EFFICIENT APPROXIMATE METHODS FOR THE DESIGN AND UPGRADE OF SENSOR NETWORKS

DuyQuang Nguyen and Miguel J. Bagajewicz(*)

University of Oklahoma
100 E. Boyd St., T-335
Norman, OK 73019

(*) Corresponding Author. TE: (405) 325-5458, FAX: (405) 325-5813, e-mail: bagajewicz@ou.edu

Keywords: Instrumentation Design, Instrumentation upgrade,

ABSTRACT

A rigorous method based on process equations for designing sensor networks for nonlinear systems was recently proposed (Nguyen & Bagajewicz, Design of Nonlinear Sensor Networks for Process Plants. *Ind. Eng. Chem. Res.*, **2008**, *5529-5542*). The method has been shown to be efficient for middle scale problems. For realistic large scale problems, the method can identify several sub-optimal solutions but fails to identify the optimal solution within an acceptable PC computational time. This paper presents an approximate method that attempts to locate optimal solution starting from the sub-optimal solutions provided by the rigorous equations-based method. We show that although optimality is not guaranteed, the proposed method was able to identify global optimum solutions in design case studies.

1. **Introduction**

 Improved process monitoring via data reconciliation and appropriate gross error detection is achieved and/or improved by proper systematic location of sensors in a process plant. The sensors are located to achieve the desired thresholds for key variables, on various attributes like precision, error detectability, resilience, etc. by means of data treatment techniques based on process material, component and energy balances. The problem of optimum selection of sensor location is referred to as sensor network design.

 Research on sensor network design is extensive. A review up to year 2000 can be found in the book by Bagajewicz¹. The most common objective function is minimum cost and the desired properties of sensor network (the specifications) can be categorized into three types: i) desired process monitoring capabilities with requirement on observability, redundancy, precision threshold values, gross error detectability etc. of key variables, ii) desired process fault detection capabilities with specification on process fault resolution, reliability of fault monitoring system, iii) although still intended for process monitoring purpose, desired reliability of estimability of key variables rather than the degree / precision of estimation of key variables itself. Variants to the common formulation do exist, e.g. maximum precision or maximum reliability at budget
constraint. Most of the researches focus on type i), i.e. designing sensor network for process monitoring purpose. Only a few articles deal with type ii) (Raghuraj et al.; Bhushan and Rengaswamy using graph algorithms to design sensor network for detecting and identifying process faults. In addition, Narasimhan and Rengaswamy used an economic objective reflecting the savings obtained from being able to detect the faults and the costs of the instrumentation. Bagajewicz et al. designed sensor network for simultaneous process monitoring and fault detection/resolution using a MILP formulation. Most recently, Bhushan et al. presented a framework for designing robust sensor network for reliable process fault diagnosis solving it using constraint programming (Kotecha et al.). Finally, Chen and Chang used graph-theoretic method to design sensor network for process fault identification.

Ali and Narasimhan were the first to introduce the concept of network reliability, which relates to the probability of estimability of key variables in the presence of sensor failures. Based on this concept, they used graph-theoretic methods to design sensor network maximizing network reliability at limited number of sensors for linear, redundant linear and bilinear systems, respectively (Ali and Narasimhan). Finally, Bagajewicz and Sanchez presented a cost optimal formulation based on reliability targets. These are the only works devoted exclusively for reliability-based sensor network design. Reliability has been used in the multi-criterion design framework of Sen et al. and Carnero et al.

There are many papers on sensor network design for process monitoring purpose; a few of them are described here with emphasis on computational methods. Kretsovalis and Mah minimized a weighted sum of estimation error and measurement cost using a combinatorial search algorithm. Madron and Veverka used Gauss Jordan elimination to achieve observability of all key variables at minimum sensor cost. Chmielewski et al. showed that an unmeasured variable can be modeled in data reconciliation formulation using a fake sensor with very high variance; this technique was later used in many papers. They used linear matrix inequalities (LMI) technique to solve relaxed problem in each node of the branch and bound method, which guarantees global optimum. Heyen et al. used genetic algorithm to design cost-optimal sensor network; the computation algorithm is applicable to nonlinear systems by linearization of process constraints at the nominal operating conditions, assuming steady state. Kelly and Zyngier presented a
MILP model based on the Schur complements theorem to design sensor network for process monitoring purpose.

Recently, multiobjective sensor network design became attractive. Bagajewicz and Cabrera addressed multiobjective sensor network design using pareto optimal solutions visualization techniques. Sen et al. and Carnero et al. used genetic algorithms. Finally, Bagajewicz and Sanchez showed that there is a duality of some sort in which minimum cost models subject to reliability constraints are related to maximum reliability models subject to cost constraints.

