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bstract

Accuracy of an instrument has been traditionally defined as the sum of the precision and the bias. Recently, this notion was generalized to
stimators [Bagajewicz, M. (2005a). On the definition of software accuracy in redundant measurement systems. AIChE Journal, 51(4), 1201–1206].
he definition was based on the maximum undetected bias and ignored the frequency of failure, thus providing an upper bound. In more recent

ork [Bagajewicz, M. (2005b). On a new definition of a stochastic-based accuracy concept of data reconciliation-based estimators. In European
ymposium on Computer-Aided Process Engineering Proceeding (ESCAPE)], a more realistic concept of expected value of accuracy was presented.
owever, only the timing of failure and the condition of failure was sampled. In this paper we extend the Monte Carlo simulations to also sample

he size of the gross errors and we provide new insights on the evolution of biases through time.
2007 Elsevier Ltd. All rights reserved.
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. Introduction

Traditionally, accuracy of an instrument is defined as the sum
f the precision and the bias (Miller, 1996). Recently, this notion
as generalized to estimators (Bagajewicz, 2005a), arguing that

he accuracy of an estimator is the sum of the precision and the
aximum induced bias. This maximum induced is the maxi-
um value of the bias of the estimator in question, which is a

esult of a certain specific number of biases in the network. The
oncept also makes use of an underlying assumption about the
echnique to detect biases. To illustrate the concept, Bagajewicz
2005a) used a serial elimination technique based on the max-
mum power measurement test (MPMT). However, he ignored
he frequency of failures, in fact referring to a static situation
gnoring temporal averages. To ameliorate this deficiency, in a
ecent conference paper (Bagajewicz, 2005b) the definition of
ccuracy was modified to include expected undetected biases
as opposed to maximum values) and their frequency. The paper

sed Monte Carlo simulations to assess the value of accuracy
ut it only sampled the time of the failure and the condition of
he failure (detected or undetected). It did not sample over the
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ize of the error, thus making assumptions about detectability
hat are weak.

In this paper, bias size and evolution in time are also consid-
red and sampled and other properties of accuracy as a function
f time are explored.

. Background

Accuracy has been defined as precision (standard deviation)
lus absolute value of systematic bias (Miller, 1996). However,
his definition is of little practical use unless the systematic bias
an be independently determined. If biases are present some-
here in the system and they are too small to be detected,

hey smear all the estimators, including those of the variables
or which the corresponding instruments have no bias, called
nduced bias. The vector of induced biases (δ̂) is defined as the
ifference between the vector of expected values of the estima-
ors �

x when gross errors are present and the vector of true values
f process variables (x) of (Bagajewicz, 2005a, 2005b):

ˆ �
= E[x] − x = [I − SW]δ (1)

here I is the identity matrix, S the variance matrix of
easurements, δ the actual biases in measurements and
= AT(ASAT)−1A, where A is process constraints matrix.

mailto:bagajewicz@ou.edu
dx.doi.org/10.1016/j.compchemeng.2007.06.016
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Nomenclature

ai,(ts,ts+1) accuracy value of estimator i within a time inter-
val (ts, ts+1)

âi accuracy of estimator i
āi average value of accuracy of estimator i
A process constraints matrix
E[âi] expected value of accuracy of estimator i
hk(θk, δ̄k, ρk) probability distribution function of bias k

with mean δ̄k and standard deviation ρk
S variance matrix of measurements
Ŝ variance matrix of the estimators
Th time horizon
x true values of process variables
�
x estimators of process variables
ZMP

d,j maximum power measurement test statistic for
measurement j

Greek letters
δ actual biases
δnT sizes of set T of nT undetected biases
δ̂ induced biases
δ∗
i maximum undetected induced bias in estimator i

δ̃(p,nT )
i induced bias in estimator i due to a specific set T

of nT undetected biases at confidence level p
σ̂i precision of estimator i
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σ̂R
i residual precision of estimator i

Then accuracy is defined as the sum of precision plus the
aximum possible undetected induced bias in the estimator i

Bagajewicz, 2005a):

ˆ i = σ̂i + δ∗
i (2)

here âi, σ̂i, δ
∗
i are the accuracy, precision (square root of vari-

nce Sii) and the maximum undetected induced bias of the
stimator i, respectively.

By definition, the accuracy value relies on how one calcu-
ates the induced bias. Because the induced bias in the estimator
s based on undetected biases whose sizes can be any value
elow the threshold detection values and their location can be
nywhere in the system, the induced bias is a random num-
er. Bagajewicz (2005a) proposed to calculate accuracy as the
um of precision and the maximum possible value of undetected
nduced bias. However, one can also calculate the induced bias
s the expected value of all possible values. The latter is a more
ealistic approach. The accuracy value also depends on the tech-
ique to detect gross errors. In this work, we use the maximum
ower measurement test (MPMT) to detect gross errors because
f its popularity and simple calculation procedure. The MPMT
s briefly described below.

The measurement test (MT) is based on the vector of mea-

urement adjustments m:

= y − �
x = SAT(ASAT)

−1
Ay (3)

a
s

u
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here y is the vector of measurements and �
x are reconciled

stimators of the process variables. The maximum power (MP)
easurement test proposed by Mah and Tamhane (1982) is based

n vector d, which is obtained by premultiplying vector m by
−1:

= S−1m (4)

he following test statistics, have been shown to possess max-
mum power if S is a nondiagonal matrix (Mah & Tamhane,
982):

MP
d,j = |dj|√

Wjj

(5)

here ZMP
d,j is the maximum power measurement test statistic

or measurement j; dj and Wjj are the elements of vector d and
atrix W, respectively. If the test statistic ZMP

d,j is larger than
he threshold values Zcrit (equal to 1.96 at level of confidence of
5%), then measurement j is declared to contain gross error. The
xpected value of ZMP

d,j , given by Eq. (6) (Bagajewicz, 2005a),
s used:

[ZMP
d,j ] =

∣∣∑
iWjiδi

∣∣
√

Wjj

(6)

here δi is actual bias in measurement i.
Bagajewicz (2005a) used the maximum power measurement

est to detect gross errors and determined the maximum unde-
ected induced bias and thus obtained the software accuracy as
efined using maximum undetected bias. This approach calcu-
ates the accuracy analytically but it represents the worse-case
cenario and does not discuss the frequency of such scenario.
o ameliorate the shortcomings of the analytical approach, we
se a stochastic-based approach, which is presented next.

