the conditions

Y
z,H
ijm−1 = 0 andY

z,H
ijm = 1 are satisfied and thus,K

z,H
ijm is set to one by means of constraints(16)and(18). Likewise, when a heat

e

c presentation,
t ed to this
s

xchanger ends (interval 8 in this example), the conditionsY
z,H
ijm = 1 andY

z,H
ijm+1 = 0 forceK̂

z,H
ijm to be one.

Now consider the possibility of allowing two heat exchangers between the same pair of streams, as shown inFig. 5. In this
ase, there are two heat exchangers between the shown hot stream and a certain cold stream. For convenience of
he exchangers are placed in series for the hot stream without any other unit in between, but the model is not limit
ituation. The corresponding constraints are:

Fig. 5. Heat exchanger definition when (i, j) ∈ B.
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Heat exchanger existence on hot streams—(i, j) ∈ B:

Y
z,H
ijm =

∑
l ∈ Mz

i

l≤m

j ∈ PH
il

K
z,H
ijl −

∑
l ∈ Mz

i

l≤m−1

j ∈ PH
il

K̂
z,H
ijl z ∈ Z; m ∈ Mz; i ∈ Hz

m; j ∈ Cz; j ∈ PH
im; (i, j) ∈ B (25)

Since more than one exchanger is allowed, that is, (i, j) ∈ B, constraint(25) is used for defining heat exchangers existence.
In addition, variablesKz,H

ijm andK̂
z,H
ijm are declared as binary, whileYz,H

ijm are declared continuous. The table onFig. 5shows the
values of these variables.

Since the binary variablesKz,H
ijm and K̂

z,H
ijm are set to one whenever a heat exchanger begins or ends, respectively, then

constraint(25) setsYz,H
ijm ≥ 1 for all intervalsm between the beginning and end of a heat exchanger. When a heat exchanger

between the same pair of stream ends and another one begins in the same interval (interval 6 in this example) thenY
z,H
ijm is equal

to two. Otherwise it is equal to one. This explains the choice of declaringY as continuous variables in this case. One could use
Equation(25) for all cases, but the distinction is made to reduce the number of binary variables.

A similar set of equations is used to define the location of a heat exchanger for cold streams. These expressions are presented
next without further explanation.

Heat exchanger beginning for cold streams—(i, j) /∈ B:

K
z,C
ijn ≥ Y

z,C
ijn z ∈ Z; n ∈ Mz; n = n0

j ; i ∈ Hz; j ∈ Cz
n; i ∈ PC

jn; (i, j) /∈ B (26)

K
z,C
ijn ≤ 2 − Y

z,C
ijn − Y

z,C
ijn−1 z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz

n ∩ Cz
n−1; i ∈ PC

jn ∩ PC
jn−1; (i, j) /∈ B (27)

K
z,C
ijn ≤ Y

z,C
ijn z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz

n ∩ Cz
n−1; i ∈ PC

jn ∩ PC
jn−1; (i, j) /∈ B (28)

of
b y equating
t

K
z,C
ijn ≥ Y

z,C
ijn − Y

z,C
ijn−1 z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz

n ∩ Cz
n−1; i ∈ PC

jn ∩ PC
jn−1; (i, j) /∈ B (29)

K
z,C
ijn ≥ 0 z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz

n ∩ Cz
n−1; i ∈ PC

jn ∩ PC
jn−1; (i, j) /∈ B (30)

Heat exchanger end for cold streams—(i, j) /∈ B:

K̂
z,C
ijn ≥ Y

z,C
ijn z ∈ Z; n ∈ Mz; n = n0

j ; i ∈ Hz; j ∈ Cz
n; i ∈ PC

jn; (i, j) /∈ B (31)

K̂
z,C
ijn ≤ 2 − Y

z,C
ijn − Y

z,C
ijn−1 z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz

n ∩ Cz
n−1; i ∈ PC

jn ∩ PC
jn−1; (i, j) /∈ B (32)

K̂
z,C
ijn ≤ Y

z,C
ijn z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz

n ∩ Cz
n−1; i ∈ PC

jn ∩ PC
jn−1; (i, j) /∈ B (33)

K̂
z,C
ijn ≥ Y

z,C
ijn − Y

z,C
ijn−1 z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz

n ∩ Cz
n−1; i ∈ PC

jn ∩ PC
jn−1; (i, j) /∈ B (34)

K̂
z,C
ijn ≥ 0 z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz

n ∩ Cz
n−1; i ∈ PC

jn ∩ PC
jn−1; (i, j) /∈ B (35)

Heat exchanger existence on cold streams—(i, j) ∈ B:

Y
z,C
ijn =

∑
l ∈ Nz

j

l≤n

i ∈ PC
jl

K
z,C
ijl −

∑
l ∈ Nz

j

l≤n−1
i ∈ PC

jl

K̂
z,C
ijl z ∈ Z; n ∈ Mz; i ∈ Hz; j ∈ Cz

n; i ∈ PC
jn; (i, j) ∈ B (36)

Finally, the number of heat exchanger units between a given pair of streams,Ez
ij, is obtained by counting the number

eginnings or endings. Since the number of beginnings and endings ought to be equal, this condition is enforced b
he number of units to the number of beginnings ((37)–(38)) and number of endings ((39)–(40)).

Number of heat exchangers between hot streami and cold streamj:

Ez
ij =

∑
m ∈ Mz

i
;j ∈ PH

im

K
z,H
ijm z ∈ Z; i ∈ Hz; j ∈ Cz; (i, j) ∈ P (37)
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Ez
ij =

∑
n ∈ Nz

j
; i ∈ PC

jn

K
z,C
ijn z ∈ Z; i ∈ Hz; j ∈ Cz; (i, j) ∈ P (38)

Ez
ij =

∑
m ∈ Mz

i
; j ∈ PH

im

K̂
z,H
ijm z ∈ Z; i ∈ Hz; j ∈ Cz; (i, j) ∈ P (39)

Ez
ij =

∑
n ∈ Nz

j
; i ∈ PC

jn

K̂
z,C
ijn z ∈ Z; i ∈ Hz; j ∈ Cz; (i, j) ∈ P (40)

Ez
ij ≤ 1 z ∈ Z; i ∈ Hz; j ∈ Cz; (i, j) ∈ P ; (i, j) /∈ B (41)

Ez
ij ≤ E

z,max
ij z ∈ Z; i ∈ Hz; j ∈ Cz; (i, j) ∈ P ; (i, j) ∈ B (42)

We limit the number of exchangers to be one in the case where one exchanger is allowed, and to a maximumE
z,max
ij otherwise.