Mathematical programming techniques were used by Bagajewicz and co-workers. Bagajewicz was the first to formulate the problem as a mixed-integer programming problem by using binary variables to indicate whether a variable/stream is measured or not, the resulting MINLP model was solved by branch and bound method. Bagajewicz and Cabrera reformulated the problem as a MILP model, which was solved in commercial GAMS software package. In addition, different new sensor network attributes were also introduced (software accuracy, stochastic accuracy, etc.). Departing from the traditional cost-optimal approach, Nguyen and Bagajewicz presented a model that maximizes economic value of information minus cost of the sensor network.

More recently, the computational efficiency of the branch and bound method presented in Bagajewicz was remarkably improved by using cutsets (instead of individual measurements) and a decomposition technique (Gala and Bagajewicz). Most recently, Gala and Bagajewicz’s cutsets-based methods, which are applicable only to linear systems, were extended to nonlinear systems by using equations in the tree search instead of cutsets (Nguyen and Bagajewicz). The method is rigorous (i.e. it guarantees optimality) but its computational performance is not efficient enough for solving realistic large scale nonlinear problems.

This work addresses the shortcoming of our equation-based method by using a heuristic local search attempting to locate optimal solution starting from sub-optimal solutions provided by equation-based method. The paper is organized as follows: firstly an overview of sensor network design problem is presented, followed by a brief description of equation-based method; the proposed approximate method is then presented. Finally, two illustrated examples are provided.
2. Sensor network design problem

The popular cost-optimal sensor network for process monitoring purpose is formulated as follows (Bagajewicz26):

\[
\begin{align*}
\text{Min} & \sum_{i} c_i q_i \\
\text{s.t.} & \\
\sigma_i(q) & \leq \sigma_i^* \quad \forall i \in M_S \\
q_i & = 0,1 \quad \forall i
\end{align*}
\]

(1)

where \(q_i\) is a binary variable indicating that a sensor is located in variable/stream \(i\), \(c_i\) is the cost of sensor \(i\), \(M_s\) represents the set of variables where a certain specification is required (desired level of precision/residual precision or error detectability, etc.), \(\sigma_i(q)\) is the value of the property under consideration (e.g. precision, accuracy, etc), and \(\sigma_i^*\) is the corresponding threshold.

While the inequalities referred to in the above model seem intuitively correct, they are not simple to obtain, much less write explicitly in a closed form equation. Rather, they may require a procedure to be implemented. For example, precision can be obtained analytically once the position and the precision of each sensor is known, but when the position of each sensor is described through a binary variable, a closed formula includes products of binaries and continuous variables and involves the inverse of a matrix (See Bagajewicz and Cabrera27). When accuracy is sought, then the procedure involves solving a mathematical optimization problem for software accuracy or the use of a Monte Carlo simulation for stochastic accuracy (see Bagajewicz28). This is the reason why our group has resorted to tree enumeration and others to genetic algorithms21, while there is no literature addressing the solution of this problem using mathematical programming methods that include accuracy (only a few attempts using LMI-based models20 or MILP models27 were presented for just precision constraints). Finally, in the above model, there are threshold values (\(\sigma_i^*\)), which are difficult to determine a-priori and which lead to multiobjective formulations. Recent work, has resorted to the use of an alternative model that maximizes the economic value of information minus cost29, making the choice of
thresholds for accuracy, precision, reliabilities to be made automatically because they are tied to the economics of the problem.

Two main groups of computational methods have been used to solve the above problem: integer programming methods (for example, integer programming method was used to solve the MILP model described in Bagajewicz and Cabrera27), these methods guarantee optimality but they usually exhibit scaling problem, and stochastic methods (e.g. genetic algorithms, which do not guarantee optimality). Our group uses tree search (an integer programming method) and exploits certain properties that allow fathoming branches (a brief summary can be found in Nguyen and Bagajewicz32). The equation-based tree search is briefly reviewed here because it is used as a pre-processing step for the approximate method presented in this work.

3. Equation-based tree search method

This method is briefly described as follows (more details can be found in Nguyen & Bagajewicz32). It is based on exploring a tree of nodes, where each node corresponds to all the sensors that measure key variables in the corresponding equation.

