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ABSTRACT 

We extend the formulation of the Stages/Substages model (see Part I) to account heat capacity variable 

with temperature, whose influence in designs of heat exchanger network design was not studied. Variable 

heat capacity (Cp) frequently arises when streams of high molecular weight are used, or when temperature 

ranges are large, like in petroleum fractionation, where the range of temperatures in streams spans more 

than 100 oC. We solve our model globally using RYSIA, a recently developed method bound contraction 

procedure (Faria and Bagajewicz, 2011c; Faria et al., 2015). We also tried BARON and ANTIGONE, two 

commercial global solvers, but they failed to find a solution.    

 

 

 

  



 

1. INTRODUCTION 

Of all the articles devoted to the design of Heat exchanger networks (see Furman and Sahinidis , 

2002; Morar and Agachi, 2010)), very few, if any, have dealt with streams that have variable  heat 

capacity (Cp), perhaps because it was thought that using average Cp for streams is a sufficiently good 

approximation for design purposes. Figure 1, for example, shows the enthalpy of petroleum as a function 

of temperature (Wauquier, 1995). The slope, which is the heat capacity, increases with temperature. This 

is consistent with mixtures of high molecular weight.  

 

Figure 1. Enthalpy of Petroleum 

This feature was pointed out and used in several petroleum fractionation design papers 

(Bagajewicz and Ji, 2001,2002; Ji and Bagajewicz, 2002a,b,c; Bagajewicz and Soto, 2001, Bagajewicz 

and Soto, 2003). 



In addition, several methods, especially conceptual design methods like the Pinch Design method, 

have inherent inabilities to be extended to consider it.  

On the other hand, as pointed out and shown in part I, the heat exchanger network design problem 

has been difficult to solve using local solvers, and even some global solvers have recently showed similar 

convergence difficulties. If one desire to approach in a mathematical programming purist form, one should 

use a generalized superstructure (Floudas et al., 1986), or its extension to multiple matches (Kim and 

Bagajewicz, 2016).  While the purist approach guarantees, once solved a globally optimal solution can 

offer structures that are difficult to implement from the practical point of view.  We solve this model 

using RYSIA, a global optimality method based on bound contraction without using branch and bound 

(Faria and Bagajewicz, 2011a, 2011b).  

This paper is organized as follows: We present the revised stages/substages model first discussing 

critical aspects (reprodcuing all the equations in the appendix).  We follow with the modications needed 

for variable Cp. We then discuss changes to the fixed Cp lower bound model (also shown in the appendix). 

We then discuss the bound contraction strategy next, including the use of lifting partitions. We then present 

results.   

 

2. STAGES/SUB-STAGES SUPERSTRUCTURE MODEL 

The original stage-wise superstructure proposed by Yee and Grossmann (1990), was extended to 

multiple substages (Jogunswat et al, 2013) and solved globally by Kim and Bagajewicz (2016) with non 

isothermal mixing.  The model is based on the stages/substages shown in Figure 2.  



   

Figure 2. Stage/Sub-stages network superstructure. 

Basically, the proposed stage/substage-wise superstructure allows stream branching and the split stream 

to contain more than one heat exchanger. The original equations for fixed Cp are shown in the Appendix 

without discussion. We also include the equation for the Lower bound.  

 

3. MODIFICATIONS TO THE STAGES/SUBSTAGES MODEL 

We now add the following parameters to the model (see Part I):  
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We also add the following equations:  
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Clearly, these equations can be extended to include cubic terms, logarithm terms and inverse terms.  

 

LOWER BOUND MODEL MODIFICATIONS  

The lower bound for constant Cp is based on the partition of flowrates and differences of 

temperature. In turn the LMTD function image is partitioned using the partitioned temperature differences.  