2.4. Heat transfer consistency

When multiple heat exchangers are allowed between streamsi and j, a new set of constraints has to be added in order to
individually account for the heat load of each unit. Since the heat load of a heat exchanger is accounted separately for the hot
and cold streams, these equations will ensure the equality of these two values for every exchanger. We illustrate and address
the situation depicted inFig. 6, where the hot stream exchanges heat with a cold stream in two exchangers in a way such that
the end of the first exchanger and the beginning of the second exchanger takes place in the same interval. Specifically, for this
example, the interval in question ism = 6. This interval is such that part of the cumulative heat ˆq

z,H
ij6 is sent the interval 5 of the

cold stream, and another part to interval 7.
itly which

p ˜
i ssuring that
c . This new
v n addition,
a ence for
m . We
i

In order to be able to determine the heat loads of each individual exchanger, the model needs to distinguish explic
ortion of q̂z,H

ij6 is transferred to interval 5 and which is transferred to interval 7. For this purpose, a new variableq
z,H
ijm is

ntroduced, which measures the amount of heat that is transferred to the next heat exchanger in the sequence, a
alculating the heat load for each exchanger using the hot stream yields the same value than using the cold stream
ariable is also used later in flow rate consistency constraints and in area calculations for each heat exchanger. I
nother new variable,Xz

im,jn, is introduced in order to determine the ending interval of each heat exchanger in the sequ
atch (i, j). This variable is set to zero wheneverm andn are cold-end intervals, taking positive values in all other cases

llustrate these equations usingFig. 6.
The heat transfer consistency constraints are presented next.

Heat transfer consistency for multiple heat exchangers between the same pair of streams:

∑
l ∈ Mz

i

l≤m

q̂
z,H
ijl − q̃

z,H
ijn ≤

∑
l ∈ Nz

j

l≤n

q̂
z,C
ijl − q̃

z,C
ijm + 4Xz

im,jn Max




∑
l ∈ Mz

i

l≤m

j ∈ PH
il

�H
z,H
il ;

∑
l ∈ Mz

i

l≤n

i ∈ PC
jl

�H
z,C
jl




z ∈ Z; m, n ∈ Mz; TL
n ≤ TU

m ; (i, j) ∈ B; i ∈ Hz
m; j ∈ Cz

n; i ∈ PC
jn; j ∈ PH

im (43)

∑
l ∈ Mz

i

l≤m

q̂
z,H
ijl − q̃

z,H
ijn ≥

∑
l ∈ Nz

j

l≤n

q̂
z,C
ijl − q̃

z,C
ijm + 4Xz

im,jn Max




∑
l ∈ Mz

i

l≤m

j ∈ PH
il

�H
z,H
il ;

∑
l ∈ Mz

i

l≤n

i ∈ PC
jl

�H
z,C
jl




z ∈ Z; m, n ∈ Mz; TL
n ≤ TU

m ; (i, j) ∈ B; i ∈ Hz
m; j ∈ Cz

n; i ∈ PC
jn; j ∈ PH

im (44)
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Fig. 6. Heat transfer consistency example when (i, j) ∈ B.

Xz
im,jn = 2 − K̂

z,H
ijm − K̂

z,C
ijn + 1

4

∑
l ∈ Nz

j

l≤n

K̂
z,C
ijl − 1

4

∑
l ∈ Mz

i

l≤m

K̂
z,H
ijl

z ∈ Z; m, n ∈ Mz; TL
n ≤ TU

m ; (i, j) ∈ B; i ∈ Hz
m; j ∈ Cz

n; i ∈ PC
jn; j ∈ PH

im (45)

∑
l ∈ Mz

i

l≤m

j ∈ PH
il

K̂
z,H
ijl −

∑
l ∈ Nz

j

l≤n

i ∈ PC
jl

K̂
z,C
ijl ≥ 0 z ∈ Z; m, n ∈ Mz; TL

n < TU
m ; TL

n ≥ TL
m (i, j) ∈ B; i ∈ Hz

m; j ∈ Cz
n; i ∈ PC

jn; j ∈ PH
im (46)
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∑
l ∈ Mz

i

l≤m

j ∈ PH
il

(
K

z,H
ijl − K̂

z,H
ijl

)
≤ 1 z ∈ Z; m ∈ Mz; (i, j) ∈ B; i ∈ Hz

m; j ∈ PH
im (47)

∑
l ∈ Nz

J

l≤n

i ∈ PH
jl

(
K

z,H
ijl − K̂

z,C
ijl

)
≤ 1 z ∈ Z; m ∈ Mz; (i, j) ∈ B; i ∈ Hz

m; j ∈ PH
im (48)

q̃
z,H
ijm ≤ q̂

z,H
ijm z ∈ Z; m ∈ Mz; (i, j) ∈ B; i ∈ Hz

m; j ∈ PH
im (49)

q̃
z,H
ijm ≤ K

z,H
ijm �H

z,H
im z ∈ Z; m ∈ Mz; (i, j) ∈ B; i ∈ Hz

m; j ∈ PH
im (50)

q̃
z,H
ijm ≤ K̂

z,H
ijm �H

z,H
im z ∈ Z; m ∈ Mz; (i, j) ∈ B; i ∈ Hz

m; j ∈ PH
im (51)

q̃
z,H
ijm ≥ 0 z ∈ Z; m ∈ Mz; (i, j) ∈ B; i ∈ Hz

m; j ∈ PH
im (52)

q̃
z,C
ijn ≤ q̂

z,C
ijn z ∈ Z; n ∈ Mz; (i, j) ∈ B; j ∈ Cz

n; i ∈ PC
jn (53)

q̃
z,C
ijn ≤ K

z,C
ijn �H

z,C
in z ∈ Z; n ∈ Mz; (i, j) ∈ B; j ∈ Cz

n; i ∈ PC
jn (54)

q̃
z,C
ijn ≤ K̂

z,C
ijn �H

z,C
in z ∈ Z; n ∈ Mz; (i, j) ∈ B; j ∈ Cz

n; i ∈ PC
jn (55)

z,C z z C

matter if
i onsistency,
w l
z

(

q

q

qual to the
s ,
t changer
h

and a
n

previous
o at exchanger
t

perature
o ce
i

q̃ijn ≥ 0 z ∈ Z; n ∈ M ; (i, j) ∈ B; j ∈ Cn; i ∈ Pjn (56)

The set of constraints(43)–(45)imposes the condition that the heat load of each heat exchanger has to be equal no
t is calculated using the hot stream or the cold stream heat transfer. This constraint is the core of the heat transfer c
hile the rest are subsidiary to allow the proper calculation of auxiliary variables. In this context, wheneverXz

im,jn is equa
ero, then constraints(43)and(44)are equivalent to the following equality, which states the heat balance consistency:∑

l ∈ Mz
i

l≤m

q̂
z,H
ijl − q̃

z,H
ijn =

∑
l ∈ Nz

j

l≤n

q̂
z,C
ijl − q̃

z,C
ijm

Looking atFig. 6, notice thatXz
im,jn is zero only for (m, n) = (6, 5) and (m, n) = (8, 9). For (m, n) = (6, 5), constraints(43)and