1. Find all the equations of the process
2. Keep only the equations containing key variables (we call them candidate equations).
3. Sort these candidate equations in ascending order of their cost (the cost of an equation is equal to sum of the costs of the sensors used to measure variables contained in that equation).
4. Start with the root node with no equation being added i.e. $e = \{0, 0, 0\ldots\}$, trivially infeasible.
5. Using the branch first rule, develop each branch by making one element of e active and adding one candidate equation at a time which is chosen from the remaining equations using a branching criterion.
6. While implementing the branching criteria, if any set of equations has already been evaluated in previous nodes, that node is not developed any further, i.e. its children nodes are ignored. This occurs frequently because one set of measurements can be a result of the union of different combinations of equations.

7. This is continued until the stopping criterion is met. In such case, the algorithm backs up two levels and develops the next branch.

Branching Criterion: While exploring the tree from one node to the other, either going down the tree or exploring the sister node, the newly added equation is chosen in such a way that the cost obtained by its union with the existing active equations is minimal.

Stopping Criterion: Because adding an equation always increases the cost, whenever a feasible node is found (one that satisfies all the constraints of the problem), the tree is not explored further down.

The method was further improved by using a decomposition technique. The idea is to decompose the original system (represented by incidence matrix) into sub-systems so as to reduce the number of equations in the candidate lists, hence reduce the size of the tree. Because the system is decomposed, there are some missing equations in the candidate list when compared with the list of equations of original system, which are equations containing variables from different subsytems. Fortunately, these missing equations can be found while exploring down the tree using a Gaussian elimination operation on equations. The tree search procedure is almost the same as the procedure without decomposition except that: i) the branching and stopping criterion are modified, ii) in each node, Gaussian elimination operations between active equations are performed to find the aforementioned missing equations.

The equation-based tree search method coupled with decomposition has been shown to be efficient for medium scale nonlinear problems. For realistic large scale problems, it quickly identifies several good (sub-optimal) solutions but fails to locate optimal solution within an acceptable time. More details on the merits and the limitations of the equation-based methods can be found in Nguyen and Bagajewicz32.
4. Approximate method

We now propose to improve the equation-based method by incorporating a local search after some part of the tree has been developed. The idea is to use the good solutions provided by the equation-based method as input in a local tree search procedure to hopefully arrive at global optimum (the term “good” solution is meant to be a feasible solution with objective value / cost near to that of the global optimum). The procedure is as follows:

- Run the equation-based tree search (branch and bound) method, record the current best solutions identified by the tree search method. Terminate the equation-based tree search after a predefined number of nodes explored or computational time has been reached. These current best solutions are the aforementioned “good solutions” that are provided by the equation-based method.

- Run the two-step heuristic local search using the obtained good solutions as input to identify a better solution, which is highly likely to be the true optimal solution.

The proposed local search method was developed based on the following observation: the global optimal solution and near-optimal solutions belong to the same region in the space of variables, that is, they are different from one another in values of only a few variables (in this context, the measurement locations). This is due to the inherent characteristics of the sensor network: if a measurement is good because the associated sensor is cheap and this measurement contributes significantly to the observability and redundancy of key variables, then it will very likely show up in global optimum and some other “good” solutions. Compared to the global optimum, a good solution usually misses one or two good measurements and contains some other “extra” measurements. Therefore, it is reasonable to assume that all the measurements showing up in good solutions are good measurements that are very likely to show up in global optimum.

Based on the above arguments we present the heuristic local search as the following two-step procedure:

Step one
The purpose of this step is to find a low cost feasible solution which will contain a number of those “good” measurements. After the regular tree search has been conducted up to a certain point, the calculation procedure to find such a solution is as follows:

- Find the union of the last five current best solutions provided by the equation-based method (find all good measurements that show up in the last five current best solutions), denoted as vector U.
- Employ a tree enumerative strategy to remove measurements out of vector U to obtain a minimum cost solution (the method is essentially the same as the inverted tree search described in Nguyen & Bagajewicz\(^\text{32}\)). The minimum cost solution is denoted as MC.

If all good measurements belonging to global optimum actually show up in the last five current best solutions (which is highly probable), the identified minimum cost solution MC is indeed global optimum. However, there is a very small chance that one or two good measurements belonging to global optimum do not show up in vector U, thus we go on to step two to account for such situation.

Step two

The purpose of this step is to determine if it is possible to improve the solution by replacing a certain number of measurements in MC by some other measurements not belonging to MC. This is done by exploring all the possibilities of replacing a certain number of measurements (denoted as Nr, a parameter) in MC with elements in vector A (the set of measurements that are not in MC) trying to obtain a solution better than MC. The procedure is as follows:

- Remove a certain set of Nr measurements out of MC and denote the resulting vector as B.
- Use a tree enumerative strategy to add elements (measurements) from A into B trying to obtain feasible solutions with minimum cost. More specifically, the tree search algorithm starts from B as root node, then continues adding measurements contained in A into the root node (vector B) until a feasible solution is found, then steps back one level and explores a new branch. When all branches have been explored, the tree search is terminated.
- Remove another set of Nr measurements out of MC thus obtaining the new vector B and repeat the same procedure.
- Terminate the process when all the possibilities of removing \(Nr \) measurements out of \(MC \) are explored.