Here we simply add the partition of temperatures as follows:  
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Thus  
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We introduce new parameters ,i mkCphThD , , , ,i mk bh kCphTbhD  as the product of temperature and Cp as follows:   
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Then we rewrite the heat balance equation for the hot streams in each stage as follows:  

, , , 1i mk i i mk i i mkQHM Fh CphTh Fh CphTh         ,i mk    (25) 

and relax ,i mkCphTh as follows:  
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In turn we rewrite the heat balance equation for the cold streams in each stage as follows:  
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and relax ,j mkCpcTc as follows:  
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 We now replace the product of binaries by a continuous variable 

, , , , , , , , , , , ,i mk bh k obh ofh i mk bh k obh i mk bh ofhWTbhFbh vTbh vFbh  so we write the relaxed equation as follows:  
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 We do the same to (A13). We relaxed it as follows:  

, , ,, , , , , , , , , , , , , , , , ,

, , , , 1 , , , 1 , , , , , , ,

j mk bc kj mk bc k obc j mk bc ofc j mk bc k obc j mk bc ofc j mk bc k

obc ofc

j mk bc k obc j mk bc ofc j mk bc k obc j mk bc ofc

obc ofc

CpcTbcD FbcD vTbc vFbc AC

CpcTbcD FbcD vTbc vFbc 

  

 




   , , ,j mk bc k   (35) 

, , ,

, , , , , , , , , , , , , , , 1 , , , ,

j mk bc k

j mk bc k obc j mk bc k obc j mk bc k j mk bc k obc j mk bc k obc

obc obc

CpcTbcD vTbc CpcTbc CpcTbcD vTbc    

         , , ,j mk bc k   (36) 

  

We introduce a new variable , , , , , , , , , , , ,j mk bc k obc ofc j mk bc k obc j mk bc ofcWTbcFbc vTbc vFbc  so we write the relaxed 

equation as follows:  
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We rewrite the equations linking , , ,1i mk bcAC with the products of temperature, Cp and flow as follows : 
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,i mkCphTh  and ,j mkCpcTc  are already relaxed in equations (26) and (28) 

 

 

5. SOLUTION STRATEGY USED BY RYSIA  

After partitioning each one of the variables in the bilinear terms and the nonconvex terms, our 

method consists of a bound contraction step that uses a procedure for eliminating partitions. In the heat 

exchanger network problems the bilinear terms are composed of the product of heat capacity flow rates 

and stream temperatures, and the nonconvex terms are the logarithmic mean temperature differences of 

the area calculation. Details of this strategy were discussed in Part I.  

 



6. EXAMPLES 

 Our examples were implemented in GAMS (version 23.7) (Brooke et al., 2007) and solved using 

CPLEX (version 12.3) as the MIP solver and DICOPT (Viswanathan and Grossmann, 1990) as the MINLP 

solver on a PC machine (i7 3.6GHz, 8GB RAM ).  

6.1. Example 1: The first example is an example to find the optimum HEN design consist of three hot 

streams, two cold streams. We illustrate the proposed approach in detail and make a comparison between 

the fixed Cp and the variable Cp models using this example, which is adapted from Nguyen et al. (2010). 

The data are presented in Table 1 and 2. We used a minimum temperature approach of 10o C, a fixed cost 

of units is 250,000$, and the area cost coefficient is 550$/m2. We solved using two main stages and two 

sub-stages model. We assumed that the limit of number of branched stream for hot and cold stream was 2. 

 Table 1. Data for example 1 

Stream F [kg/s] Tin [C] Tout [
oC] h [KW/m2∙oC] 

H1 210 159 77 0.4 

H2 18 267 88 0.3 

H3 50 343 90 0.25 

C1 90 26 127 0.15 

C2 180 118 265 0.5 

HU  500 499 0.53 

CU  20 40 0.53 

 

Table 2. Cost data for example 1. 

Heating utility cost 100 [$/KJ] 

Cooling utility cost 10 [$/KJ] 

Fixed cost for heat exchangers 250,000 [$/unit] 

Variable cost for heat exchanger area 550 [$/m2] 



 The globally optimal solution for the fixed Cp model has an annualized cost of $1,783,257 and 

was obtained in the root node of 7th iteration satisfying 1% gap between UB and LB. The optimal solution 

network is presented in Figure 3. We showed alternative solutions with a different number of sub-stages 

in Part I of the paper using the fixed Cp model. One of these solutions was also obtained by Kim and 

Bagajewicz (2016) using a new generalized superstructure solved using RYSIA.  

 

Figure 3. The solution network for example 1 with 2 main stages and 2 sub-stages. 