. Stochastic-based accuracy

During the constant failure rate period of a sensor, the fail-
re of the sensor is a random event. Each sensor has its own
ailure frequency which is independent of what happens with
ther sensors. Thus, at a specific point t in time, the induced bias
nd the accuracy is the function of the number, location and the
izes of undetected biases and also the number of eliminated
easurements (so-called the state of the system). Therefore,

he state of the system varies with time. A Monte Carlo sim-
lation can be used to simulate failure event s of each sensor
within a specified time horizon) sampling the failure probabil-
ties, which are obtained using sensor reliability data. When the
onditions (e.g., failed or functioning) of all sensors in the sys-
em are available, the condition of the system is then obtained
s a combination of the conditions of the individual sensors.
nformation on the condition of the system within a specified
ime horizon, obtained from the Monte Carlo simulation, is then
sed to calculate the accuracy; hence the name stochastic-based

ccuracy. Monte Carlo sampling procedure is described in next
ections.

First note that after the sampling is performed, sensor fail-
re times and also corrective actions are identified. Thus, in the
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nterval of time in between each of the failure times and/or cor-
ective actions of all sensors, there is no change of the system,
nd therefore an accuracy value can be obtained using the real
andom values of the undetected biases in that interval. More
recisely, accuracy value of estimator i within a time interval
ts, ts+1), ai,(ts,ts+1), is calculated by:

i,(ts,ts+1) = [σ̂i + δ̃(p,nT )
i ] = σ̂i + |([I − SW]δnT )i| (7)

here δ̃(p,nT )
i is the induced bias due to a specific set T of nT

ndetected biases existing within the time interval (ts, ts+1), δnT

he vector of bias sizes for the set T of nT undetected biases
nd σ̂i is the precision of estimator i. In case there is one
r more measurements are eliminated, σ̂i is replaced by σ̂R

i ,
hich is the residual precision after elimination of measure-
ents.
The average value of accuracy within the time horizon Th, āi,

s calculated as the average value of all accuracy values in time
ntervals using the duration of the time intervals as weights.

¯ i =
∑

t

ai,(ts,ts+1) · (ts+1 − ts)

Th
(8)

his average value āi is also a random number. One Monte Carlo
imulation attempt gives one value for āi. Finally, the expected
alue of accuracy of estimator i, E[âi], is calculated as the mean
alue of āi after Nsim simulations:

[âi] = 1

Nsim

Nsim∑

n=1

āi,n (9)

here āi,n is the average accuracy value obtained at simulation
.

Next, we briefly review the types of biases that can occur and
hen we present the Monte Carlo simulation procedure.

. Types of biases

Biases in flow measurements can be attributed to many rea-
ons including, but not limited to:

Human faults: improper installation such as violation of
upstream and downstream straight run requirement; improper

calibration.
Departure of operating conditions (temperature, pressure, den-
sity) from the standard conditions upon which meters are
calibrated, or worse, operating outside the operation range of

Fig. 1. Types of biases. (a) Bias type a: sudden bias with fixed value. (b) Bias
emical Engineering 32 (2008) 1257–1269 1259

meters (for example, operating below the minimum Reynolds
number requirement).
Distortion of the flow profile at the measuring point due to
entrainment of gas bubbles in the liquid stream, insufficient
upstream and/or downstream straight run, erosion, corrosion,
and particle deposits that change the roughness of the inside
pipe surface.
Sensor failure due to random events: we explain these in detail
below.

Biases caused by the first three reasons can be mitigated by
eriodic sensor recalibration, and training skillful personnel so
hat sensors are properly installed and commissioned. On the
ther hand, sensor failures are usually invisible to operation per-
onnel and the biases caused by usually go on undetected unless
gross error detection/data reconciliation system is in place.

We now focus our attention to biases that are caused by sensor
ailure. Three types of biases are considered:

a) Sudden bias with fixed value (Fig. 1a). This can be described
by a step function (positive or negative). The uncertainties
are in the time at which the step takes place and the size
of the bias. These are biases that typically emerge because
of failures in electronic components (the readout system
or the signal processing system) of the sensor. Generally,
a sensor is prone to failure when fluid environment and/or
ambient environment are harsh. For example, high ambient
temperature, high humidity can cause damage to the elec-
tronic components. The local presence of power surges or
the appearance of sudden electrical effects (e.g., lightening)
may interfere with the readings and outputs of some meters
(Endress Hauser FlowTec AG, 2004). Other events like the
change in resistor impedance can cause a shift in output of
the electric circuit.

b) Randomly emerging drifts: these are characterized by ramps
(up or down and not necessarily linear). The uncertainty is in
the time at which the ramp starts and its slope or some param-
eter describing a non-linear drift. These are drifts attributable
to wear and tear, deterioration of mechanical parts due to
cavitations and sometimes to electronic failure. Some exam-
ples are wear and tear of bearing or turbine rotor in turbine

meters, orifice plate in orifice meters. Once they appear, the
wear and tear of sensor mechanical parts may continue until
the part is damaged and the sensor stop working. The shape
and slope of the drift are not known. We assume that the

type b: randomly emerging drifts. (c) Bias type c: deterministic drifts.
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shape of randomly emerging drifts is either concave or con-
vex as shown in Fig. 1b. We assume that the concave shape
corresponds to biases caused by failures where the sever-
ity of failure initially increases rapidly with time and then
slows down. An example of this type of failure is the cor-
rosion of sensor parts that is gradually slowed down by a
protective layer (which is in turn formed by the products
of the corrosion process). We assume that the convex shape
corresponds to biases caused by failures where the situa-
tion is opposite: the failure starts slowly and then speeds
up. This usually occurs with mechanical failures like wear
and tear, mechanical degradation. For the concave shape, we
use a logarithmic function “bias size = A log(1 + (t/T))” and
for the convex shape is represented by an exponential func-
tion “bias size = A (exp(t/T) − 1)”, but other can be used. We
ommit the linear relationship because is not usually the case
in practice so it is disregarded.