To remove \(Nr \) measurements out of \(MC \), all possible combinations of \(Nr \) measurements are explored. If the number of elements in vector \(MC \) is \(n_t \), then the number of such combinations is \(C_{Nr}^{n_t} = \frac{n_t!}{Nr! (n_t - Nr)!} \). The value of \(Nr \) is a parameter (can be any value, typically smaller than \(n_t /2 \)). The greater the value of \(Nr \), the greater the value of \(C_{Nr}^{n_t} \), hence the longer the computational time. Testing results suggest that the best values for \(Nr \) are 1 and 2 (explanations are provided in the examples section). The two-step procedure is illustrated in Figure 1.
Figure 1. Algorithm flowchart for the approximate method

START HEURISTIC LOCAL SEARCH

Run equation-based method
Record all identified current best solutions
Stop when a predetermined running time / nodes explored has been reached

Find union of latest five current best solutions (vector U)

Use tree enumerative strategy to remove measurements out of vector U to obtain a minimum cost feasible solution (vector MC)

STEP 1

Remove Nr measurements out of $MC = vector B$

All measurements exclude measurements in $MC = vector A$

STEP 2

Use a tree enumerative strategy to add elements (measurements) from A into B trying to obtain a solution better than MC

All the possibilities of removing Nr measurements out of MC are explored?

NO

YES

Stop

All the proposed methods, the approximate method described in this paper as well as the other branch and bound methods used to validate the obtained solutions, are implemented in Fortran running on a 2.8 GHz Intel Pentium 1028 MB RAM PC.

5. Examples

5.1 Mineral flotation process example: Consider a middle scale process, the mineral flotation process (MFP) introduced by Smith and Ichiyen33, shown in Figure 2.

![Figure 2. The mineral flotation process](image)

The process consists of three flotation cells (separators) and a mixer. Each stream consists of two minerals, copper and zinc, in addition to gangue material. The total flowrate F, the composition of copper C_A and zinc C_B are variables of interest, so the total number of variables under consideration is 24. Let us assume that each variable can be measured separately by a sensor (there may be situation that one analyzer can measure both copper and zinc composition, in that case we can lump the two composition variables of copper and zinc into one single variable). The process model is as follows:

Total flowrate balance equation around one unit ($U_j, j = 1, 4$): $\sum_i F_i = 0$

Copper component flowrate balance equation around one unit ($U_j, j = 1, 4$): $\sum_i F_i C_{Ai} = 0$
Zinc component flowrate balance equation around one unit \((U_j, j = 1, 4)\):

\[\sum_i F_i C_{bi} = 0 \]

The total number of original balance equations is 12. The component balance equations are nonlinear, hence the system is nonlinear (it is bilinear system). The nominal operation condition is given in Table 1 (taken from Narasimhan and Jordache34) and the nonlinear constraints are linearized using a Taylor expansion around the nominal operation condition. All sensor precisions are 2%. The sensor costs are given in Table 2.

Table 1. Nominal operation condition for mineral flotation process

<table>
<thead>
<tr>
<th>Streams</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_i)</td>
<td>100</td>
<td>92.67</td>
<td>91.57</td>
<td>84.48</td>
<td>7.33</td>
<td>8.43</td>
<td>7.09</td>
<td>1.1</td>
</tr>
<tr>
<td>(C_{Ai})</td>
<td>0.019</td>
<td>0.0045</td>
<td>0.0013</td>
<td>0.001</td>
<td>0.2027</td>
<td>0.2116</td>
<td>0.0051</td>
<td>0.2713</td>
</tr>
<tr>
<td>(C_{Bi})</td>
<td>0.0456</td>
<td>0.0437</td>
<td>0.0442</td>
<td>0.0041</td>
<td>0.069</td>
<td>0.0495</td>
<td>0.5227</td>
<td>0.001</td>
</tr>
</tbody>
</table>