44) reduce to:

ˆz,H
ij3 + q̂

z,H
ij4 + q̂

z,H
ij5 + q̂

z,H
ij6 − q̃

z,H
ij6 = q̂

z,C
ij2 + q̂

z,C
ij3 + q̂

z,C
ij4 + q̂

z,C
ij5 − q̃

z,C
ij5

But since(54) forcesq̃z,C
ij5 to be zero because a heat exchanger does not start atn = 5, then:

ˆz,H
ij3 + q̂

z,H
ij4 + q̂

z,H
ij5 + q̂

z,H
ij6 − q̃

z,H
ij6 = q̂

z,C
ij2 + q̂

z,C
ij3 + q̂

z,C
ij4 + q̂

z,C
ij5

The above result states that the load of the first heat exchanger, calculated for the hot stream (left-hand side) is e
ame load calculated for the cold stream. When constraints(43)and(44)are applied to the second case in whichXz

im,jn is zero
hat is (m, n)=(8, 9), they render the cumulative load of both exchangers. Therefore, given that the load of the first ex
ad been made consistent previously, the load of the second heat exchanger is consistent too.

In turn, constraints(49)–(56)limit q̃ allowing it to be different from zero only at intervals when a heat exchanger ends
ew one begins. For all other intervals, this variable is set to zero.

Constraints(47)and(48)are integer cuts that enforce the condition that a new heat exchanger can only start once the
ne has ended. Notice that these constraints allow contiguous heat exchangers, where the ending of a preceding he

akes place in the same interval as the beginning of a subsequent unit.
Finally, constraint(46) is another integer cut enforcing the condition that at the cold-end of a heat exchanger the tem

f the hot stream has to be greater than the temperature of the cold stream. Thus, constraint(46)prevents temperature differen
nfeasibilities in the cold-end of a heat exchanger.Fig. 7 illustrates how this constraint works.
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Fig. 7. Integer cut for heat exchanger end when (i, j) ∈ B.

2.5. Flow rate consistency within heat exchangers

The next set of equations represents the consistency of flow rate within a heat exchanger, which state the condition that flow
rate passing through a heat exchanger is constant. None of the MILP formulations described previously in the literature (Furman
& Sahinidis, 2002) consider using this condition explicitly, resulting in heat loads that are not uniformly distributed along the
temperature intervals. Thus, area calculations cannot be precisely carried out in those models. The reason for this is that most of
these previous formulations were meant to be targeting devices, not necessarily design devices. As we shall see next, in our new
formulation, the flow rate consistency allows for more precise area values (only exact if the number of temperature intervals is
sufficiently large).

Fig. 8 illustrates a heat exchanger spanning intervals 3 through 8 for hot streami exchanging heat with cold streamj. In
this case, intervals 3 and 8 are referred to as “extreme” intervals, while the remaining intervals (4 through 7) are denoted as
“exchanger-internal”.

Consider for a moment the case where only one exchanger is allowed for match (i, j). Then, notice that for the exchanger-
internal intervals, the flow rate can be consistently determined as the ratio between the cumulative heat transfer, the heat
capacity and the interval temperature range. On the other hand, for the extreme intervals (3 and 8) heat is being exchanged
with some other cold stream(s) using the remaining portion of the interval. Thus, for extreme intervals the mentioned ratio
always underestimates the real flow rates because the real temperature range for heat exchange is smaller than the interval range.
Therefore, only inequality constraints can be written for extreme intervals (seeFig. 8)

To distinguish whether an interval is “exchanger-internal” or not, a new variable,α, is defined as one, with the exception
being the first internal interval, which also receives the value of zero. This is needed to properly pose the flow rate consistency
equations. This variable is declared as continuous but the following set of constraints forces it to take a value of one if the
interval is exchanger-internal and zero otherwise.

Definition of exchanger-internal intervals for hot streams:

α
z,H
ijm ≤ 1 − K

z,H
ijm − K

z,H
ijm−1 z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m−1; j ∈ PH

im ∩ PH
im−1; i ∈ SH ; j ∈ CZ (57)
α
z,H
ijm ≤ 1 − K̂

z,H
ijm − K̂

z,H
ijm−1 z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m−1; j ∈ PH

im ∩ PH
im−1; i ∈ SH ; j ∈ CZ (58)

Fig. 8. Flow rate consistency equations.
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α
z,H
ijm ≥ Y

z,H
ijm − K

z,H
ijm − K

z,H
ijm−1 − K̂

z,H
ijm − K̂

z,H
ijm−1 z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m−1; j ∈ PH

im ∩ PH
im−1; i ∈ SH ; j ∈ CZ (59)

α
z,H
ijm ≥ 0 z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m−1; j ∈ PH

im ∩ PH
im−1; i ∈ SH ; j ∈ CZ (60)

When the interval is exchanger-internal, (except the first internal)K
z,H
ijm , K

z,H
ijm−1, K̂

z,H
ijm , K̂

z,H
ijm−1 are zero andYz,H

ijm = 1;

hence,αz,H
ijm is forced to be equal to one by constraints(57), or (58) and(59). Conversely, for extreme intervals, at least one of

K
z,H
ijm , K

z,H
ijm−1, K̂

z,H
ijm , K̂

z,H
ijm−1 will be equal to one and sinceYz,H

ijm = 1, the above equations forceαz,H
ijm to zero. In the case of the

first internal interval (as in interval 4 ofFig. 8) K
z,H
ijm−1 = 1, thenα

z,H
ijm will also be set to zero.

Using this definition forα, the flow rate consistency constraints for hot streams are given next. When splits are not allowed
for the particular stream a simplified set of equations is used to reduce the number of equations needed. In addition, when more
than one heat exchanger is allowed between the same pair of streams a different set of constraints is used that takes into account
the variables ˜q described before. We present the flow rate consistency equations next. We first cover non-splits and only one
exchanger.

Flow rate consistency for hot streams in exchanger-internal intervals—i ∈ SH, (i, j) ∈ B:

q̂
z,H
ijm

Cpim(TU
m − TL

m )
≤ q̂

z,H
ijm−1

Cpim−1(TU
m−1 − TL

m−1)
+ (1−α

z,H
ijm )Fi z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m−1; i ∈ SH ; j ∈ Cz; j ∈ PH

im ∩ PH
im−1

(61)

q̂
z,H
ijm

Cpim(TU
m − TL

m )
≥ q̂

z,H
ijm−1

Cpim−1(TU
m−1 − TL

m−1)
− (1−α

z,H
ijm )Fi z ∈ Z; m ∈ Mz; i ∈ Hz

m ∩ Hz
m−1; i ∈ SH ; j ∈ Cz; j ∈ PH

im ∩ PH
im−1

(62)

ervals
a h heat
t involve
t treme
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o
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c

f
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Whenα = 1, that is, the interval is exchanger-internal, then the two constraints render equality of flows between intm
ndm − 1. Conversely, whenα = 0, which corresponds to end intervals, the first internal interval or to intervals in whic

ransfer between streamsi andj does not take place, then the above inequalities become trivial. Since the inequalities
wo consecutive intervals, this explains whyα is set to zero for the interval next to the beginning of the exchanger. For ex
ntervals, the following set of inequalities is needed to assure flow rate consistency.

