Dr. Bruce Moyer
Fellow, Oak Ridge National Laboratory

Separating Trivalent Lanthanides: Enabling Nuclear Fuel Cycle
or Recovery of Valuable Critical Materials?

Two reasons for being interested in separation of lanthanides have important energy implications, but
in opposite ways. In working toward sustainable nuclear energy, lanthanide fission products are
neutron poisons and so must be separated and discarded from actinides that we wish to recycle.
However, in providing for sustainable energy, rare earths (which include the lanthanides, Y, and Sc)
represent critical materials that feed the supply chains of clean energy technologies. Separation of
minor actinides has been an active research area worldwide toward a closed nuclear fuel cycle that
reduces the heat and radiotoxicity burden on geologic repositories, reduces the consequences of
potential disruptive events involving repositories, and increases the utilization of nuclear fuel. Simple,
efficient, and robust americium and curium separations, from lanthanides and from each other, are
regarded as major technical challenges. These goals are pursued mainly within the paradigm of
aqueous reprocessing of used oxide nuclear fuel dissolved in nitric acid. Principles of selectivity through
various means have been developed based around two strategies: selective complexation of trivalent
MAAs with soft-donor ligands, either as aqueous complexants or as extractants, and exploiting the
higher oxidation states of Am. Ligand design for Am(III) extraction has started with the basic concepts
of molecular recognition, namely complementarity and preorganization. A family of novel mixed N,O-
donor compounds has led to astonishing affinities for Am(III), but interestingly, the same principles
applied to lanthanide separation have led to astonishing selectivity for intra-lanthanide separation.
Diglycolamide ligands (DGAs) have also provided a rich chemistry in the context of separations for both
nuclear-fuel-cycle and critical-materials applications. They have enabled the development of the
effective ALSEP process for MA separation from lanthanides, a promising technology with the potential
to close the nuclear fuel cycle with full actinide recycle. Beyond actinide separations, DGA ligands have
unusual selectivity across the lanthanide series with implications for more efficient recovery of critical
materials. Looking deeply at the structure of the extraction complexes has provided insight into the
interplay between the first- and second-shell coordination sphere and the role of co-extracted anions.

This research was sponsored by the Nuclear Technology Research and Development program, Office of
Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

Required Graduate Student Seminar for ChE 5971

Refreshments served before Seminar

Sponsored by:
School of Chemical, Biological and Materials Engineering
The University of Oklahoma
100 E. Boyd, Sarkeys Energy Center, T-301, Norman, OK
405-325-5811

Accommodations on the basis of disability are available by contacting the office