Table 2. Sensor costs for mineral flotation process example

<table>
<thead>
<tr>
<th>Streams</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>(F_i)</td>
<td>50</td>
<td>55</td>
<td>45</td>
<td>60</td>
<td>40</td>
<td>48</td>
<td>52</td>
<td>58</td>
</tr>
<tr>
<td>(C_{Ai})</td>
<td>300</td>
<td>310</td>
<td>240</td>
<td>260</td>
<td>250</td>
<td>360</td>
<td>320</td>
<td>335</td>
</tr>
<tr>
<td>(C_{Bi})</td>
<td>290</td>
<td>350</td>
<td>330</td>
<td>340</td>
<td>280</td>
<td>270</td>
<td>295</td>
<td>275</td>
</tr>
</tbody>
</table>

Two design case studies are considered. They are described in Table 3.
Table 3. Design case studies for the mineral flotation process example

<table>
<thead>
<tr>
<th>Case Study</th>
<th>MFP1</th>
<th>MFP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of key variables</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Key variables</td>
<td>$F_1, F_4, F_6, C_{B1}, C_{A6}$</td>
<td>$F_1, F_4, F_6, F_7, C_{A1}, C_{B1}, C_{B4}, C_{A6}, C_{B7}, C_{A8}$</td>
</tr>
<tr>
<td>Requirement</td>
<td>Observability</td>
<td>Observability</td>
</tr>
<tr>
<td>Precision thresholds</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Measured variables</td>
<td>$F_3, F_4, F_6, C_{B1}, C_{A6}$</td>
<td>$F_4, F_5, F_6, F_7, C_{A1}, C_{B1}, C_{B4}, C_{A5}, C_{B7}, C_{A8}$</td>
</tr>
<tr>
<td>Sensors cost</td>
<td>803</td>
<td>2010</td>
</tr>
</tbody>
</table>

Two methods were used to solve the problem: i) the rigorous tree search method (based on individual measurements, described in Bagajewicz26), this method guarantees optimality, ii) the approximate method. For the approximate method, the calculation proceeds until step 1 only (the calculation is terminated when vector MC has been obtained). This is done to investigate the performance (the ability to identify global optimal solution) of the approximate method if only step 1 is used.

Both methods identify the same solutions, which are global optimal solutions. The solutions are described in row 6 (measurements locations) and row 7 (sensors cost) of the Table 3.

The computational times of the two methods are described in Table 4.
Table 4. Performance of the approximate method, the MFP example

<table>
<thead>
<tr>
<th></th>
<th>Case study</th>
<th>MFP 1</th>
<th>MFP2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rigorous tree</td>
<td>Number of nodes explored</td>
<td>25,293</td>
<td>3,230,514</td>
</tr>
<tr>
<td>search</td>
<td>Computational time</td>
<td>1 min</td>
<td>1 hour 51 minutes</td>
</tr>
<tr>
<td>Approximate method</td>
<td>Number of nodes explored</td>
<td>2,246</td>
<td>50,180</td>
</tr>
<tr>
<td></td>
<td>Computational time</td>
<td>12 sec</td>
<td>9 minutes 48 seconds</td>
</tr>
</tbody>
</table>

When solving the design case MFP2, the equation-based tree search is terminated after 50,000 nodes have been explored, then the heuristic local search is applied (it explores further 180 nodes) and identifies the optimal solution.

It can be found from the above results that:
- The approximate method is much more efficient than the rigorous tree search method.
- Although optimality is not guaranteed, the approximate method identifies optimal solution.

5.2 The Tennessee Eastman (TE) process example:

The TE process flowsheet is given in Figure 3. The same process model and data as given in Nguyen & Bagajewicz32 are used. The readers are referred to literature source on TE process such as Ricker and Lee35 and Nguyen & Bagajewicz32 for detailed description of the model. The nominal values of variables and the sensor costs are given in table 5.
Values of flowrates \(F_i \) are given in \(\text{kmol/hr} \), \(P_r, P_s \): pressure in reactor and separator, respectively (KPa); \(T_r, T_s \): temperature in reactor and separator, respectively (K); subscripts \(A, B, C, D, E, F, G, H \) denote components; subscripts 6, 7, 8, 9, 10, 11 denote stream number. The variables listed in Table 6 are considered as candidates for measurements, other variables in the TE process (e.g. input flowrates \(F_1, F_2, F_3 \)) are assumed to be either known by measurements (forced measurements) or of little importance for consideration. The total number of equations involving listed variables is 28.

