The University of Oklahoma
School of Electrical and Computer Engineering

Course: ECE 4613/CS 4613 Computer Architecture

Instructor: Dr. Ronald Barnes 405.325.1879; ron@ou.edu
Office Hours: 336 Devon Energy Hall
Time: T 2:30PM - 4PM
 W 3PM - 4:30PM

Teaching Assistant: Lina Sawalha 405.325.3011; lina_sawalha@ou.edu
Office Hours: 115 Devon Energy Hall (Computer Lab)
Time: TBA

Catalog Description: Covers basic concepts of computer system design and communication between components, along with current and historical examples of computer architecture.

This course is an intensive introduction to the fundamentals of computer architecture. We will discuss the basic design, or architecture, of computing hardware. Computer systems involve architecture design at many levels. We will focus on the instruction set architecture (ISA) level (the interface between the software and computing hardware) and the microarchitecture level (the computing hardware itself). We will examine to some extent, the level above the instruction set (the programming language level) and the level below the microarchitecture (the logic gate level) in order to deepen our understanding of computing systems. This course has a demanding design component; you will implement some of the basic concepts presented in lecture using real hardware design tools.

Optional VHDL reference:
or

Grading Policy:
 Exams: 55% (15% Midterm 1 15% Midterm 2 25% Final)
Projects: 30%
Homework: 10% (due every Thursday)
Class Participation: 5%
Topics:

1. Introduction to Computer Abstractions
2. Instructions: Language of the Computer
3. Computer Arithmetic
4. Representation of Floating Point Values and Floating Point Arithmetic
5. Datapath Design
6. Control Path Design
7. Pipelined Datapath and Control
8. Data Hazards and Forwarding
9. Control Hazards and Prediction
10. Instruction-level Parallelism
11. Cache Memories
12. Virtual Memory
13. I/O
14. Multiprocessor Architectures

Reasonable accommodation policy: Any student in this course who has a disability that may prevent him or her from fully demonstrating his or her abilities should contact me personally as soon as possible so we can discuss accommodations necessary to ensure full participation and facilitate your educational opportunities.

OU Academic Misconduct Code: Students will be held to the highest expectations of academic integrity. Unauthorized collaboration of any kind is strictly prohibited and will result in the filing of misconduct charges and imposing academic misconduct "admonitions". Copying of any kind on any assignment will not be tolerated. However, students are encouraged to work together on homework. Some later projects may be completed in small groups. No collaboration of any kind is allowed on exams.

The misconduct system for the College of Engineering is set forth in the Academic Misconduct Code. The Code is included as an appendix to the Faculty Handbook and is available from the Provost's student academic integrity page, http://www.ou.edu/provost/integrity. Your rights and responsibilities under the Academic Misconduct Code can be found at http://www.ou.edu/provost/integrity.

UOSA Honor Pledge: The University of Oklahoma Student Association has approved, with the concurrence of the Faculty Senate, a resolution encouraging the use of an integrity pledge on all major assignments. The Pledge reads:

On my honor, I affirm that I have neither given nor received inappropriate aid in the completion of this exercise.

This pledge, along with a student signature line, will be placed on quiz and exam sheets. A downloadable version of the pledge text is available at http://www.ou.edu/honorcouncil/FAQ.html#Pledge.
Religious Holidays: It is the policy of the University to excuse absences of students that result from religious observances and to provide without penalty for the rescheduling of examinations and additional required class work that may fall on religious holidays.

evaluate! – The University of Oklahoma’s online course and instructor evaluation system: The College of Engineering utilizes student ratings as one of the bases for evaluating the teaching effectiveness of each of its faculty members. The results of these ratings are important data used in the process of awarding tenure, making promotions, and giving salary increases. In addition, the faculty members use the evaluation feedback to improve their own teaching effectiveness and programs use the data to assess achievement of a set of learning outcomes. The original request for the use of these forms came from students, and it is students who eventually benefit most from their use. Please take this task seriously, evaluate courses on-line, and respond as honestly and precisely as possible, both to the machine-scored items and to the open-ended questions. We appreciate your feedback.

Late submission policy: Late homework (up to one week late) will be accepted for exactly one submission per student. No credit will be given to late project submissions. Exceptions due to illness or other extraordinary circumstances should be requested before the class in which the assignment is due.

Projects: This course features significant design and simulation projects using HDL Designer and ModelSim by Mentor Graphics. The first few projects (called machine problems or MPs) will be completed individually. The final project(s) may be completed in small teams.