 



 We now introduce variable Cp. The values of parameters a, b and c are presented in Table 3. These 

parameters are produced by varying with temperature so that the amount of heat is the same for each 

stream. 

Table 3. Parameters of variable Cp for example 1. 

 a b c 

H1 0.16135 0.01083 -2.49681×10
-5

 

H2 0.70678 0.00334 -5.05484×10
-6

 

H3 0.77039 0.00198 -2.46313×10
-6

 

C1 0.25693 0.01445 -5.13029×10
-5

 

C2 0.57327 0.00372 -5.25405×10
-6

 

 

 We partitioned flows and temperatures in the bilinear terms of the energy balances and ΔT in the 

area calculations using 2 partitions. Extended partition forbidding (applied only when the number of 

partitions increases above 2) is used in bound contraction. The lower limits of total area and total heat of 

heating utilities in the lifting partitioning are used for 5590 m2 and 11700 kW calculated using pinch 

analysis. The globally optimal solution for variable Cp has an annualized cost of $1,783,727 using 9 

iterations and 29 min 22 sec cpu time with 0% gap between UB and LB. The results are summarized in 

Table 4 and the optimal solution network is presented in Figure 4. 

Table 4. Global optimal solution of example 1 for variable Cp. 

# of  

starting 

partitions 

Objective value ($) 

(Upper Bound) 
Gap 

# of 

iterations 

# of partitions at 

convergence 
CPU Time 

2 1,783,727 0% 9 2 29m 22s 

 



 

 

Figure 4. The solution network of example 1 for variable Cp. 

If we use that the value of parameter a is one and the others are zero (i.e. Cp=1) for the same condition 

with the fixed Cp. We obtained a globally optimal solution of 1,786,076 with 0.79% gap using 4 iterations 

and 5 min 10 sec cpu time. A very similar solution network with the fixed Cp model (Figure 3) is obtained 

when using Cp=1 and this optimum solution network is presented in Figure 5. 

 We tried to solve this problem using BARON (version 14.4) (Sahinidis, 1996), and ANTIGONE 

(version 1.1) (Misener and Floudas, 2014). None of them rendered a feasible solution.  



 

Figure 5. The solution network of example 1 for Cp=1. 

 

6.2. Example 2: The second example is 10SP1 (Cerda, 1980). This example consists of four hot and 

five cold streams and the data is given in Table 5 and 6. We assumed a minimum temperature approach of 

10o C. The fixed cost of units is 5,291.9$, and the area cost coefficient is 77.79$/m2. We solved using two 

main stages and two sub-stages model. We assumed that the limit of number of branched stream for hot 

and cold stream was 2. 

 



Table 5. Data for example 2 

Stream F [Kg/s] Tin [
oC] Tout [

oC] h [kJ/s∙m2∙oC] 

H1 2 160 93 0.06 

H2 3 249 138 0.06 

H3 4 227 66 0.06 

H4 5 199 66 0.06 

C1 2 60 160 0.06 

C2 1 116 222 0.06 

C3 2 38 221 0.06 

C4 5 82 177 0.06 

C5 4 93 205 0.06 

HU  38 82 0.06 

CU  271 149 0.06 

 

Table 6. Cost data for example 2. 

Heating utility cost 566,167 [$/(kJ/s)] 

Cooling utility cost 53,349 [$/(kJ/s)] 

Fixed cost for heat exchangers 5,291.9 [$/unit] 

Variable cost for heat exchanger area 77.79 [$/m2] 

 

We partitioned flows, temperature and ΔT with 2 intervals and used the extended interval 

forbidding. Lower limits of total area and total heat of heating utilities in the lifting partitioning are used 

for 3000 m2 and 150 KJ/s from (Faria et al., 2015). Upper limits are used 50% higher values than lower 

limits. We produced the value of parameters a, b and c in Table 7 for variable Cp by varying with 

temperature so that the amount of heat is the same for each stream. 