c) Deterministic drifts: these are not random events, but rather
continuous processes that develop progressively with time,
such as corrosion; coating, deposit of particles on sensor
parts that are in contact with the fluid (the primary ele-
ment of the sensor). If the fluid is corrosive and/or dirty,
then one knows with high confidence that this type of bias
exists, only parameters like the shape and slope of the drift
being unknown. Corrosive/dirty fluids can damage or distort
the shape and size of the sensor’s primary elements which
causes bias in measurement. The most common factor that
affects the measurement accuracy is the coating or deposit of
particles. Any amount of deposit may cause measurements
to be in error; fortunately these are usually low for orifice
plate meters (Upp & LaNasa, 2002). Generally, industrial
fluids are not clean, and the fluids may get contaminated with
lubricant, oil while passing through valves, compressors,
pumps. They can also get contaminated with particles gen-
erated from erosion of metal pipes and fittings. The effects
of this factor include: (i) changing the roughness of the pipe,
which distorts flow profile, (ii) reduction in cross-section of
flow, (iii) reduction of the mechanical clearances of moving
parts, e.g., in turbine meter rotors, (iv) changing the original
dimension of orifice plates, vortex bluff bodies, (v) insula-
tion of electromagnetic meter electrodes, and (vi) blocking
of pressure taps. Therefore, the dependence of bias size with
time is usually a non-linear function because one single
factor can cause multi effects that induce bias in the mea-
surement. The shape and the slope of the drifts depend on the
type of sensor and the nature of the problem that causes bias
(drift). Particle deposits may reach an equilibrium where
the number of particles deposited on the surface is equal to
the number of particles on the surface layer swept away by
the flowing fluid. In this case, the drifts have an asymptotic
shape, as shown in Fig. 1c. Three actual cases of errors in
measurement of orifice meters due to deposition of particles
were discussed by Upp and LaNasa (2002), in which biases

go on undetected for “a number of years”. This implies that
the drifts have asymptotic shape. Another cause of deter-
ministic drift is corrosion, in which certain part of sensor
that contacts with fluid may be continuously corroded until

d
c
i
w
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the sensor part is completely consumed and sensor stops
working (drifts have opposite shape: concave shape) or the
product of corrosion process (e.g., anhydrous iron oxides)
may act as protective layer that slows down the corrosion
process (drifts have asymptotic shape). We use the function
“bias size = A (1 − exp(−t/T))” to represent this asymptotic
shape.

We further discuss in the appendix how these types of errors
merge in more detail. We also show there some typical values
or the associated parameters.

. Full Monte Carlo sampling approach

Our sampling procedure is the extension of the sampling pro-
edure presented in Bagajewicz (2005a). The extensions are the
ollowing: (i) the bias size is sampled (it was not), (ii) different
ypes of failures are considered (Bagajewicz considered only
ne), (iii) the dependence between measurements in gross errors
etection is considered, and (iv) different strategies for plant
ata management are considered. The sampling procedure is
escribed below.

For sensor failures that cause biases of type a (sudden occur-
ence with fixed value) and type b (randomly emerging drifts),
he failure time is a random event. Moreover, with bias type
, the bias magnitude (A) is also a random number and is here
ssumed without loss of generality to follow a normal distri-
ution hk(θk, δ̄k, ρk), but it can have any distribution without
ffecting the sampling procedure steps. For bias type b, the bias
ize increases continuously with time. The same thing is stated
or the bias magnitude of deterministic drifts (bias type c). How-
ver, deterministic drifts appear right at the beginning when the
ensor is put in use.

Next, the sampling procedure for bias type a (sudden occur-
ence with fixed value) is described: we assume that, at time
= 0, all sensors are as good as brand new. As time elapses,
ensors may degrade and fail. Within the constant failure rate
eriod of the bathtub curve, the failure of a sensor (sensor k) is a
andom event and its cumulative failure probability is given by
Bagajewicz, 2000):

k(t) = 1 − e−rkt (10)

here rk is failure rate of the sensor k.
To sample the time of failure, first we sample randomly the

robability of failure fk,1(t) and calculate the failure time:

= − 1

rk
ln(1 − fk,1(t)) (11)

We see that a sensor with higher failure rate will have shorter
ime to failure.

The next step is to sample the bias size according to its dis-
ribution (recall that, without loss of generality, we use a normal

istribution). If the bias is large enough to be detected then the
orresponding measurement is eliminated and the failed sensor
s repaired (repair time is Rk). This sensor may fail again, so
e sample the next failure of this sensor and the time from the
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Fig. 2. Result of sampling two consecutive detected failures.

Fig. 3. Sampling of undetected failure.
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Fig. 4. Sampling of failure for randomly emerging drifts.

epair to the next failure is obtained. The magnitude of the bias
s then sampled and if this bias is large enough to be detected,
e have the situation depicted in Fig. 2.
If t4 (Fig. 2) is still within the time horizon under considera-

ion, we may have another failure, so we sample another failure
ime and bias size and so on. If a bias is undetected and if no
reventive maintenance (that can detect hidden biases) is avail-
ble, it continues undetected for the rest of the time horizon
onsidered or until it is detected. This possibility is illustrated
n Fig. 3.

Consider now a bias of type b (randomly emerging drifts).
he time at which a bias appears is a random event. Because the
ize of the bias increases with time, the bias is eventually detected

hen the bias size reaches a threshold value. Then the sensor

s repaired and resumes work. After that, we sample another
ailure of that sensor and the same cycle repeats. The described
ycle is illustrated in Fig. 4.

a
w
w
t

able 1
xample of sampling results
Fig. 5. Occurrence of three types of biases in a sensor.

With the deterministic drifts, the situation is almost the same
s with randomly emerging drifts. The difference is that bias
ppears right at the beginning when the sensor is put into use.

After the sampling of failure events for all sensors has been
erformed, the condition of the sensors system is then obtained
s the combination of the conditions of all the sensors. One
xample of such scenario is illustrated in Table 1 for a system
ith five sensors in which three sensors (sensors 1–3) are sub-

ected to type a bias, one sensor (sensor 4) is subjected to type
bias and the last one (sensor 5) is subjected to type c bias.
The failure times and bias sizes for each kind of biases for

ach sensor are sampled separately and the overall bias is then
alculated as combination of the three types of biases. When
he bias is detected and sensor is repaired, we assume that the
ensor is as good as brand new and samplings of the three types
f biases are restarted in a new cycle. This situation is illustrated
n Fig. 5.