Flow rate consistency for hot streams in extreme intervals—i ∈ SH, (i, j) /∈ B:

q̂
z,H
ijm

Cpim(TU
m − TL

m )
≥ q̂

z,H
ijm−1

Cpim−1(TU
m−1 − TL

m−1)
− (1 + K̂

z,H
ijm−1 + K̂

z,H
ijm − K

z,H
ijm−1)Fi

z ∈ Z; m ∈ Mz; i ∈ Hz
m ∩ Hz

m−1; j ∈ PH
im ∩ PH

im−1; i ∈ SH ; j ∈ CZ; (i, j) /∈ B (63)

q̂
z,H
ijm

Cpim(TU
m − TL

m )
≤ q̂

z,H
ijm−1

Cpim−1(TU
m−1 − TL

m−1)
+ (1 + K

z,H
ijm−1 + K

z,H
ijm − K̂

z,H
ijm )Fi

z ∈ Z; m ∈ Mz; i ∈ Hz
m ∩ Hz

m−1; j ∈ PH
im ∩ PH

im−1; i ∈ SH ; j ∈ CZ; (i, j) /∈ B (64)

Constraint(63) applies to the beginning (hot-end) of a heat exchanger while inequality(64) applies to the end of a he
xchanger (cold-end). Notice that the last term of the right-hand side of(63) vanishes when the end of a heat excha
ccurs, rendering the desired inequality. The equation considers three cases. First, whenK

z,H
ijm−1 = 1 andK̂

z,H
ijm−1 = K̂

z,H
ijm = 0,

.e. there are more internal intervals, then(63) renders the desired equality of flows. A similar thing happens at the e
he exchanger by Equation(64). On the other hand, for an internal interval, both constraints become trivial. Notice
onstraints are always trivial for heat exchangers spanning less than three intervals, since there are not internal interv
ases.

In the case where (i, j) ∈ B; this is, more than one heat exchanger is allowed between streamsi andj, an equivalent set o
onstraints is defined which considers the possibility of having the beginning and the end of two different heat exch
he same interval.
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Flow rate consistency for hot streams in extreme intervals—i ∈ SH, (i, j) ∈ B:

q̂
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m )
≥ q̂

z,H
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−
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)
Fi
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−

(
2 + K̂
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)
Fi
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im−1; i ∈ SH ; j ∈ CZ; (i, j) ∈ B (66)

q̂
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ijm − q̃

z,H
ijm

Cpim(TU
m − TL

m )
≤ q̃

z,H
ijm−1

Cpim−1(TU
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+

(
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z,H
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z,H
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Fi
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im ∩ PH
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In this case, constraint(65) is valid when a heat exchanger begins (hot-end) at intervalm − 1 while constraint(66) is used
for the beginning interval when there is other exchanger ending in the interval as well. In turn, constraint(67) is valid at the end
of a heat exchanger, regardless of whether one is following or not.

Although the sets of constraints(63)–(67)are valid in a general case, they can be simplified if splits are not allowed for
the corresponding hot stream. This is because when splits are not allowed for hot streami, then the flow rate calculated for
exchanger-internal intervals has to be equal to the actual stream flow rate. This condition is enforced using the following
constraints.

to set the
fl pt
i

Flow rate consistency for hot streams—i /∈ SH:

q̂
z,H
ijm ≥

(
Y

z,H
ijm − K

z,H
ijm − K̂

z,H
ijm

)
�H

z,H
im z ∈ Z; m ∈ Mz; i ∈ Hz

m−1 ∩ Hz
m ∩ Hz

m+1; i /∈ SH ; j ∈ Cz; j ∈ PH
im−1 ∩ PH

im ∩ PH
im+1

(68)

Constraint(68)enforces the heat flow to be equal to the enthalpy change for any internal interval. This is equivalent
ow rate passing through the heat exchanger equal to the stream actual flow rate. In the case where (i, j) ∈ B the same conce
s applied but now two constraints are required since theY variables may take values greater than one.

Flow rate consistency constraints for cold streams are given next without further explanation.

Definition of exchanger-internal intervals for cold streams—j ∈ SC:

α
z,C
ijn ≤ 1 − K

z,C
ijn − K

z,C
ijn−1 z ∈ Z; n ∈ Mz; j ∈ Cz

n ∩ Cz
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jn−1 (69)

α
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jn−1 (70)
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jn−1 (72)

Flow rate consistency for cold streams in exchanger-internal intervals—j ∈ SC, (i, j) /∈ B:
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Flow rate consistency for cold streams in extremes intervals—j ∈ SC, (i, j) /∈ B:
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Flow rate consistency for cold streams in extreme intervals—j ∈ SC, (i, j) ∈ B:
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Flow rate consistency for cold streams—j /∈ SC:

q̂
z,C
ijn ≥
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)
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z,C
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2.6. Temperature difference enforcing

Equations enforcing a temperature difference�Tmin are written at the beginning and end of a heat exchanger, which are
important in order to assure network feasibility. This condition is already guaranteed for exchanger-internal intervals because
of the shift of scales. However, for extreme intervals, it is necessary to include additional constraints.

Let us first examine the case where splits are not allowed, as shown inFig. 9. In this case, the minimum temperature difference
at each end of a heat exchanger is enforced by means of the depicted inequalities. Notice that these constraints are linear only
because when no splits are allowed, the flow rate passing through a heat exchanger is the total stream flow rate, which is a

Fig. 9. Temperature difference assurance when splits are not allowed.
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Fig. 10. Temperature difference assurance when splits are allowed.

parameter of the model. The constraints enforcing a minimum approach temperature for the case where splits are not allowed
are presented next.

Temperature feasibility constraints—i /∈ SH, j /∈ SC:

TL
m + q̂

z,H
ijm

FiCpim

≥ TL
n + q̂

z,C
ijn

FjCpjn

− (2 − K
z,H
ijm − K

z,C
ijn )TU
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n ≤ TU

m ; TU
n ≥ TL
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m; j ∈ Cz
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im (81)
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z ∈ Z; m, n ∈ Mz; TL
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m ; TU
n ≥ TL
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m; j ∈ Cz

n; i /∈ SH ; j /∈ SC; i ∈ PC
jn; j ∈ PH

im (82)

Note that the last term of the right-hand side of(81)and(82)only vanishes when a heat exchanger starts or ends at overlapping
temperature intervals for the hot and cold streams, rendering the proper inequalities. In all other cases, the inequalities are trivial.