 



 

Table 7. Parameters of variable Cp for example 2. 

 a b c 

H1 -0.49215 0.01250 -2.800*10
-5

 

H2 -0.03388 0.00492 -7.200*10
-6

 

H3 0.36506 0.00454 -8.400*10
-6

 

H4 0.16632 0.00600 -1.220×10
-5

 

C1 -0.05020 0.00952 -2.370×10
-5

 

C2 0.68902 0.00580 -9.700×10
-6

 

C3 0.60183 0.00480 -1.010×10
-5

 

C4 -0.22326 0.00850 -1.810×10
-5

 

C5 -0.02567 0.00625 -1.150×10
-5

 

 

The globally optimal solution features an annualized cost of $99,629,274 and was obtained in the root 

node of the 8th iteration satisfying 1% gap between UB and LB able in Table 8. The optimal solution 

network is presented in Figure 6. 

Table 8. Global optimal solution of example 1 for variable Cp. 

# of  

starting 

partitions 

Objective value ($) 

(Upper Bound) 
Gap 

# of 

iterations 

# of partitions at 

convergence 
CPU Time 

2 99,629,274 0.01% 8 2 17m 34s 

 



 

Figure 6. The solution network of example 2 for variable Cp.  

We also tested with Cp=1 and we obtained a globally optimal solution of $99,369,753 with 0.2% 

gap using 15 min 24 sec cpu time (Table 9). We compared this optimal solution with the fixed Cp solution 

from the generalized superstructure model in Table 10 and figure 7. Finally, we tried to solve this problem 

using BARON (version 14.4) (Sahinidis, 1996), and ANTIGONE (version 1.1) (Misener and Floudas, 

2014). None of them rendered a feasible solution.  

 

 



Table 9. Heat exchanger results for example 2. 

 Area (m
2
) Q (KW) 

HX1 89.332 79.18 

HX2 52.390 33.45 

HX3 20.630 13.93 

HX4 291.435 321.14 

HX5 672.873 305.64 

HX6 467.992 328.15 

HX7 243.635 159.56 

HX8 43.989 24.92 

HX9 213.117 145.74 

HX10 209.611 124.51 

HX11 136.632 137.21 

CU1 193.731 144.37 

CU2 219.394 114.90 

HU1 206.147 151.00 

 

Table 10. Comparing the variable Cp model when Cp=1 and the fixed Cp model from the generalized 

superstructure model (Kim and Bagajewicz, 2016). 

 Objective 

value ($) 
Gap 

# of 

iterations 

# of partitions 

at convergence 
CPU Time 

Variable Cp model 

(when Cp=1) 
99,629,274 0.01% 8 2 17m 34s 

Fixed Cp model 

(superstructure model) 
99,636,825 0.9% 3 2 22m 41s 

 



 

(a) 

 

(b) 

Figure 7. Optimal solution networks for example 2 (a) when Cp=1 with for variable Cp (b) when the fixed 

Cp used for the generalized superstructure model (Kim and Bagajewicz, 2016).   



6.3. Example 3: The third example consisting of 11 hot and 2 cold streams corresponds to a crude 

fractionation unit. The data is given in Table 11 and 12. This example was solved using 2 main stages and 

2 sub-stages superstructure model. We assumed a minimum temperature approach of 
,i j

EMAT =10 oC. We 

also assumed that 4 branched streams are possible in cold stream and no branching on hot stream. The 

fixed cost of units is 250,000$, and the area cost coefficient is 550 $/m2. The lower limits of total area and 

total heat of heating utilities in the lifting partitioning are used for 8636 m2 and 23566 kW, respectively 

calculated using pinch analysis. 

 

 

Table 11. Data for example 3 

Stream  F [kg/s] Tin [C] Tout [C] H [KW/m2∙C] 

H1 TCR 46.30 140.2 39.5 0.26 

H2 LGO 12.70 248.8 110 0.72 

H3 KEROSENE 14.75 170.1 60 0.45 

H4 HGO 9.83 277 121.9 0.57 

H5 HVGO 55.08 250.6 90 0.26 

H6 MCR 46.03 210 163 0.33 

H7 LCR 82.03 303.6 270.2 0.41 

H8 VR1 23.42 360 241.4 0.47 

H9 LVGO 19.14 178.6 108.9 0.6 

H10 SR-Quench 7.66 359.6 280 0.47 

H11 VR2 23.42 241.4 280 0.47 

C1 Crude 96.41 30 130 0.26 

C2 Crude 96.64 130 350 0.72 

HU   500 499 0.53 

CU   20 40 0.53 

 

 



Table 12. Cost data for example 3. 