Three design case studies are considered, which are described in Table 6. The first design case is the one with moderate specification described in Nguyen & Bagajewicz³². The other two design cases are ones with high level of specifications.
Table 5. Data for the Tennessee Eastman Problem

<table>
<thead>
<tr>
<th>Variables</th>
<th>Nominal operating condition</th>
<th>Sensor cost</th>
<th>Variables</th>
<th>Nominal operating condition</th>
<th>Sensor cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>F_6</td>
<td>1889.9</td>
<td>300</td>
<td>$Y_{E,8}$</td>
<td>0.186</td>
<td>740</td>
</tr>
<tr>
<td>F_7</td>
<td>1475.2</td>
<td>300</td>
<td>$Y_{F,8}$</td>
<td>0.023</td>
<td>730</td>
</tr>
<tr>
<td>F_{10}</td>
<td>258.56</td>
<td>200</td>
<td>$Y_{G,8}$</td>
<td>0.048</td>
<td>740</td>
</tr>
<tr>
<td>F_{11}</td>
<td>211.3</td>
<td>200</td>
<td>$Y_{H,8}$</td>
<td>0.023</td>
<td>750</td>
</tr>
<tr>
<td>$Y_{A,6}$</td>
<td>0.322</td>
<td>770</td>
<td>$Y_{A,9}$</td>
<td>0.33</td>
<td>720</td>
</tr>
<tr>
<td>$Y_{B,6}$</td>
<td>0.089</td>
<td>780</td>
<td>$Y_{B,9}$</td>
<td>0.138</td>
<td>730</td>
</tr>
<tr>
<td>$Y_{C,6}$</td>
<td>0.264</td>
<td>730</td>
<td>$Y_{C,9}$</td>
<td>0.24</td>
<td>740</td>
</tr>
<tr>
<td>$Y_{D,6}$</td>
<td>0.069</td>
<td>740</td>
<td>$Y_{D,9}$</td>
<td>0.013</td>
<td>750</td>
</tr>
<tr>
<td>$Y_{E,6}$</td>
<td>0.187</td>
<td>750</td>
<td>$Y_{E,9}$</td>
<td>0.186</td>
<td>760</td>
</tr>
<tr>
<td>$Y_{F,6}$</td>
<td>0.016</td>
<td>760</td>
<td>$Y_{F,9}$</td>
<td>0.023</td>
<td>770</td>
</tr>
<tr>
<td>$Y_{G,6}$</td>
<td>0.035</td>
<td>810</td>
<td>$Y_{G,9}$</td>
<td>0.048</td>
<td>780</td>
</tr>
<tr>
<td>$Y_{H,6}$</td>
<td>0.017</td>
<td>820</td>
<td>$Y_{H,9}$</td>
<td>0.023</td>
<td>790</td>
</tr>
<tr>
<td>$Y_{A,7}$</td>
<td>0.272</td>
<td>750</td>
<td>$Y_{D,10}$</td>
<td>0.002</td>
<td>700</td>
</tr>
<tr>
<td>$Y_{B,7}$</td>
<td>0.114</td>
<td>760</td>
<td>$Y_{E,10}$</td>
<td>0.136</td>
<td>710</td>
</tr>
<tr>
<td>$Y_{C,7}$</td>
<td>0.198</td>
<td>700</td>
<td>$Y_{F,10}$</td>
<td>0.016</td>
<td>720</td>
</tr>
<tr>
<td>$Y_{D,7}$</td>
<td>0.011</td>
<td>710</td>
<td>$Y_{G,10}$</td>
<td>0.472</td>
<td>720</td>
</tr>
<tr>
<td>$Y_{E,7}$</td>
<td>0.177</td>
<td>720</td>
<td>$Y_{H,10}$</td>
<td>0.373</td>
<td>730</td>
</tr>
<tr>
<td>$Y_{F,7}$</td>
<td>0.022</td>
<td>730</td>
<td>$Y_{G,11}$</td>
<td>0.537</td>
<td>730</td>
</tr>
<tr>
<td>$Y_{G,7}$</td>
<td>0.123</td>
<td>780</td>
<td>$Y_{H,11}$</td>
<td>0.438</td>
<td>740</td>
</tr>
<tr>
<td>$Y_{H,7}$</td>
<td>0.084</td>
<td>790</td>
<td>P_r</td>
<td>2806</td>
<td>100</td>
</tr>
<tr>
<td>$Y_{A,8}$</td>
<td>0.33</td>
<td>780</td>
<td>T_r</td>
<td>393.6</td>
<td>500</td>
</tr>
<tr>
<td>$Y_{B,8}$</td>
<td>0.138</td>
<td>770</td>
<td>P_s</td>
<td>2734.7</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>$Y_{C.8}$</td>
<td>0.24</td>
<td>760</td>
<td>T_s</td>
<td>353.3</td>
</tr>
<tr>
<td>---</td>
<td>-----------</td>
<td>------</td>
<td>-----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td>$Y_{D.8}$</td>
<td>0.013</td>
<td>750</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. Design case studies for the TE process example