Now consider the case where stream splits are permitted, as illustrated inFig. 10. Two different sets of constraints are defined
for cases where only one or multiple heat exchangers are permitted. The equations for cases where (i, j) /∈ B are presented first,
and then the correspondent to cases where (i, j) ∈ B are given.

Temperature feasibility constraints—i ∈ SH, j ∈ SC, (i, j) /∈ B:
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K
z,H
ijm ≤ 2 − K̂

z,H
ijm − K̂

z,C
ijn

z ∈ Z; m, n ∈ Mz; i ∈ SH ; j ∈ SC; TL
n < TU

m ; TU
n > TL

m ; i ∈ Hz
m ∩ Hz

m+1; j ∈ Cz
n ∩ Cz

n+1; i ∈ PC
jn ∩ PC

jn+1; j ∈ PH
im ∩ PH

im+1

(86)

q̂
z,H
ijm

TU
m − TL

n

≤ q̂
z,H
ijm−1

TU
m−1 − TL

m−1

Cpim

Cpim−1
+ (2 − K̂

z,H
ijm − K̂

z,C
ijn )

�H
z,H
im

TU
m − TL

n

z ∈ Z; m, n ∈ Mz; i ∈ SH ; j ∈ SC; TL
n < TU

m ; TU
n > TL

m ; i ∈ Hz
m ∩ Hz

m+1; j ∈ Cz
n ∩ Cz

n+1; i ∈ PC
jn ∩ PC

jn+1; j ∈ PH
im ∩ PH

im+1

(87)

q̂
z,C
ijn

TU
n − Max

{
TL

m ; TL
n

} ≥ q̂
z,C
ijn−1

TU
n−1 − TL

n−1

Cpjn

Cpjn−1
+ (2 − K̂

z,H
ijm − K̂

z,C
ijn )

�H
z,H
jn−1

TU
n−1 − TL

n−1

z ∈ Z; m, n ∈ Mz; i ∈ SH ; j ∈ SC; TL
n < TU

m ; TU
n > TL

m ; i ∈ Hz
m ∩ Hz

m+1; j ∈ Cz
n ∩ Cz

n+1; i ∈ PC
jn ∩ PC

jn+1; j ∈ PH
im ∩ PH

im+1

(88)

Note that(83)–(85)and(86)–(88)are written only for overlapping pairs of intervals whereTL
n < TU

m ; TU
n > TL

m . When the
temperature intervals overlap but do not represent the beginning (hot-end) of a heat exchanger, constraints(83)–(85)become
trivial since the last terms of the right-hand sides are positive. Consider first the case, wherem andn correspond to the hot-end
of a heat exchanger at overlapping intervals. In such case,K

z,H
ijm = K

z,C
ijn = 1 and thus the last term of the right-hand side of

Equations(83)–(85)vanishes, giving the following set of constraints:

K̂
z,C
ijn ≤ 0;
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;
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n
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z,H
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m+1

Cpim
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The first of these inequalities forbids that the cold-end of the heat exchanger for the cold stream be located at the same
temperature interval than the hot-end. In turn, the second inequality forces the hot-end temperature of the cold stream to be
lower than the upper temperature limit of the hot-end interval for the hot stream. Indeed,
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z,C
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Finally, the third inequality forces the hot-end temperature of the hot stream to be larger than Min{TU
m ; TU

n }. Fig. 11illustrates
the two possible cases for Min{TU

m ; TU
n }. Indeed,

q̂
z,H
ijm

Min{TU
m ; TU

n } − TL
m

≥ q̂
z,H
ijm+1

TU
m+1 − TL

m+1

Cpim

Cpim+1
⇒ TL

m + q̂
z,H
ijm

q̂
z,H
ijm+1

Cpim+1

Cpim

(TU
m+1 − TL

m+1) ≥ Min{TU
m ; TU

n }

Fig. 11. Temperature difference assurance at the hot-end of an exchanger—i ∈ SH, j ∈ SC, (i, j) /∈ B.
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or, equivalently:TL
m + q̂

z,H
ijm

Cpim
= Min{TU

m ; TU
n }. The temperature differences at the exchanger cold-end (constraints(86)–(88)) is

enforced in an equivalent manner.
We now present the equations corresponding to more than one exchanger

Temperature feasibility constraints—i ∈ SH, j ∈ SC, (i, j) ∈ B:
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.7. Heat exchanger area calculation

This section describes a series of constraints that are used to estimate the heat exchanger area required to perf
ransfer of any stream match. When only one heat exchanger is permitted between streamsi andj, the required heat transf
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area is simply calculated as:

Az
ij =

∑
m ∈ Mz

i

∑
n ∈ Nz

j
;TL

n <TU
m

j ∈ PH
im

;i ∈ PC
jn

[
qz
im,jn(him + hjn)

�T ML
mn himhjn

]
z ∈ Z; i ∈ Hz; j ∈ Cz; (i, j) ∈ P (96)

In the case where multiple heat exchangers between streamsi and j are permitted, the previous equation gives the total
required area for the match (i, j), that is, the summation of the areas of all exchangers placed for the match. However, the
designer wants to know the area required for each individual exchanger. This is facilitated by the following set of constraints.

Â
z,k
ij ≤

∑
l ∈ Mz

i

l≤m

∑
n ∈ Nz

j

TL
n <TU

m

j ∈ PH
im

i ∈ PC
jn

[
(qz

il,jn − �q
z
il,jn) · (hil + hjn)

�T ML
ln · hil · hjn

]
−

k−1∑
h=1

A
z,h
ij + Az

ij max(2 − K̂
z,H
ijm − G

z,k
ijm)

z ∈ Z; m ∈ Mz; i ∈ Hz
m; j ∈ Cz; j ∈ PH

im; (i, j) ∈ B; k = 1, . . . , kmax − 1 (97)

Â
z,k
ij ≥

∑
l ∈ Mz

i

l<m

∑
n ∈ Nz

j

TL
n <TU

m

j ∈ PH
im

[
(qz

il,jn − �q
z
il,jn) · (hil + hjn)

∆T ML
ln · hil · hjn

]
−

k−1∑
h=1

A
z,h
ij − Az

ij max(2 − K̂
z,H
ijm − G

z,k
ijm)

A

k∑
h

n

�

e mum
n o

d
z nd,
w sented
i

∑

i ∈ PC
jn

z ∈ Z; m ∈ Mz; i ∈ Hz
m; j ∈ Cz; j ∈ PH

im; (i, j) ∈ B; k = 1, . . . , kmax − 1 (98)