Constructing the sample shown in Table 1 is complicated by
he fact that the detection of a sensor failure is a function of the
resence of biases in other sensors. Therefore, one cannot know
f a sensor bias will be detected until all sensors are sampled.
ake for example sensors 1 and 2 in Table 1. At times 12.2 and
4.8, respectively, these sensors develop a bias, which the table
ays are undetected. This is not known until all the other sensors

re sampled. In turn, sensor 3 develops a bias and time 174.5,
hich is detected. When the original sampling was performed, it
as not known that this bias would be detected. If it was not, then

he bias would stay undetected until the end of the horizon. In
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uch case, we do not perform a new sampling for the same type
f failure. This is part of our simplifying assumptions: we do
ot consider a second failure of a sensor that has already failed.
o do this, one would need to resort to a different reliability one

hat corresponds to an already failed sensor. Thus, to consider
he interactions between biases in measurements, the sampling
as conducted in the following way:

Failure times and bias sizes for every sensor in the system are
sampled and recorded until the end of time horizon is reached.
The time intervals between failures in the system are obtained
by combining the failure times of all sensors as illustrated in
Table 1.
At each failure time in the system, the maximum power mea-
surement test (MPMT) is performed and the sensors that are
detected being biased are singled out.
If the MPMT cannot detect any bias, no action is needed. We
then move on to investigate the next time interval until the
end of time horizon is reached.
If the MPMT flags the presence of biases, then, for each sensor
with a detected bias a repair time is added and a new sampling
for biases of types a and b is added. Type c bias is added if
present.

The above procedure is somehow time consuming, because
t requires marching through the time horizon and continuously
e-sample the sensors whose failure has been detected. An alter-
ative is to perform the first sampling and then apply the MPMT
t fixed intervals (t = 20, 40, 60, 80, etc.). This reduces the num-
er of times re-sampling is needed and it also reflects the fact
hat in practice, the gross errors detection (e.g., the measurement
est) may be applied at periodic time intervals. We call the first
ase instantaneous testing and the second periodic testing. We
ompare both cases in the examples.

. Examples

.1. Example 1

Consider the example of Fig. 6, taken from Bagajewicz
2005b). Assume flowmeters with precision σ2

i = 1, 2 and 3,
espectively. We also assume that the biases have zero mean
nd standard deviation ρk = 2, 4 and 6, respectively, failure rate
f 0.025, 0.015, 0.005 (day−1) and repair time of 0.5, 2 and
day, respectively. Although the example is very simple, it is

sed to point out the differences in methodology. The time hori-

on used was 5 years. The system is barely redundant: only one
ross error can be determined, and when it is flagged by the mea-
urement test, hardware inspection is needed to obtain its exact
ocation. This is due to gross error equivalency (Bagajewicz and

Fig. 6. Flowsheet for example 1.
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iang, 1998). The accuracy of estimator S3 is calculated. We
nly consider the situation that only one type of bias can occur
n a sensor, which is type a bias: sudden occurrence with fixed
alue to be able to meaningfully compare with earlier results
Bagajewicz, 2005b).

We now illustrate the sampling procedure for these three sen-
ors. In the MP measurement test, due to gross error equivalency,
he test statistics for three measurements are the same, so if the
est statistics are greater than threshold value, we assume that
he measurement with biggest bias size is the detected one. Type

bias (sudden occurrence with fixed value) is considered and
epresented by a step change in sensor output as illustrated in
ig. 7. In this figure, the change (rather than absolute value)
f sensor output (i.e. measurement) with time is depicted. The
talic number right next to the step change is bias size. Fig. 7a
hows the original sampling for the three sensors, indicating that
t t = 5.9 the failure in sensor two (bias size = 5.4) was detected
s being higher than the threshold (4.8).

Both biases in sensors one (taking place at t = 8.9) and sensor
hree (taking place at t = 183.9) are below their corresponding
hreshold values and are undetected. Fig. 7b shows the repair
ime and a new sampling for sensor two with a bias of 2.5 at
= 156.1. The error is again detected and therefore a new sam-
ling is performed. Fig. 7c shows the corresponding repair time
or sensor two and a third sampling for it. Note that the threshold
alue to detect a bias in sensor two without the presence of other
iases is 4.8; it is due to interaction of biases that bias size of 2.5
<4.8) in measurement two can still be detected. However, this
bservation cannot be generalized because it is possible that the
hreshold value for detecting biases is larger (not just smaller)
ue to interactions. Clearly, we see that if the biases in measure-
ents 1, 2 (or 1, 3) are equal to each other, the MT test cannot

etect biases whatever sizes they have. Now, after the second re-
ampling of sensor two, the MP measurement test cannot detect
ny bias in the rest of the time horizon.

In turn, for periodic testing the sampling procedure exhibits
ome differences, as shown in Fig. 8. In this case, the origi-
al sampling is the same as in the case of instantaneous testing
Fig. 7a). Because the MPMT is conducted at a scheduled time
n periodic testing, the bias in sensor two will be detected at the
ext scheduled time of MPMT after it appears, that is, at t = 20
an interval time of 20 is used) as shown in Fig. 8b. This means
hat the undetected biases contribute to a worse accuracy than
n the instantaneous testing, as one would expect. Fig. 8b shows
he repair time of sensor two and a new sampling. Assuming the
ampling had rendered the same numbers, one must observe that
he new time for failure of sensor two is at t = 170.2 and the bias
ill be detected at t = 180.0, because of the regularity in testing.
lthough the same failure time samples as in instantaneous test-

ng were used, the change is due to the fact that the sensor was
ow repaired at t = 20 and not at t = 5.9.