<table>
<thead>
<tr>
<th>Design case</th>
<th>TE1 (Moderate Spec.)</th>
<th>TE2 (High Spec.)</th>
<th>TE3 (High Spec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of key variables</td>
<td>17</td>
<td>19</td>
<td>23</td>
</tr>
<tr>
<td>Key variables</td>
<td>$F_6, y_{A6}, y_{G6}, y_{H6}, F_7, y_{G7}, y_{H7}, y_{A7}, y_{G9}, y_{H9}, F_{11}, y_{G11}, y_{H11}, P_r, T_r, P_s, T_s$</td>
<td>$F_6, y_{A6}, y_{B6}, y_{G6}, y_{H6}, F_7, y_{A7}, y_{B7}, y_{C7}, y_{A8}, y_{B8}, y_{C8}, y_{D8}, y_{A9}, y_{B9}, y_{C9}, F_{11}, y_{G11}, y_{H11}$</td>
<td>$F_6, y_{A6}, y_{B6}, y_{G6}, y_{H6}, F_7, y_{A7}, y_{B7}, y_{C7}, y_{G7}, y_{H7}, y_{A8}, y_{B8}, y_{C8}, y_{D8}, y_{A9}, y_{B9}, y_{C9}, y_{G10}, y_{H10}, F_{11}, y_{G11}, y_{H11}$</td>
</tr>
<tr>
<td>Requirement</td>
<td>Observability</td>
<td>Redundancy</td>
<td>Redundancy</td>
</tr>
<tr>
<td>Precision thresholds</td>
<td>2%</td>
<td>1.5%</td>
<td>1.5%</td>
</tr>
<tr>
<td>Residual precision thresholds</td>
<td>4%</td>
<td>4%</td>
<td>4%</td>
</tr>
<tr>
<td>Measured variables</td>
<td>$F_6, y_{A6}, y_{G6}, y_{H6}, F_7, y_{A7}, y_{A9}, y_{G9}, y_{H9}, F_{11}, y_{G11}, P_s$ (12 sensors)</td>
<td>All variables but ${y_{C6}, y_{E6}, y_{F6}, y_{E9}, y_{F9}, y_{E10}, y_{F10}, y_{G10}, y_{H10}, P_r, T_r, P_s, T_s}$ (34 sensors)</td>
<td>All variables but ${y_{C6}, y_{E6}, y_{F6}, y_{E9}, y_{F9}, F_{10}, y_{E10}, y_{F10}, P_r, T_r, P_s, T_s}$ (35 sensors)</td>
</tr>
<tr>
<td>Sensors cost</td>
<td>7,070</td>
<td>23,560</td>
<td>24,810</td>
</tr>
</tbody>
</table>

Except for design case studies with low level of specifications (where feasible solutions contain only a small fraction of available candidate sensors), the TE example cannot be solved by using the rigorous individual measurement-based tree search (described in Bagajewicz26). It is estimated that, if moderate or high level of specification is required, solving the TE example by individual measurement-based tree search takes as long as several weeks. Equation-based tree
search method coupled with decomposition (called Decomposed Equations in Nguyen & Bagajewicz32) is the only viable option for design cases with moderate level of specifications while design cases with high level of specifications can be solved by using either inverted tree strategy (Nguyen & Bagajewicz32) or Decomposed Equations method.

We use Decomposed Equations to obtain several good solutions as starting point, then use local search to arrive at optimum solution. The calculation procedure follows exactly the procedure described in Figure 1 with the following values for the two parameters: terminating the equation-based method after 100,000 nodes has been explored and the parameter N_r is 2.

For the two design cases TE2 & TE3 (high specification), the inverted tree search method described in Nguyen & Bagajewicz32 was used to validate the solutions obtained by the proposed approximate method (both methods solve the two design cases TE2 & TE3 within a few hours but the inverted tree search guarantees optimality). For the first design case TE1, its solution was validated by using the level by level “L by L” tree search described in Nguyen & Bagajewicz36. The “L by L” tree search method also guarantees optimality (it takes roughly four days for the “L by L” method to solve the design case TE1; if the inverted tree search is used to solve the design case TE1, the computational time is estimated to be several weeks). Thus, the solutions obtained by the approximate method are validated (by the inverted tree search method and the “L by L” tree search method described in our previous papers) to be optimal solutions. Note that for all three design case studies, the optimal solution is already found in local search step 1.