ˆ z,k
ij ≥ Az

ij −
k−1∑
h=1

Â
z,h
ij z ∈ Z; m ∈ Mz; i ∈ Hz

m; j ∈ Cz; j ∈ PH
im; (i, j) ∈ B; k = 1, . . . , kmax − 1 (99)

max

=1

h · G
z,h
ijm =

∑
l ∈ Mz

i
;l≤m

j ∈ PH
im

K
z,H
ijl + 1 − Y

z,H
ijm z ∈ Z; m ∈ Mz; i ∈ Hz

m; j ∈ Cz; j ∈ PH
im; (i, j) ∈ B; k = 1, . . . , kmax − 1 (100)

∑
∈ Nz

j
;TL

n <TU
m

j ∈ PH
im

;i ∈ PC
jn

�q
z
im,jn = q̃

z,H
ijm z ∈ Z; m ∈ Mz; i ∈ Hz

m; j ∈ Cz; j ∈ PH
im; (i, j) ∈ B; k = 1, . . . , kmax − 1 (101)

q
z
im,jn ≤ qz

im,jn z ∈ Z; m ∈ Mz; i ∈ Hz
m; j ∈ Cz; j ∈ PH

im; (i, j) ∈ B; k = 1, . . . , kmax − 1 (102)

Using these constraints, the area of thek-th heat exchanger is calculated by subtracting the area of the previousk − 1
xchangers to the total accumulated area until the end of thek-th exchanger. To do that, a parameter defining the maxi
umber of heat exchangers allowed per match (kmax) is required. Additionally, new binary variables (G

z,k
ijm) are introduced t

etermine which exchanger is present at a certain temperature interval. In this context, whenever (2− K̂
z,H
ijm − G

z,k
ijm) equals

ero, constraints(97) and(98) allow the determination of the required area for thek-th heat exchanger. On the other ha
hen (2− K̂

z,H
ijm − G

z,k
ijm) > 0, these two constraints become trivial. An example showing the values of this term is pre

n Fig. 12.
For a maximum of two exchangers, the equations determining the values ofG

z,1
ijm and G

z,2
ijm are G

z,1
ijm + 2G

z,2
ijm =

l ∈ Mz
i
;l≤m;j ∈ PH

im
K

z,H
ijl + 1 − Y

z,H
ijm . Thus, for the first five intervals, we haveGz,1

ijm + 2G
z,2
ijm = 1, which forcesGz,2

ijm = 0 and
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Fig. 12. Area computation when (i, j) ∈ B.

G
z,1
ijm = 1. In interval 6, we haveGz,1

ijm + 2G
z,2
ijm = 2, which forcesGz,1

ijm = 0 andG
z,2
ijm = 1. As a result, (2− K̂

z,H
ijm − G

z,1
ijm) = 0

for m = 6 and (2− K̂
z,H
ijm − G

z,1
ijm) = 0 for m = 8. Thus, defining the proper interval limits to define the areas of the exchangers.

In order to account appropriately for the heat load of each exchanger, new variables�q
z
im,jn are defined in equation(101)

in relation to the variables previously introduced to preserve heat transfer consistency (˜q
z,H
ijm ). Finally, notice that the set of

constraints(97)–(102)is only written for hot stream intervals. An equivalent set could be defined for the cold streams that would
give the same results, since only one set suffices for the purposes of area computation. One chooses the set with smallest number
of intervals.

2.8. Number of shells

In practice, only a limited amount of area can be packed in a single exchanger shell. The number of shells is defined through
an integer variable (Uz

ij). Thus, the following constraints need to be added to count the number of shells necessary to perform
the resulting heat transfer. The first equation applies when (i, j) /∈ B, while constraint(103)is used when (i, j) ∈ B.

Maximum shell area:

Az
ij ≤ Az

ij maxU
z
ij z ∈ Z; i ∈ Hz; j ∈ Cz; (i, j) ∈ P ; (i, j) /∈ B (103)

Â
z,k
ij ≤ Az

ij maxÛ
z,k
ij z ∈ Z; i ∈ Hz; j ∈ Cz; (i, j) ∈ P ; (i, j) /∈ B (104)

Notice that since a fixed-charge cost is associated with the number of shells in the objective function, the optimal solution
will naturally tend to driveUz

ij to a minimum.

2.9. Objective function

capital
c

M

expression.
T

Finally, the objective for the formulation is to minimize the annualized total cost, which includes both operative and
ost. The expression for the total annual cost is:

in cost =
∑

z

∑
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∑
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


(i,j) ∈ B

(105)

We use a linear expression to approximate the cost of a heat exchanger, as opposed to the traditional concave
his is a simplifying assumption that does not affect the validity of the results as we show below.
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3. Examples

We now present a series of results obtained with the proposed formulation for a variety of examples found in the literature.
We simply show in each subsection a set of tables containing the data and the results with a figure showing the final network.
The model was coded in GAMS and solved with CPLEX 7.0 using default options. The optimization times that are reported
correspond to runs performed in a PC with a 1.0 GHz processor and 2.0 Gb of ram memory.

3.1. Problem 4S1

This problem consisting of two cold and two hot process streams, one cooling and one heating utility was reported in
Shenoy (1995). The problem was solved using two heat transfer zones, defined by the pinch temperature resulting of enforcing
a minimum temperature difference of 20◦C. The resulting network has a minimum number of units and is close to minimum
area. We report actual areas. To illustrate the assertion made above that the linear approximation does not introduce large error,
we illustrate in differences between the real cost formula and its linear approximations. In the range of interest (values above
20), the differences are smaller than 3%. As errors in the values of heat transfer coefficients can be of the same size, we conclude
that this is as far as one will ever be able to go, short of including the detailed exchanger design procedure into the model. This
situation is the same for the rest of the examples (Tables 1–4, Figs. 13 and 14).

3.2. Problem 7SP4

This problem, taken fromPapoulias and Grossmann (1983), consists of six hot and one cold process streams, one cooling
and one heating utility. The problem was solved using two heat transfer zones defined by the pinch temperature corresponding
to a�Tmin of 20◦C (Tables 5–8, Fig. 15).

Table 1
Cost data for problem 4S1

Cost data

HE cost formula (K$) 10 + 0.8A0.8

Linear formula ($/year) 5291.9 + 77.79A
Plant life (Year) 5
ROR (%) 10
Annual factor (Year−1) 0.3221

Table 2
Stream data for problem 4S1

Stream F (tonnes/h) Cp (kJ/kg-C) TIN (◦C) TOUT (◦C) H (MJ/h-m2-C) Q (MJ/h)

I1 10.0 1.0 175.0 45.0 0.2 1300.0
I2 40.0 1.0 125.0 65.0 0.2 2400.0
I3 605.0 1.0 180.0 179.0 0.2 605.0

J1 20.0 1.0 20.0 155.0 0.2 2700.0
J2 15.0 1.0 40.0 112.0 0.2 1080.0
J3 52.5 1.0 15.0 25.0 0.2 525.0

�Tmin = 20◦C.

