Skip Navigation

Papavassiliou, Dimitrios

Skip Side Navigation

Dimitrios V. Papavassiliou


Professor
C.M. Sliepcevic Professor

Education
Ph.D. Chemical Engineering (1996)

University of Illinois at Urbana-Champaign
M.S. Chemical Engineering (1993)
University of Illinois at Urbana-Champaign(1993)
Diploma, Chemical Engineering (1989)
Aristotle University of Thessaloniki

Experience and Awards
Fellow of the American Institute of Chemical Engineers 2018
National Science Foundation, Fluid Dynamics Program Director, 2013-2016
The University of Oklahoma School of Chemical, Biological and Materials Engineering, Associate Professor 2005-09
Assistant Professor, 1999-05
Mobil Technology Company Upstream Strategic Research Center Senior Research Engineer, 1998-99; Postdoctoral Research Associate, 1996-98
Chemical Process Engineering Research Institute Thessaloniki, Greece, Graduate Research Fellow, 1989-90.

CONTACT
dvpapava@ou.edu
(405) 325-0574

Computational Transport Processes Webpage

Google Scholar

 

The focus of my research is on the fundamental understanding and modeling of transport processes with industrial and environmental interest. Novel computational methods are developed and applied to explore turbulent transport of mass and heat, flow and mass transfer in bioreactors, heat transfer in micro- and nano-fluidics, and flow and transport through porous media.

Numerical experiments are conducted in a virtual laboratory. Our methods provide excellent measurements for turbulent channel and plane Couette flow, we can measure heat and mass transfer in these channels and we can monitor the trajectories of hundreds of thousands of particles. Our Lagrangian scalar tracking (LST) methodology is used to investigate flow effects on the progress of chemical reactions, to study the transport of nutrients in porous scaffolds used for bone tissue growth, and to explore the thermal properties of carbon nanotube composite materials. We are also employing multiscale methods for transport through porous materials. We use Dissipative Particle Dynamics to investigate nanofluids and their rheological behavior and surface-nanoparticle interactions. In each case, the flow is simulated using appropriate methods for each important physical scale. High End Computers are utilized to conduct the numerical experiments and to interpret the data. Parallel to the development of prototype software, off-the-shelf software is used to predict flows that can improve industrially important process, such as melt-blowing, or can predict hemodynamics, such as blood flow in the human vascular system and hemolysis.

Selected Publications

Vu, T.V., and D.V. Papavassiliou, “Modification of oil-water interfaces by surfactant-stabilized carbon nanotubes,” J. Phys. Chem. C, a122, 27734-27744, 2018; DOI: 10.1021/acs.jpcc.8b08735

Vu, T.V., and D.V. Papavassiliou “Oil-water interfaces with surfactants: a systematic approach to determine coarse-grained model parameters,” J. Chem. Phys., 148, Art. 204704 (11 pages) 2018; DOI: 10.1063/1.5022798

Nguyen, Q., and D.V. Papavassiliou, “Quality measures of mixing in turbulent flow and effects of molecular diffusivity,” Fluids,3, Art. 53  (16 pages), 2018; DOI:  0.3390/fluids3030053

Gong, F., Wang, W., Li, H., Xia, D., and D.V. Papavassiliou, “Predictions of the thermal conductivity of multiphase nanocomposites with complex structures,” Journal of Materials Science, 53(17), 12157-12166, 2018; DOI: 10.1007/s10853-018-2486-y

Xia, D., Gong, F., Pei, X., Wang, W., Li, H., Zeng, W., Wu, M., and D.V. Papavassiliou,  “Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: A review,” Chem. Eng. J., 348, 908-928, 2018; DOI: 10.1016/j.cej.2018.04.207

Nguyen, Q., and D.V. Papavassiliou, “Scalar mixing in anisotropic turbulent flow,” AIChE Journal, 64(7), 2803-2815, 2018; DOI:10.1002/aic.16104

Gong, F., Ding. Z., Fang, Y., Tong, C-J, Xia D., Lv, Y., Wang, B., Papavassiliou, D.V., Liao, J., and M. Wu, “Enhanced electrochemical and thermal transport properties of graphene/MoS2  heterostructures for energy storage: Insights from multi-scale modeling” ACS Applied Materials & Interfaces, 10, 14614-14621, 2018; DOI:10.1021/acsami.7b19582