Heating utility cost 100 [$/KJ] 

Cooling utility cost 10 [$/KJ] 

Fixed cost for heat exchangers 250,000 [$/unit] 

Variable cost for heat exchanger area 550 [$/m2] 

 

Flows, temperature and ΔT were partitioned into 2 intervals and the extended interval forbidding 

was used for bound contracting. We produced the value of parameters a, b and c in Table 13 for variable 

Cp by varying with temperature so that the amount of heat is the same for each stream. 

Table 13. Parameters of variable Cp for example 3. 

 a b c 

H1 1.27 0.011 -3.54×10
-5

 

H2 1.70 0.004 -6.29×10
-6

 

H3 1.28 0.008 -1.93×10
-5

 

H4 1.87 0.003 -4.54×10
-6

 

H5 1.94 0.003 -6.02×10
-6

 

H6 -0.20 0.013 -2.05×10
-5

 

H7 -1.41 0.015 -1.74×10
-5

 

H8 -0.31 0.006 -5.95×10
-6

 

H9 0.89 0.010 -2.01×10
-5

 

H10 1.89 0.004 -4.06×10
-6

 

H11 1.01 0.003 -4.03×10
-6

 

C1 0.89 0.014 -4.75×10
-5

 

C2 2.48 0.001 -2.38×10
-6

 

 



We found the solution with a 1.4% gap between the UB and LB in Table 14. The results are 

summarized in Table 15. The optimum solution, presented in Figure 8, has an annualized cost of 

$3,451,585. 

Table 14. Global optimal solution of example 1 for variable Cp. 

# of  

starting 

partitions 

Objective value ($) 

(Upper Bound) 
Gap 

# of 

iterations 

# of partitions at 

convergence 
CPU Time 

2 3,451,585 1.4% 2 2 24m 48s 

 

Table 15. Heat exchanger results for example 3. 

  Area (m
2
) Q (KW) 

HX1  515.97 1834.6 

HX2  343.83 3277.9 

HX3  2904.71 12761.9 

HX4  482.84 5405.4 

HX5  993.55 7933.0 

HX6  67.59 2782.5 

HX7  334.78 3327.8 

HX8  594.63 6037.0 

HX9  29.58 529.9 

HX10  57.27 1948.9 

HX11  208.98 4409.6 

CU1  1086.88 10721.7 

CU2  11.27 1893.9 

CU3  464.76 8461.1 

CU4  30.69 923.8 

HU1  408.63 23566.0 

 



 

Figure 8. The solution network of example 3 for variable Cp. 

We obtained the similar objective values with the fixed Cp model (Part I of this paper) and the 

generalized superstructure model (Kim and Bagajewicz, 2016), but we obtained the different solution 

network (Figure 8). We tried to solve this problem using BARON (version 14.4) (Sahinidis, 1996), and 

ANTIGONE (version 1.1) (Misener and Floudas, 2014). None of them rendered a feasible solution after 

24 hours of running. 

 



7. CONCLUSIONS 

We use a new stages/substages model proposed by Jonguswat et al. (2014) to solve globally heat exchanger 

network problems. We used RYSIA, a newly developed global optimization procedure based on bound 

contraction (without resorting to branch and bound). For the lower bound, we use relaxations based on 

partitioning one variable of bilinear terms. We also partition domain and images of monotone functions, 

a methodology that avoids severe reformulation to obtain bilinear terms when such reformulation is 

possible. We also use recently introduced lifting partitioning constraints (Kim and Bagajewicz, 2016) to 

improve the lower bound value as well as its computational time. Our two examples proved to be 

computationally very challenging as several sub-optimal solutions exist within a small gap between lower 

and upper bound. We also found that our method is able to obtain results when BARON and ANTIGONE 

had serious difficulties (they do not obtain a feasible solution). Finally, there is a need for a new set of 

methods to accelerate convergence when a small gap is achieved, research that is left for future work.  