Table 3
Resulting HEN for problem 4S1

HE Load (MJ/h) Area (m2)

1 395.0 99.8
2 105.0 48.4
3 605.0 160.2
4 275.0 77.4
5 525.0 109
6 1700.0 551.4
7 700.0 312.4

1358.7
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Table 4
Model statistics for problem 4S1

Model statistics

Single variables 381
Discrete variables 61
Single equations 1012
Non-zero elements 3202
Time to reach a feasible solution (s) 1
Time to reach global optimality (s) 2
Optimality gap at first feasible solution (%) 4.96
B andB nodes to first feasible solution 42
B andB nodes to reach global optimality 112

Fig. 13. Comparison between actual and linearized costs.

The resulting network structure is different from the one originally reported by the authors, mainly because they used the
classical transshipment model to determine the minimum number of units and then found a network using the resulting matches
and heat loads, but without any consideration on the area requirements. Our model not only finds a design with minimum number
of units, even though the matches are different, but also with minimum area, thus minimizing the total cost.
Fig. 14. Final heat exchanger network for problem 4S1.
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Table 5
Cost data for problem 7SP4

Cost data

HE cost formula (K$) 10 + 0.8A0.8

Linear formula ($/year) 5291.9 + 77.79A
Plant life (Year) 5
ROR (%) 10
Annual factor (Year−1) 0.3221

Table 6
Stream data for problem 7SP4

Stream F (tonnes/h) Cp (KJ/kg-C) TIN (◦C) TOUT (◦C) H (MJ/h-m2-C) Q (MJ/h)

I1 15.0 1.0 675.0 150.0 0.2 7875.00
I2 11.0 1.0 590.0 450.0 0.2 1540.00
I3 4.5 1.0 540.0 115.0 0.2 1912.50
I4 60.0 1.0 430.0 345.0 0.2 5100.00
I5 12.0 1.0 400.0 100.0 0.2 3600.00
I6 125.0 1.0 300.0 230.0 0.2 8750.00
I7 8390.0 1.0 801.0 800.0 0.2 8390.00

J1 47.0 1.0 60.0 710.0 0.2 30550.00
J2 110.3 1.0 80.0 140.0 0.2 6617.50

�Tmin = 20◦C.

3.3. Problem 10SP1

This problem consisting of five cold and five hot process streams, one cooling and one heating utility was reported inCerda
(1980), Papoulias and Grossmann (1983). The problem was solved using only one heat transfer zone and a minimum temperature
difference of 10◦C (Tables 9–12, Fig. 16).

For the same reasons discussed in example 7SP4, the resulting matches and network structure are different from those
originally reported by the authors. Our network features minimum number of units and a total area close to the global minimum.

Table 7
Resulting HEN for problem 7SP4

HE Load (MJ/h) Area (m2)

1 3675.0 676.0
2 1540.0 266.9
3 495.0 135.9
4 8390.0 511.4
5 4200.0 902.4
6 1417.5 409.7
7 5100.0 1027.3
8 3600.0 337.4
9 2132.5 393.1

10 6617.5 427.1

5087.1

Table 8
Model statistics for problem 7SP4

Model statistics

S
D
S
N
T
T
O
B
B

ingle variables 1106
iscrete variables 147
ingle equations 2620
on-zero elements 9348
ime to reach a feasible solution (s) 10
ime to reach global optimality (s) 60
ptimality gap at first feasible solution (%) 6.9
andB nodes to feasibility 39
andB nodes to reach global optimality 1430
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Fig. 15. Final heat exchanger network for problem 7SP4.

3.4. Problem EX1

This problem was taken fromGundersen and Grossmann (1990)and consists of two cold and three hot process streams,
one cooling and one heating utility. The problem was solved using two heat transfer zones, defined by the pinch temperature

Table 9
Cost data for problem 10SP1

Cost data

HE cost formula (K$) 10 + 0.8A0.8

Linear formula ($/year) 5291.9 + 77.79A
Plant life (Year) 5
ROR (%) 10
Annual factor (Year−1) 0.3221

Table 10
Stream data for problem 10SP1

Stream F (tonnes/h) Cp (KJ/kg-C) TIN (◦C) TOUT (◦C) H (MJ/h-m2-C) Q (MJ/h)

I1 8.790 1.0 160.0 93.0 0.2 588.93
I2 10.540 1.0 249.0 138.0 0.2 1169.94
I3 14.770 1.0 227.0 66.0 0.2 2377.97
I4 12.560 1.0 271.0 149.0 0.2 1532.32
I5 17.730 1.0 199.0 66.0 0.2 2358.09

J1 7.620 1.0 60.0 160.0 0.2 762.00
J2 6.080 1.0 116.0 222.0 0.2 644.48
J3 8.440 1.0 38.0 221.0 0.2 1544.52
J4 17.280 1.0 82.0 177.0 0.2 1641.60
J5 13.900 1.0 93.0 205.0 0.2 1556.80
J

�

6 42.678 1.0 38.0 82.0 0.2 1877.85

Tmin = 10◦C.
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Table 11
Resulting HEN for problem 10SP1

HE Load (MJ/h) Area (m2)

1 588.9 109.9
2 644.5 264.0
3 525.5 118.1
4 1641.6 396.4
5 736.4 238.8
6 501.0 84.6
7 1031.3 263.3
8 762.0 146.8
9 454.6 142.2

10 1141.5 306.4

2070.4

resulting from a minimum temperature difference of 10◦C. In addition, non-isothermal split mixing was permitted in this
example. The resulting network structure is similar to that reported by the authors as global optimum, but the split flow rates
and outlet temperatures are different due to the ability of our MILP model to approach optimality (the authors originally solved
the problem using a non-linear formulation). Consequently, the network obtained with our new methodology has lower total
area and cost, proving that the solution reported previously is not optimal (Tables 13–16, Fig. 17).

Table 12
Model statistics for problem 10SP1

Model statistics

Single variables 1428
Discrete variables 245
Single equations 3711
Non-zero elements 12352
Time to reach a feasible solution (s) 40
Time to reach global optimality (s) 260
Optimality gap at first feasible solution (%) 6.7
B andB nodes to first feasible solution 311
B andB nodes to reach global optimality 2149

Table 13
Cost data for problem EX1

Cost data

HE cost formula (K$) 8.6 + 0.67A0.83

Linear formula ($/year) 8153.9 + 61.75A
P
R
A

T
S

S

I
I
I
I

J
J
J

�

lant life (Year) 5
OR (%) 10
nnual factor (Year−1) 0.3221

able 14
tream data for problem EX1

tream F (tonnes/h) Cp (KJ/kg-C) TIN (◦C) TOUT (◦C) H (MJ/h-m2-C) Q (MJ/h)

1 228.50 1.0 159.0 77.0 0.40 18737.0

2 20.40 1.0 267.0 88.0 0.30 3651.6
3 53.80 1.0 343.0 90.0 0.25 13611.4
4 106.45 1000.0 376.0 375.9 1.00 10645.2

1 93.30 1.0 26.0 127.0 0.15 9423.3
2 196.10 1.0 118.0 265.0 0.50 28826.7
3 559.68 1.0 15.0 30.0 0.60 8395.2

Tmin = 10◦C.
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Fig. 16. Final heat exchanger network for problem 10SP1.