Gong. F., Li, H., Wang, W., Xia, D., Liu, Q., Papavassiliou, D.V., and Z. Xu “Recent advances in graphene based free-standing films for thermal management: synthesis, properties and applications,” Coatings, 8 Art. 63 (17 pages) , 2018; DOI: 10.3390/coatings8020063

Pham, N.H., and D.V. Papavassiliou, “Hydrodynamic effects on the aggregation of nanoparticles in porous media,” Int. J. Heat Mass Transf., 121, 477-487, 2018; DOI: 10.1016/j.ijheatmasstransfer.2017.12.150

Gong, F., Liu, X., Yang, Y., Xia D., Wang, W., Duong, H.M., Papavassiliou, D.V., Xu, Z., Liao, J., M. Wu, “A Facile Approach to Tune the Electrical and Thermal Properties of Graphene Aerogels by Including Bulk MoS2,” Nanomaterials, 7(12), Art. 420 (11 pages), 2017; DOI:10.3390/nano7120420

Pham, N.H., and D.V. Papavassiliou, “Effect of spatial distribution of porous matrix surface charge heterogeneity on nanoparticle attachment in a packed bed,” Phys. Fluids, 29(17), Art. 082007 (10 pages), 2017; DOI: 10.1063/1.4999344

Nguyen, Q., Feher, S., and D.V. Papavassiliou, “Lagrangian Modeling of Turbulent Dispersion from Instantaneous Point Sources at the Center of a Turbulent Flow Channel,” Fluids, 2(3), Art. 46 (12 pages), 2017; DOI: 10.3390/fluids2030046

Vo, M.D., and D.V. Papavassiliou, “Interaction between polymer-coated carbon nanotubes with coarse-grained computations,” Chem. Phys. Lett., 685(1), 77-83, 2017; DOI: 10.1016/j.cplett.2017.07.037

Vo, M.D., and D.V. Papavassiliou, “Effects of Temperature and Shear on the Adsorption of Surfactants on Carbon Nanotubes,” J. Phys. Chem. C, 121(26), 14339–14348, 2017; DOI: 10.1021/acs.jpcc.7b03904

Gong, F., Liu, J., Yang J., Qin, J., Yang, Y., Feng, T., Liu, W., Duong, H.M., Papavassiliou, D.V., and M. Wu, "Effective thermal transport properties in multiphase biological systems containing carbon nanomaterial," RSC Advances, 7(22), 13615-13622, 2017; DOI: 10.1039/c6ra27768c

Heck M.L., Yen, A., Snyder, T.A., O’Rear E.A., and D.V. Papavassiliou, “Flow-field simulations and hemolysis estimates for the Food and Drag Administration Critical Path initiative centrifugal blood pump,” Artificial Organs, 41(10), 129-E140, 2017; DOI: 10.1111/aor.128372017

Pham, N.H., and D.V. Papavassiliou, “Nanoparticle transport in heterogeneous porous media with particle tracking numerical methods,” Computational Particle Mechanics, 4(1), 87-100, 2017; DOI: 10.1007/s40571-016-0130-7

Ozturk, M.,  O’Rear, E.A., and D.V. Papavassiliou., “An approach to assessing turbulent flow damage to blood in medical devices.,” ASME Journal of Biomechanical Engineering, 139(1), Art. 011008 (8 pages), 2017; DOI: 10.1115/1.4034992

Nguyen, Q. and D.V. Papavassiliou, “A statistical model to predict streamwise turbulent dispersion from the wall at small times,” Physics of Fluids, 28(12), Art. 125103 (22 pages), 2016; DOI: 10.1063/1.4968182

Alam, T., Pham, Q.L., Sikavitsas, V.I., Papavassiliou, D.V., Shambaugh, R.L. and R. Voronov, “Image-based modeling: A novel tool for realistic simulations of artificial bone cultures,” Technology, 4(4), 1-5, 2016; DOI:10.1142/S233954781620003X

Ozturk, M.,  O’Rear, E.A., and D.V. Papavassiliou., “Reynolds stresses and hemolysis in turbulent flow examined by threshold analysis,” Fluids, 1(4), Art. 42 (18 pages), 2016; DOI:10.3390/fluids1040042

Vo, M., and D.V. Papavassiliou, “The effects of shear and particle shape on the physical adsorption of polyvinyl pyrrolidone on carbon nanoparticles" Nanotechnology, 27(32), Art 325709, 2016