 

NOMENCLATURE 

SETS  

i   : Hot process stream    

j   : Cold process stream    

mk   : Stage  

bh   : Hot stream branch 

bc   : Cold stream branch 

k   : Sub-stage 

ofh   : Heat capacity flow rate partitioning point for hot stream 



ofc   : Heat capacity flow rate partitioning point for cold stream 

ph   : Main-stage temperature partitioning point for hot stream 

pc   : Main-stage temperature partitioning point for cold stream 

obh   : Sub-stage temperature partitioning point for hot stream 

obc   : Sub-stage temperature partitioning point for cold stream 

lhx   : Hot side temperature differences partitioning point 

nhx   : Cold side temperature differences partitioning point 

 

PARAMETERS 

NOK  : Number of main stages 

SBNOK  : Number of sub stages 

iFh   : Heat capacity flow rate for hot stream 

jFc   : Heat capacity flow rate for cold stream 

HIN

iT   : Inlet temperature of hot stream 

HOUT

iT   : Outlet temperature of hot stream 

CIN

jT   : Inlet temperature of cold stream 

COUT

jT   : Outlet temperature of cold stream 

IN

CUT   : Inlet temperature of cold utility 

OUT

CUT   : Outlet temperature of cold utility 

IN

HUT   : Inlet temperature of hot utility 

OUT

HUT   : Outlet temperature of hot utility 

varC   : Variable cost coefficients for heat exchangers  



fixedC   : Fixed cost coefficients for heat exchangers 

costCU   : Hot utility cost 

costHU  : Cold utility cost 

EMAT   : Exchanger minimum approach different 

, , ,i mk bh ofhFbhD  : Discrete point of the partitioned flow rate of hot stream 

, , ,j mk bc ofcFbcD  : Discrete point of the partitioned flow rate of cold stream 

, ,i mk phThD  : Discrete point of the partitioned temperature of main-stage hot stream 

, ,j mk pcTcD  : Discrete point of the partitioned temperature of main-stage cold stream 

, , ,i mk bh obhTbhD  : Discrete point of the partitioned temperature of sub-stage hot stream 

, , , ,j mk bc k obcTbcD  : Discrete point of the partitioned temperature of sub-stage cold stream 

, ,i mk phCphThD  : Discrete point of the partitioned 
,i mkCphTh  

, ,j mk pcCpcTcD  : Discrete point of the partitioned 
,j mkCpcTc  

, , , ,i mk bh k obhCphTbhD : Discrete point of the partitioned 
, , ,i mk bh kCphTbh  

, , , ,j mk bc k obcCpcTbcD : Discrete point of the partitioned 
, , ,j mk bc kCpcTbc  

, , , , , ,i j mk bh bc k lhxThD  : Discrete point of temperature differences in hot side of heat exchanger 

, , , , , ,i j mk bh bc k nhxTcD  : Discrete point of temperature differences in cold side of heat exchanger 

 

BINARY VARIABLES 

, , , , ,i j mk bh bc kz  : Binary variable to denote a heat exchanger 

izcu   : Binary variable to denote a cold utility 

jzhu   : Binary variable to denote a hot utility 

, , ,i mk bh ofhvFbhD  : Binary variable related to the partitioned hot stream sub-stage flow rate 



, , ,j mk bc ofcvFbcD  : Binary variable related to the partitioned cold stream sub-stage flow rate 

, ,i mk phvThD  : Binary variable related to the partitioned hot stream main-stage temperature 

, ,j mk pcvTcD  : Binary variable related to the partitioned cold stream main-stage temperature 

, , , ,i mk bh k obhvTbhD  : Binary variable related to the partitioned hot stream sub-stage temperature 

, , , ,j mk bc k obcvTbcD  : Binary variable related to the partitioned cold stream sub-stage temperature 

, , , , , ,i j mk bh bc k lhxYHX  : Binary variable related to the partitioned hot side temperature differences 

, , , , , 1,i j mk bh bc k nhxYHX 
: Binary variable related to the partitioned cold side temperature differences 

 

VARIABLES 

, , , , ,i j mk bh bc kq  : Exchanged heat for (i, j) match in stage mk on sub-stage k 

iqcu   : Cold utility demand for stream i 

jqhu   : Hot utility demand for stream j 

mkHA   : Total exchanged heat in stage mk 

,i mkQHM  : Total exchanged heat for hot stream i in stage mk 

, ,i mk bhQH  : Total exchanged heat for branch bh of hot stream i in stage mk 

, , ,i mk bh kqHK  : Exchanged heat for branch bh of hot stream i in stage mk on sub-stage k 