3.5. Problem EX2

This problem was taken fromBagajewicz, Rodera, & Savelski (2002)and consists of two cold and three hot process streams
and one heating utility. The problem was solved using a single heat transfer zone and a minimum temperature difference of
10◦C. In addition, non-isothermal split mixing was permitted in this example. This example has the interesting property that a
network with minimum number of units predicted by the traditional transshipment formulation (Papoulias & Grossmann, 1983)
is infeasible (Tables 17–20, Fig. 18).

Table 15
Resulting HEN for problem EX1

HE Load (MJ/h) Area (m2)

1 2203.2 425.6
2 9899.2 1258.6
3 10645.2 234.5
4 4262.7 958.9
5 6079.1 2269.4
6 8395.2 483.6
7 1448.4 407.1
8 3712.2 959.3

6997.0
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Fig. 17. Final heat exchanger network for problem EX1.

Fig. 18. Final heat exchanger network for problem EX2.
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Table 16
Model statistics for problem EX1

Model statistics

Single variables 1151
Discrete variables 154
Single equations 2704
Non-zero elements 10065
Time to reach feasibility (s) 10
Time to reach global optimality (s) 70
Optimality gap at first feasible solution (%) 1.9
B andB nodes to feasibility 124
B andB nodes to reach global optimality 1639

Table 17
Cost data for problem EX2

Cost data

HE cost formula (K$) 10 + 0.8A0.8

Linear formula ($/year) 9498.8 + 58.95A
Plant life (year) 5
ROR (%) 10
Annual factor (Year−1) 0.3221

Table 18
Stream data for problem EX2

Stream FCp TIN TOUT H Hot/cold Q

I1 186.00 100.00 30.00 0.40 1 13020
I2 168.00 75.00 30.00 0.40 1 7560
I3 24.00 50.00 30.00 0.40 1 480
I4 3780.00 180.00 179.00 0.40 1 3780

J1 210.00 20.00 100.00 0.40 0 16800
J2 84.00 20.00 75.00 0.40 0 4620
J3 84.00 20.00 40.00 0.40 0 1680
J4 64.00 40.00 67.19 0.40 0 1740

�Tmin = 10◦C.

Table 19
Resulting HEN for problem EX2

HE Load (MJ/h) Area (m2)

1 3570 1265.5
2 5670 2657.8
3 840.0 228.1
4 1200.0 823.0
5 1740.0 1066.0
6 3780.0 1890.0
7 3780.0 1890.0
8 480.0 240.0
9 3780.0 214.2

10018

4. Limitations of the model and future work

This is a model based on a transportation/transshipment scheme that requires partitioning streams in intervals. It is therefore
easy to predict that the result will depend in some way on the number of intervals each stream is divided and the pattern of
such intervals. Conceivably, as the number of intervals is increased, the results will reach some asymptotic pattern of exchange
network and corresponding areas. After we obtained the results shown above, we solved the problem for different number of
intervals.Table 21shows the statistics for different number of intervals. The runs render the same network topology with the
same loads.
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Table 20
Statistics for problem EX2

Model statistics

Single variables 1197
Discrete variables 180
Single equations 2684
Non-zero elements 13596
Time to reach feasibility (s) 20
Time to reach global optimality (s) 200
Optimality gap at first feasible solution (%) 4.9
B andB nodes to feasibility 306
B andB nodes to reach global optimality 5324

Table 21
Model statistics for problem 4S1

Number of intervals 26 56 112

Single variables 396 994 2650
Discrete variables 71 139 268
Single equations 1079 2479 10399
Non-zero elements 3175 8359 20719
Time to reach optimality @ (0% gap) (s) 0.4 8.1 165.7

Total area 1374.5 1379.85 1363.97

A second issue of concern is that real costs cannot be incorporated because of the linearity in the approximation of the
heat exchanger costs. Thus, costs can be over or underestimated in different portions of the area range. Aside from intro-
ducing a truly non-linear (usually concave) objective function, one can overcome this limitation by introducing piece-wise
linear functions that can be modeled using special ordered sets (in GAMS). We have not experimented with this, in the
believe that the cost equations already carry an inherent uncertainty that makes it focusing on this issue rather fruitless.
Rather, we think, the issue should be handled by truly designing under cost uncertainty, an effort that belongs to our future
work.

Combinatorial complexity, that is, the increasing number of binary variables needed when the number of intervals is
increased, as well as when the problems are larger (with more streams) is of concern. In future work, we will address this
limitation.

Another minor limitation, this time related to implementation, is that specific exchanger minimum approximation temperature
(EMAT) values cannot be easily imposed, unless the stream temperature partition is done carefully. Indeed, if EMAT values are
to be imposed, then one needs to make these partitions, multiple of EMAT, so that specific exchanges between intervals can be
excluded from the model. However, EMAT constraints (together with the use of the heat recovery approximation temperature,
HRAT) have been proposed to be able to control the trade off between area and energy costs. Given the capabilities of the present
model to actually assess automatically this trade off, we see no reason why EMAT constraints are really needed. Nevertheless,
they can be incorporated.

5. Conclusions

A newly developed MILP model for grassroots design and retrofit of heat exchanger networks was presented in this article.
The use of a special transshipment/transportation structure and the strategic definition of binary variables allow the model to
incorporate most of the features that have been identified as shortcomings of previous formulations. The model can handle
stream splitting, by-passes, non-isothermal mixing and is capable of counting units, even shells, a capability that allows good
c situations.
I stitutes a
m interact
d efine the
h ntial of this
n in Section
4

ost assessment. The key elements of the model are flow rate consistency constraints that can help handle splitting
n addition, especial constraints can “count” heat exchanger shells. The one-step MILP structure of the model con
ajor conceptual advantage. Additionally, the model easily allows design flexibility if, in fact, the user wants to actively
uring the design stage. This is achieved by fixing, allowing or forbidding topologies using the binary variables that d
eat exchanger network structure. Finally, several examples have been presented that illustrate the power and pote
ew formulation to obtain cost-optimal networks. Some advances can be made to improve this model, as pointed out
are left for future work.
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