The computational performance of the approximate method is shown in table 7.
Table 7. Performance of the approximate method, TE process example

<table>
<thead>
<tr>
<th>Number of nodes explored</th>
<th>TE1 Moderate Spec.</th>
<th>TE2 High Spec.</th>
<th>TE3 High Spec.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local search step 1</td>
<td>48,544</td>
<td>484</td>
<td>212</td>
</tr>
<tr>
<td>Local search step 2</td>
<td>54,097</td>
<td>130,683</td>
<td>166,244</td>
</tr>
<tr>
<td>Total</td>
<td>202,641</td>
<td>231,167</td>
<td>266,456</td>
</tr>
</tbody>
</table>

Although the approximate method does not guarantee optimality, in all the testing problems we have tried, the combination of Decomposed Equations method and local search step 1 is able to locate optimal solution. The local search step 2 is a safeguard step to avoid the possibility of missing optimal solution. Let us denote the measurements contained in the optimal solution as optimal measurements (in the opposite side, the rest are called non-optimal measurements). The optimal solution is missed only if the following two situations occur simultaneously: i) the mentioned combination fails to locate optimal solution, that is, the current best MC is not optimal solution (which means that MC contains some non-optimal measurements) and ii) the number of non-optimal measurements in MC is more than the number of measurements we consider removing out of MC (that is, the parameter Nr).

Thus, practically speaking, it is reasonable to assume that the solution obtained by the approximate method is true global optimal solution for engineering applications (where computational time is as important as optimality). Thus, the computational efficiency and the capability to locate optimal solution (although this fact is not theoretically proven) of the approximate method make it the most suitable method for solving realistic large scale nonlinear sensor network design problems.

The chosen value of Nr parameter has affect in two aspects:

- Optimality: increasing the value of Nr parameter increases the chance of finding global optimal solution when the local search step 1 misses the optimal solution
- Computational time: increasing the value of \(Nr\) parameter profoundly increases the computational time

Thus, there is a trade-off in selecting the value for \(Nr\) parameter. However, because the local search step 1 is usually able to identify the global optimal solution, the step 2 is just a safeguard step (as proven in the two shown examples); thus, it is then reasonable to focus only on the affect of \(Nr\) parameter on computational time, which suggests using a small value for \(Nr\) to reduce computational time. We did some tests on the dependence of computational time on the parameter \(Nr\) (the TE process example was used for the tests) and found that computational time for \(Nr \geq 4\) is too long (in a magnitude of a few days, this figure is problem-specific). While computational time for \(Nr = 3\) is acceptable (several hours for design case TE1 to almost a day for design cases TE2 & TE3), it is recommended to use \(Nr = 1\) or 2.

Table 7 shows that the proposed method is able to efficiently solve a large scale nonlinear problem, the TE example. It found optimal solutions in less than 2 hours.

More details on the method are given below:
- For design case studies TE2 & TE3: after exploring 100,000 nodes, the Decomposed Equations identifies four current best solutions that contain 39, 37, 38 and 36 sensors respectively (costs are 26990, 26290, 26240 and 25540). The union of these solutions (vector \(U\)) contains 39 sensors, which is exactly the same as the first current best identified (this means that the first current best contains all “good” measurements). Exploring all the possibilities of removing sensors out of vector \(U\) results in the optimal solutions (containing 34 and 35 sensors with costs being 23,560 and 24,810 for design cases TE2 and TE3 respectively).
- For design case TE1: after exploring 100,000 nodes, the Decomposed Equations method identifies 11 current best solutions; the last five solutions have cost ranging from 11840 to 13370 and number of sensors ranging from 20 to 22. The union of the last five solutions (vector \(U\)) contains 23 sensors. Using enumerative tree search strategy to remove sensors out of \(U\) (exploring 48,544 nodes) results in the optimal solution that contains only 12 sensors costing 7070. This solution is much better than the current best
solution obtained by using the Decomposed Equations method only (that solution, described in Nguyen & Bagajewicz32, contains 17 sensors whose cost is 9630).

6. Conclusions

In this work, an approximate method is proposed to solve nonlinear sensor network design problems that rigorous tree search methods are incapable of solving in reasonable time. The approximate method is very efficient; it is able to solve large scale nonlinear problems within a couple of hours. Although it does not guarantee optimality, the chance of finding global optimal solution is very high. Indeed, the proposed method was able to find optimal solutions in all the design case studies shown in this paper.

References

(21)Heyen, G.; Dumont, M.; Kalitventzeff, B. Computer-aided design of redundant sensor networks, in: J. Grieves, J. van Schijndel (Eds.), *Proceeding of 12th European