Because of the fact that testing is performed less frequently
n periodic testing, we expect smaller computational time. This

ill be illustrated below.
The results of the average accuracy values are shown in

ig. 9 for 1000 sampling attempts and for both types of test-
ng types. Table 2 shows that additional sampling does not alter
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ig. 7. Illustration of sampling procedure with instantaneous testing. (a) Origin

ignificantly the result. Clearly we see that when number of
ampling N ≥ 104, the expected value of accuracy converges to
final solution of about 3.08. Comparatively, the accuracy value
efined for maximum undetected bias of one bias present is 6.30

Bagajewicz, 2005a, 2005b). This highlights the fact that using
aximum undetected bias is too conservative.
In both cases, the lowest accuracy value obtained was around

.23 (very near to the precision value of 1.225). The precision

w
s
t
o

Fig. 8. Illustration of sampling procedure with periodic testing. (a) Original samp
pling. (b) Sensor two, first re-sampling. (c) Sensor two, second re-sampling.

alue is calculated as the square root of the corresponding diag-
nal element of the variance matrix of the estimators Ŝ, which
s obtained by using the formula Ŝ = S − SAT(ASAT)

−1
AS

Bagajewicz, 2000). The lowest value corresponds to the case

here all biases are detected or undetected biases have very

mall sizes. The largest value observed was about 12.5 for instan-
aneous testing and 16.5 for periodic testing (these values are
btained after 106 simulations; hence they are not seen in Fig. 9).

ling. (b) Sensor two, first re-sampling. (c) Sensor two, second re-sampling.
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1. (a) Instantaneous testing and (b) periodic testing.
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Another interesting feature to observe is the distribution of
accuracy in any time interval. Figs. 11 and 12 show this distri-
Fig. 9. Sampling accuracy results for example

hese values correspond to the cases where almost all biases are
ndetected and the sizes of the biases are large. From Table 2,
t is also obvious that, due to the delay in detecting the mea-
urement biases of the periodic testing case, the expected value
f accuracy obtained for periodic testing case is larger than the
alue obtained for instantaneous testing case.

In prior work (Bagajewicz, 2005b), the stochastic-based
ccuracy has been calculated to be 1.89, which is lower than
he value we obtain here (3.08 and 3.13). The difference should
ot be attributed to the fact that a different time horizon was used
previous work used around 1 year). However, if a time horizon
f 1 year is used, the expected value of accuracy is 2.40, which
s still higher than the previously obtained value of 1.89. The
ifference is attributed to the fact that current work considers
he interaction between biases leading to larger threshold values
or detecting biases, which was not considered in previous work.

Consider now calculating the accuracy value at specific times,
nstead of calculating the average value of accuracy for the whole
orizon. The results are shown in Fig. 10 (the number of sam-
lings is 105). We see that, for small t, the sensors in the system
re in good condition and few sensors fail. When time elapses,
ore and more sensors fail and that makes the accuracy worse

the accuracy value increases). This tells us that the stochastic
ccuracy is a function of time and therefore the real valuable tool
s to know what is the expected value for different values of time,
ather than one expected value over the whole (arbitrary) hori-
on. This information can be utilized in planning/scheduling the
reventive maintenance activities to keep accuracy of estimators
elow certain values. This is possible because of the ability of
reventive maintenance operations to detect all hidden biases so
hat the accuracy value returns back to normal value (i.e. preci-

ion value). For example, for the case of instantaneous testing,
f we want to keep expected value of accuracy of estimator be
ower than 2.7, it is necessary to perform preventive maintenance
very 210 days (7 months).

able 2
xpected value of accuracy if only corrective maintenance was used

umber of sampling 103 104 105 106

xpected value of accuracy
Instantaneous testing 3.0574 3.0774 3.0752 3.0761
Periodic testing 3.1023 3.1308 3.1255 3.1303
ig. 10. Expected accuracy at specific points in time (corrective maintenance
nly).

Both the expected value over the whole time horizon and
he value at a specific time of the instantaneous testing are
maller than the corresponding values of the periodic testing,
s clearly depicted in Table 2 and Fig. 10. This is due to the
elay in detecting biases of the periodic testing as explained
Fig. 11. Distribution of accuracy at time t = 400.
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Fig. 12. Distribution of accuracy at time t = 800.

ution for accuracy at specific times t = 400 and 800 for both
esting types.

The distribution of accuracy value at specific point in time
s a monotonic decreasing function, that is, a small accuracy
alue has a higher probability than a large accuracy value. The
robability that the system contains few biases with small bias
izes (i.e. small accuracy value) is larger than the probability that
he system contains many biases with large bias sizes (i.e. large
ccuracy value) because the latter is the extreme case. As time
ncreases, the distribution function shifts slightly to the right and
he slope decreases, i.e. the probability for high accuracy value
ncreases at the expense of lower probability for small accuracy
alue. As a consequence, the expected value of accuracy at a
pecific point in time increases when time increases. Fig. 10
onfirms this result.

Fig. 13 shows the distribution of the accuracy obtained for
he whole time horizon (the average value āi).

The distribution of the average accuracy value is a combina-
ion of distributions of the accuracy values in all time intervals

ithin the time horizon (that shift to the right as time increases).
ig. 13 shows that, unlike the monotonic decreasing distribu-

ion function of accuracy at a time or in a time interval, the

Fig. 13. Distribution of all average accuracy.

t
w
w
s
r
r
w

T
F

S

S
S
S
S
S
S
S
S

Fig. 14. Example 2.

istribution of the average accuracy exhibits a peak. This can be
xplained by the fact that low accuracy values in the left hand
ide of the peak have low probability at the end of time horizon
hile high accuracy values in the right hand side of the peak
ave low probability in the whole time horizon. The expected
alue of accuracy is slightly to the right of this peak because the
istribution function has a rather long tail on the right side.

.2. Example 2

Consider one large scale example process as illustrated in
ig. 14 (taken from Bagajewicz, 2000). Assume that all streams
re measured with the flowrates given in Table 3.

The parameters for the sensors are:

Precision = 2.5% (for all sensors).
Failure rate: ri = 0.01 (day−1), i = 1, 3, 5, . . ., 23 and ri = 0.02
(day−1), i = 2, 4, 6, . . ., 24.
Repair time Ri = 1 day, i = 1, 3, 5, . . ., 23 and Ri = 2 days, i = 2,
4, 6, . . ., 24.