, , ,i mk bh kAH  : Product of , , ,i mk bh kTbh  and , ,i mk bhFbh  

mkCA   : Total exchanged heat in stage mk 

,j mkQCM  : Total exchanged heat for cold stream j in stage mk 

, ,j mk bcQC  : Total exchanged heat for branch bc of cold stream j in stage mk 

, , ,j mk bc kqCK  : Exchanged heat for branch bc of cold stream j in stage mk on sub-stage k 



, , ,j mk bc kAC  : Product of , , ,j mk bc kTbc  and , ,j mk bcFbc  

,i mkCph   : Variable heat capacity of hot stream for main-stage 

,j mkCpc   : Variable heat capacity of cold stream for main-stage  

, , ,i mk bh kCphb  : Variable heat capacity of hot stream for sub-stage 

, , ,j mk bc kCpcb  : Variable hear capacity of cold stream for sub-stage 

,i mkTh   : Temperature of hot stream i on the hot side of main stage mk 

,j mkTc   : Temperature of cold stream j on the cold side of main stage mk 

, , ,i mk bh kTbh  : Temperature of branch hot stream i on the hot side of stage mk 

, , ,j mk bc kTbc  : Temperature of branch cold stream j on the cold side of stage mk 

,i mkCphTh  : Product of 
,i mkTh  and 

,i mkCph  

,j mkCpcTc  : Product of 
,j mkTc  and 

,j mkCpc  

, , ,i mk bh kCphTbh  : Product of 
, , ,i mk bh kTbh  and 

, , ,i mk bh kCphb  

, , ,j mk bc kCpcTbc  : Product of 
, , ,j mk bc kTbc  and 

, , ,j mk bc kCpcb  

, ,i mk bhFbh  : Heat capacity flow rate of branch hot stream on the stage mk 

, ,j mk bcFbc  : Heat capacity flow rate of branch cold stream on the stage mk 

, , , , ,i j mk bh bc kTh  : Hot side temperature difference 

, , , , ,i j mk bh bc kTc  : Cold side temperature difference 

iTcu   : Cold utility temperature difference 

jThu   : Hot utility temperature difference 

  



REFERENCES 

1. Bagajewicz M. and S. Ji. Rigorous Procedure for the Design of Conventional Atmospheric Crude 

Fractionation Units Part I: Targeting. Industrial and Engineering Chemistry Research. Vol. 40, 

No 2, pp. 617-626 (2001). 

2. Bagajewicz M. and J. Soto. Rigorous Procedure for the Design of Conventional Atmospheric 

Crude Fractionation Units Part II: Heat Exchanger Networks. Industrial and Engineering 

Chemistry Research. Vol. 40, No 2, pp. 627-634 (2001). 

3. Bagajewicz M. and S. Ji. Rigorous Targeting Procedure for the Design of Crude Fractionation 

Units with Pre-Flashing or Pre-Fractionation. Industrial and Engineering Chemistry Research, 

41, 12, pp. 3003-3011 (2002). 

4. Bagajewicz M. and J. Soto. Rigorous Procedure for the Design of Conventional Atmospheric 

Crude Fractionation Units. Part III: Trade-Off between Complexity and Energy Savings. 

Industrial and Engineering Chemistry Research. 42, 6, pp. 1196-1203 (2003). 

5. Barbaro A, Bagajewicz M. New rigorous one-step MILP formulation for heat exchanger network 

synthesis. Comput Chem Eng 2005; 29; 1945–1976. 

6. Brooke A, Kendrick D, Meeraus D, Raman R. GAMS - A User guide. Washington D.C; GAMS 

Development Corporation; 2007. 

7. Björk K, Weterlund T. Global optimization of heat exchanger network synthesis problems with 

and without the isothermal mixing assumption. Comput Chem Eng 2002; 26: 1581-1593. 

8. Cerda J. (1980). Transportation models for the optimal synthesis of heat exchanger networks. PhD 

thesis. Pittsburgh: Carnegie-Melon University. 