Pham, N.H., Chen, C., Shiau, B., Harwell, J.H., Resasco, D.E., and D.V. Papavassiliou, “Transport and deposition kinetics of polymer-coated multiwalled carbon nanotubes in packed beds,” AIChE J. 26(10), 3774-3783, 2016

Vo, M., and D.V. Papavassiliou, “Physical adsorption of PVP Polyvinyl Pyrrolidonepolymer on CNTs Carbon Nanotubes under shear studied with Dissipative Particle Dynamics simulations,” Carbon, 100, 291-301, 2016

Gong, F., Duong, H.M. and D.V.  Papavassiliou “Review of recent developments on using an Off-lattice Monte Carlo  approach to predict the effective thermal conductivity of composite systems  with complex structures,” Nanomaterials, 6(8), Art 142, 14 pages, 2016

Vo, M., Shiau, B., Harwell, J.H., and D.V. Papavassiliou, “Adsorption of anionic and non-ionic surfactants on Carbon nanotubes in water with Dissipative Particle Dynamics simulation,” Journal of Chemical Physics, 144 (20), Art. 204701 (16 pages), 2016

Nguyen, Q., Srinivasan, C., and D.V. Papavassiliou, “Flow induced separation in wall turbulence”, Phys Rev E91, 033019, 2015

Gong, F., K., Papavassiliou, D.V., and H.M. Duong, “Thermal transport phenomena and limitations in heterogeneous polymer nanocomposites containing Carbon Nanotubes and inorganic nanoparticles,” J. Phys. Chemistry C, 119(14), 7614-7620, 2015

Ozturk, M.,O’Rear, E.A., and D.V. Papavassiliou, “Hemolysis related to turbulent eddy size distributions using comparisons of experiments to computations,” Artificial Organs39(12), E213-E226,  2015

Gong, F., Bui, K., Papavassiliou, D.V., and H.M. Duong, “Thermal transport phenomena and limitations in heterogeneous polymer nanocomposites containing Carbon Nanotubes and inorganic nanoparticles,” Carbon, 78, 305-316, 2014

Pham, N., Voronov,R.S., Tummala,N.R. and D.V. Papavassiliou, “Bulk stress distributions in the pore space of sphere-packed beds under Darcy flow conditions,” Phys. Rev. E, 89(3), Art 033016 (13 pages), 2014

Pham, N., Swatske, D.E., Harwell, J.H., Shiau, B.-J., and D.V. Papavassiliou, “Transport of nanoparticles and kinetics in packed beds:A numerical approach with lattice Boltzmann simulations and particle tracking,” Int. J. Heat and Mass Transfer72, 319-328, 2014

Nguyen, Q.T., and D.V. Papavassiliou, “Turbulent plane Poiseuille-Couette flow as a model for fluid slip over superhydrophobic surfaces,” Phys. Rev. E88 (6), 063015 (11 pages), 2013

Srinivasan, C., and D.V. Papavassiliou, “Heat transfer scaling for wall bounded turbulent flows,” Applied Mechanics Reviews, 65(3), Art. 031002 (20 pages), 2013

Srinivasan, C., and D.V. Papavassiliou, “Direction of scalar transport in turbulent channel flow,” Physics of Fluids, 23(11), 115105, 21 pages, 2011

Ho, T.A., Papavassiliou, D.V., Lee, L.L., and A. Striolo, “Liquid Water Can Slip on Hydrophilic Surfaces” Proceedings of the National Academy of Sciences of the USA  108(39), 16170-16175, 2011

Voronov, R., Papavassiliou, D.V., and L.L. Lee, “A review of fluid slip over superhydrophobic surfaces and its dependence on contact angle,” Ind. Eng. Chem. Res., 47(8), 2455-2477, 2008.

Mitrovic, B.M., Le, P.M., and D.V. Papavassiliou, “On the Prandtl or Schmidt number dependence of the turbulence heat or mass transfer coefficient,” Chem. Eng. Sci., 59(3), 543-555, 2004

Areas of Research / Energy and Chemicals / Facilities

Campus facilities:

Several Linux clusters available through the OU Center for Supercomputing Education and Research 
(http://www.oscer.ou.edu/)


Off-Campus facilities:

XSEDE allocations (http:// www.xsede.org). National Center for Supercomputing Applications computing accounts (http://www.ncsa.uiuc.edu), and Texas Advanced computing center accounts (https://www.tacc.utexas.edu/)