No information regarding the slope of deterministic drifts and
he shape and slope of randomly emerging drifts is available, so
e made some reasonable assumptions. The deterministic drifts
ith asymptotic shape is represented by the following expres-
ion: bias size = A (1 − exp(−t/T)), with A = 10, T = 500. The
andomly emerging drifts with assumed concave shape are rep-
esented by the following expression: bias size = A ln(1 + (t/T))
ith A = 10, T = 200. With these assumed parameters and when

able 3
low rates for example 2

tream Flow Stream Flow Stream Flow

1 140 S9 10 S17 5

2 20 S10 100 S18 135

3 130 S11 80 S19 45

4 40 S12 40 S20 30

5 10 S13 10 S21 80

6 45 S14 10 S22 10

7 15 S15 90 S23 5

8 10 S16 100 S24 45
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Table 4
Calculated results for example 2 for precision and accuracy of estimators, type a bias

Streams σ̂ (%) â (%) Streams σ̂ (%) â (%)

Instantaneous testing Periodic testing Instantaneous testing Periodic testing

S1 1.6884 2.8109 3.0014 S13 0.3063 0.9428 3.8035
S2 1.2294 8.8902 9.8368 S14 0.3063 1.0200 3.6143
S3 1.5091 2.5469 2.6360 S15 1.0464 2.1050 2.2527
S4 0.2148 5.5509 5.8236 S16 0.9587 2.0303 2.2585
S5 0.6155 8.1772 10.3344 S17 0.1560 0.3961 4.8334
S6 2.1771 4.6975 5.4101 S18 1.0519 2.0774 2.2811
S7 0.9140 7.4757 9.4115 S19 1.2604 2.5965 2.9082
S8 0.6186 12.0797 14.0775 S20 1.1841 3.0677 3.8595
S9 0.6186 10.1913 11.2757 S21 1.1827 2.2447 2.4238
S10 1.5437 2.8862 3.0635 S22 0.6147 10.0520 11.9800
S11 1.1827 2.2008 2.4224 S23 0.1560 0.4145 4.8414
S12 0.9109 2.2631 2.9961 S24 1.2604 2.5326 2.9184

Table 5
Calculated results for example 2 for precision and accuracy of estimators, type b bias

Streams σ̂ (%) â (%) Streams σ̂ (%) â (%)

Instantaneous testing Periodic testing Instantaneous testing Periodic testing

S1 1.6884 3.0962 2.9851 S13 0.3063 0.4449 1.2907
S2 1.2294 19.5075 20.1140 S14 0.3063 0.4465 1.3017
S3 1.5091 2.2896 2.5873 S15 1.0464 1.8459 2.1185
S4 2.2148 3.9792 4.2165 S16 0.9587 2.1101 2.6849
S5 0.6155 9.3501 13.4592 S17 0.1560 0.2005 11.4142
S6 2.1771 3.4704 4.0080 S18 1.0519 3.3920 3.6653
S7 0.9140 5.3737 8.8483 S19 1.2604 2.0467 2.5651
S8 0.6186 31.7520 31.7850 S20 1.1841 7.2310 10.1793
S9 0.6186 5.0263 7.2162 S21 1.1827 3.4997 4.3318
S
S
S

n
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10 1.5437 4.8755 5.1889

11 1.1827 3.4272 4.1994

12 0.9109 5.7756 7.9555

o other biases interfere with the detection of the drifts, usu-
lly the drifts will be detected around 1 year (for deterministic
rifts) and 3 month (for randomly emerging drifts) after they

tart, which are reasonable numbers. The number of sampling
ttempts is 1000, time horizon is 365 (days). If only corrective
aintenance is applied, the results of Tables 4–6 were obtained.
able 4 shows the results when only type a biases are included.

p
a
s
t

able 6
alculated results example 2 for precision and accuracy of estimators, type c bias

treams σ̂ (%) â (%)

Instantaneous testing Periodic testing

1 1.6884 2.4301 2.4457

2 1.2294 14.4466 14.5100

3 1.5091 2.4575 2.4701

4 2.2148 4.8314 3.8108

5 0.6155 26.4296 26.5137

6 2.1771 3.2488 3.3620

7 0.9140 17.2913 17.2935

8 0.6186 26.2209 26.2938

9 0.6186 25.8675 25.9056

10 1.5437 5.3859 5.3585

11 1.1827 5.0940 5.1731

12 0.9109 7.1062 7.1306
S22 0.6147 17.6672 22.0316
S23 0.1560 0.1998 10.0612
S24 1.2604 2.0286 2.5439

We see that some estimators are highly vulnerable to unde-
ected biases in the system. Indeed, the estimators of streams
8, S9 have an accuracy value about 20 times more than their

recision value (accuracy without biases). Usually this problem
pplies to the estimators of low flowrates. On the other hand,
ome estimators are not very sensitive to the presence of unde-
ected biases such as estimators of streams S1, S3 where accuracy

Streams σ̂ (%) â (%)

Instantaneous testing Periodic testing

S13 0.3063 0.3907 2.3787
S14 0.3063 0.3907 2.3787
S15 1.0464 3.0243 2.9454
S16 0.9587 5.3227 5.2581
S17 0.1560 51.5232 51.6569
S18 1.0519 3.3369 3.2887
S19 1.2604 5.2672 5.1392
S20 1.1841 9.4377 9.4118
S21 1.1827 5.0940 5.1731
S22 0.6147 14.3027 15.6376
S23 0.1560 51.5232 51.6569
S24 1.2604 5.2675 5.1394
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Table 8
Comparison of computation time for the two cases

Computation of accuracy
value in the case of

Instantaneous testing Periodic testing

Type a bias only 46 min 42 s 31 min 18 s
Type b bias only 3 h 20 min 16 s 46 min 20 s
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alue is just 2 times more than precision value. The estimators of
hese streams are said to be more robust to the presence of unde-
ected biases. Usually the estimators of high flowrates exhibit
his characteristic. The reason is that, with high flowrates, the
nduced bias is relatively small when compared with the flowrate
alue, which is not the case for small flowrates where induced
ias can be many times larger than the flowrate value. Moreover,
ecause low flowrates are sensitive to undetected biases, they are
lso sensitive to the delay in the detection of biases as can be
een in estimators of streams S13, S14, S17 whose accuracy for
he case periodic testing are much larger than the accuracy for
he case instantaneous testing.

In turn, Table 5 shows the results when only type b biases are
onsidered.