9. Chen JJJ. Comments on improvements on a replacement for the logarithmic mean. Chem Eng Sci 

1987; 42: 2488-2489. 



10. Faria D, Bagajewicz M. A New Approach for Global Optimization of a Class of MINLP Problems 

with Applications to Water Management and Pooling Problems. AIChE J 2011a; 58(8): 2320-2335. 

11. Faria D, Bagajewicz M. Global Optimization of Water Management Problems Using Linear 

Relaxations and Bound Contraction Methods. Ind Eng Chem Res 2011b; 50(7): 3738–3753. 

12. Faria D, Bagajewicz M. Novel Bound Contraction Procedure for Global Optimization of Bilinear 

MINLP Problems with Applications to Water Management Problems. Comput Chem Eng 2011c; 

35: 446–455. 

13. Faria D, Bagajewicz M. Global Optimization based on Sub-Spaces Elimination. Applications to 

Generalized Pooling and Water Management Problems. AIChE J 2011d; 58(8): 2336-2345. 

14. Faria DC, Kim SY, Bagajewicz MJ. Global optimization of the stage-wise superstructure model 

for heat exchanger networks. Ind Eng Chem Res 2015; 54(5): 1595–1604. 

15. Floudas CA, Ciric AR, Grossmann IE. Automatic synthesis of optimum heat exchanger network 

configurations. AIChE J 1986; 32(2): 276-290.  

16. Furman KC, Sahinidis NV. A critical review and annotated bibliography for heat exchanger 

network synthesis in the 20th century. Ind Eng Chem Res 2002; 41(10): 2335-2370. 

17. Huang KF, Karimi IA. Simultaneous synthesis approaches for cost-effective heat exchanger 

networks. Chem Eng Sci 2013; 98: 231-245.  

18. Ji S. and M. Bagajewicz. Design of Crude Distillation Plants with Vacuum Units. Part I: 

Targeting. Industrial and Engineering Chemistry Research. 41, 24, pp. 6094-6099 (2002a). 

19. Ji S. and M. Bagajewicz. Design of Crude Distillation Plants with Vacuum Units. Part II: Heat 

Exchanger Network. Industrial and Engineering Chemistry Research. 41, 24, pp. 6100-6106 

(2002b). 



20. Ji S. and M. Bagajewicz. On the Energy Efficiency of Stripping-Type Crude Distillation. 

Industrial and Engineering Chemistry Research. 41, 23, pp. 5819-5825 (2002c). 

21. Jongsuwat P, Suriyapraphadilok U, Bagajewicz M. New Heat Exchanger Network Design Model. 

17th Conference on Process Integration, Modelling and Optimisation for Energy Saving and 

Pollution Reduction 2014; August 23-27. 

22. Kim SY, Bagajewicz M. Global Optimization of Heat Exchanger Networks using a New 

Generalized Superstructure. Chem Eng Sci 2016; 147(22) : 30-46. 

23. Manousiouthakis V, Sourlas D. A global optimization approach to rationally constrained rational 

programming. Chem Eng Commun 1992; 118: 127-147. 

24. Misener R., Floudas CA. ANTIGONE: Algorithms for continuous / integer global optimization of 

nonlinear equations. J. Glob. Optim 2014;. 59: 503-526. 

25. Nguyen DQ, Barbaro A, Vipanurat N, Bagajewicz MJ. All-at-once and step-wise detailed retrofit 

of heat exchanger networks using an MILP model. Ind Eng Chem Res 2010; 49: 6080-6103. 

26. Paterson WR. A replacement for the logarithmic mean. Chem Eng Sci 1984; 39: 1635-1636. 

27. Sahinidis, NV. BARON: A general purpose global optimization software package. Journal of 

Global Optimization 1996; 8: 201-205. 

28. Viswanathan J, Grossmann IE. A combined Penalty Function and Outer Approximation Method 

for MINLP Optimization, Comput Chem Eng 1990; 14: 769–782. 

29. Yee TF, Grossmann IE. Simultaneous optimization model for heat integration – II. Heat exchanger 

network synthesis. Comput Chem Eng 1990; 14: 1165-1184.  

 