The results in Table 5 show that, generally, accuracy values
f estimators for type b biases are comparable to those values
or type a biases because, in essence, type b biases are some-
hat similar to type a biases in the sense that bias occurrence is

andom for both of them.
Next, Table 6 shows the results when only type c biases are

onsidered.
With biases type c, the biases appear right after sensors are

ut into use. The biases keep undetected until their sizes reach
hreshold values. The biases are then identified and sensors are
epaired. When sensors resume work, biases appear again and
he same cycle repeats. The presence of this type of bias is pos-
ible if the fluid is highly corrosive, dirty such that it affects the
ensors right after sensors are put into use. This means that the
easurements always contain undetected biases so it is expected

hat the accuracy values for type c biases (shown in Table 6) are
orse (larger) than the accuracy values for biases types a and b

shown in Table 4 and 5), which is shown to be true by calculation
esults.

Finally, consider the case that three types of biases can occur
n a sensor (all sensors contain simultaneously three types of
iases), the same parameters for three kinds of biases as stated

bove are used and the calculated results are given in Table 7.

The calculations show that the accuracy value obtained when
hree types of biases can occur in a sensor (Table 7) is larger
han the accuracy value when only one type of bias of types a

t
d
t

able 7
alculated results for precision and accuracy of estimators, simultaneous occurrence

treams σ̂ (%) â (%)

Instantaneous testing Periodic testing

1 1.6884 4.9093 4.4863

2 1.2294 30.1158 37.8656

3 1.5091 3.4455 4.7932

4 2.2148 6.6107 9.1013

5 0.6155 15.3902 46.8299

6 2.1771 4.8178 8.5218

7 0.9140 16.7190 40.2522

8 0.6186 32.3781 56.9956

9 0.6186 13.3956 35.4492

10 1.5437 5.5240 8.9567

11 1.1827 3.9125 6.9407

12 0.9109 3.2366 8.6515
ype c bias only 2 h 36 min 13 s 44 min 27 s
ll three types of biases
occurring

11 h 10 min 35 s 1 h 20 min 10 s

r b is present (Tables 4 and 5). This is due to the fact that more
ypes of biases that can occur in a sensor lead to a larger chance
or the sensor to be biased, thus the accuracy value increases.
onsidering two cases, this case (all three biases, Table 7) and

he case that only type c bias is present (Table 6): in both cases the
easurement sets always contain some undetected biases. Type
bias is always present in measurement, other types of biases

a and b) may add up to increase the type c bias size (total bias
ize > type c bias size), or contrarily it reduces the type c bias
ize (cancellation effect). So there is no way to say a priori,
hich one renders better accuracy, as seen from Tables 6 and 7.
inally note that the failure rate is determined experimentally
nd only one value is reported, so there is no such specific failure
ate data available associated with a specific failure mechanism
i.e. specific type of bias). However, one can assume that the
ailure rates for all types of biases that occur suddenly (types a
nd b bias) are the same, which is the assumption used in our
alculation.

Table 8 shows the computation time for the two cases:
nstantaneous testing and periodic testing. It is clear that the com-
utation time of the former is much longer than that of the latter
ecause the former requires more computation as explained
bove.

. Recommendations
The calculated accuracy value is dependent of various fac-
ors discussed in this paper: the type of bias of the sensor and the
ata management policy in the process plants (i.e. instantaneous
esting or periodic testing). The accuracy value should be calcu-

of three types of biases

Streams σ̂ (%) â (%)

Instantaneous testing Periodic testing

S13 0.3063 2.2078 11.4764
S14 0.3063 2.2032 11.5099
S15 1.0464 2.7115 3.7162
S16 0.9587 2.9667 6.2045
S17 0.1560 4.9375 23.1131
S18 1.0519 4.0597 6.4346
S19 1.2604 3.0115 7.7386
S20 1.1841 4.3948 10.8835
S21 1.1827 3.9535 7.0445
S22 0.6147 19.4882 39.7981
S23 0.1560 5.0998 22.6615
S24 1.2604 2.9820 7.5920
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by recording the rotational speed of rotor as function of fluid
velocity (turbine flowmeters). Positive displacement meters
operate by isolating and counting a known volume of fluid
while moving. The turbine flowmeter, a velocity meter, con-

Table A1
Failure rate of differential pressure flowmeters (Taylor, 1994)

Failure mode Failure rate

Mechanical parts faults (for liquid flow)
Drift greater than 5% from calibration 5/106 h
No output signal 4/106 h
Output signal high 1/106 h
268 M.J. Bagajewicz, D. Nguyen / Computers a

ated using the best knowledge about such factors. Information
n the data management policy is readily available. If one does
ot know for certain about the type of bias that might occur, it is
ecommended that the (sudden) occurrence of only type a bias
r type b bias is used because this is the most common and likely
ase.

. Conclusions

The stochastic-based approach to calculate the accuracy is
ealistic because it reflects the random nature of failure events
f sensors in the system. Moreover, it also reflects the differ-
nt frequencies of failure of different sensors. This approach
an also be used to obtain the expected accuracy through time.
s time elapses, more and more sensors fails and accuracy
alue increases. This information can be utilized in plan-
ing/scheduling preventive maintenance activities to preserve
quipment function and improve measurement accuracy.

It has also been shown that some measurements are highly
ulnerable to the presence of undetected biases where induced
iases are larger than the standard deviation (i.e. precision) many
imes (the underlying assumption is that data reconciliation is
sed).

Three types of biases have been investigated separately and
lso in combination (simultaneous occurrence of the three types
f biases). The results show that the type a bias (sudden occur-
ence with fixed value) has the least effect on the value of
ccuracy, while type c bias (deterministic drifts) and the combi-
ation of biases have the most effect on accuracy value.

ppendix A. Failure modes of flowmeters

.1. Differential pressure flowmeters

Differential pressure meters are the most commonly used
owmeters. Their operation is based on the premise that the
ressure drop across the meters is proportional to square of the
olumetric flowrate. Like most flowmeters, differential pressure
owmeters have a primary and secondary element. The pri-
ary element causes a constriction in the flow cross-section

rea to create change in pressure. The secondary element
easures the differential pressure and provides the signal or

ead-out that is converted to the actual flow value (Miller,
996).

Different kinds of differential pressure flowmeters are char-
cterized by how the flow cross-section area is constricted. In the
rifice flowmeter, the most popular liquid flowmeter in use today,
he flow cross-section area is suddenly restricted by making use
f an orifice plate. In a Ventury flowmeter, the pipe diameter is
radually constricted. Other differential pressure flowmeters are
ow nozzles, pitot tubes, flow tubes, and elbow meters (Fig. A1,

aken from Analog Devices Inc., 2005).
Failure modes involving mechanical parts of the meters
nclude erosion, corrosion, deposit of particles due to dirty
nd/or corrosive fluids, leak through the flanges at the ori-
ce plates, cavitation damage, plugging of pressure taps
Padmanabhan, 2000; Taylor, 1994). Failure modes involving

T

Fig. A1. Simplified structure of differential pressure flowmeters.

he electronic parts or the transmitters (for signal amplification,
inearization, etc.), include complete stoppage or step change
n the output signal which is usually caused by harsh ambient
onditions or significant change in ambient environment; the
ailure rate of electronic parts, however, is smaller than that of
he mechanical parts. Failures involving electronic parts occur
uddenly and the measurement bias develops in a step-wise
ashion. Conversely, failures involving mechanical parts occur
radually and, consequently, the bias size increases gradually
ith time. The failure rates of differential pressure flowmeters

or measuring liquid flow are given in Table A1 (Taylor, 1994).
Different kinds of (simulated) failure modes and their asso-

iated measurement errors of orifice flowmeters were studied
y the Florida Gas Transmission Company (McMillan &
onsidine, 1999). Some results of that study are given in
able A2.

Three actual cases of errors in measurement of orifice meters
ue to deposition of particles were discussed by Upp and LaNasa
2002). The meters were measuring from 1 to 3% lower than the
nbiased values and the biases went on undetected for “a number
f years”.

.2. Mechanical flowmeters

Mechanical flowmeters measure flow making use of mov-
ng parts (rotors), either by delivering isolated, known volumes
f fluid through champers (positive displacement meters) or
ransmitter fault
Short circuit/no signal 0.5/106 h
Fail high signal/short circuit 0.2/106 h
Drift greater than 5% 1/106 h
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Table A2
Failure modes and their associated measurement errors of orifice flowmeters

Condition %Error

Orifice edge beveled 45◦ circumference
0.01 bevel width −2.2
0.02 bevel width −4.5
0.05 bevel width −13.1

Turbulent gas stream (distortion of flow profile) due to
Upstream valve partially closed −6.7
Grease and dirt deposits in meter tube −11.1

Leak around orifice plate
1. One clean cut through plate sealing unit

a. Cut on top side of plate −3.3
b. Cut next to tap holes −6.1

2. Orifice plate carrier raised approximately 3/8 in. from
bottom (plate not centered)

−8.2

Valve lubrication on upstream side of plate
Bottom half of plate coated 1/16 in. thick −9.7
Three gob-type random deposits 0.0
Nine gob-type random deposits −0.6
Orifice plate uniformly coated 1/16 in. over full face −15.8

Valve lubrication on both sides of plate
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Plate coated 1/8 in. both sides of full face −17.9
Plate coated 1/4 in. both sides full face −24.4

ists of a multiple-bladed rotor perpendicular to the fluid
ow. The rotor spins as the liquid passes through the blades.
he rotational speed is a direct function of flow velocity
nd can be sensed by a magnetic pick-up or a photoelectric
ell.

It is well known that the moving parts are the weakest link
n the structure of the meters. The rotor and the bearing will be
ventually damaged due to abrasion, corrosion, wear and tear,
specially when exposed to dirty, corrosive fluid and this prob-
em causes bias in measurement. Under certain conditions, the
ressure drop across the turbine meters can cause flashing, which
n turn causes the meters to read high or cavitation, which results
n rotor damage (Omega Engineering Inc., 2005; Padmanabhan,
000). The failure rate of these mechanical meters is compara-
le to that of positive displacement pumps which is 30–60/106 h
Taylor, 1994). As in the case of orifice plates, we also consider
he possibility of sudden emergence of a steady bias, or drifts
ue to slow mechanical wear and tear.

.3. Other flowmeters

Electromagnetic meters operate on Faraday’s law of electro-
magnetic induction, which states that a voltage will be induced
when a conductor moves through a magnetic field. The liq-
uid serves as the conductor; the magnetic field is created by
energized coils outside the flow tube. A pair of electrodes pen-
etrates through the pipe and its lining to measure the amount of
voltage produced, which is directly proportional to the velocity

of fluid.
Vortex meters make use of a natural phenomenon that occurs
when a liquid flows around a bluff object. Eddies or vortices
are shed alternately downstream of the object. Piezoelectric

T

U
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or capacitance-type sensors (located either inside or outside
the meter body) are used to detect the frequency of the vortex
shedding which is directly proportional to the liquid velocity.
Ultrasonic meters operate on the principle that the speed at
which the sound propagates in the liquid is dependent on the
fluid’s density. If the fluid’s density is constant, one can use
the time of ultrasonic passage (or reflection) to determine the
velocity of the flowing fluid. The ultrasonic meters consist of
two transducers: one to transmit the ultrasonic signal, one to
receive the ultrasonic signal that pass through the fluid or is
reflected when contacted with discontinuities (e.g., particles)
in the fluid.
Coriolis meters are based on diverting the flow through a small
tubing and measuring the Coriolis force exerted as the fluid
turns inside the tube.

Having no moving parts, and being relatively non-intrusive
that is, they do not directly contact or obstruct fluid flow), these
eters are considered to be reliable, that is, with lower failure

ate than orifice and turbine meters. The common failure mode
or these advanced meters is the erosion of the coating of the
lectrodes in electromagnetic meters or the erosion in the coat-
ng of the inside surface of the pipe. This erosion leads to a loss
n stimulus force (e.g., magnetic field in electromagnetic meters)
nd/or the output signal and consequently, it affects the accuracy
f meters. Finally, the erosion of the coating of the bluff body
n vortex meters changes its dimensions (Omega Engineering
nc., 2005; Padmanabhan, 2000) and therefore affects accuracy.

oreover, because these meters make use of sophisticated elec-
ronics technology, failure of signal conditioning electronic parts
lso needs to be considered.
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