Syllabus
CS 2613 - Computer Organization
Spring 2013

Course Web Address: https://learn.ou.edu/

Instructor: Dr. Mohammed Atiquzzaman
Office: DEH 250
Tel: 325-8077
Email: atiq@ou.edu

Office Hours: Mondays and Wednesdays 2:00 – 3:00 and by appointment

Lectures: M W F: 3:00 – 4.15, Carson 439

Lab: F: 3:00 – 4:50, Carson 439

Teaching Assistant: Faraz S. Maharloiy
Office: DEH 115
Email: faraz@ou.edu
Office Hours: Tues and Thu 11 – 12 noon or by appointment

Prerequisite: ECE 2213 (Introduction to Digital Design) or CS 2603 (Applied Logic for Hardware and Software)

Course Description: An introduction to the architecture, organization and design of uniprocessor-based computer systems. Topics include processor, control and memory design and organization, pipelining and vector processing, computer arithmetic, I/O organization and a brief introduction to multiprocessors.

Course Outline:
- Overview and Background (Chapters 1-3)
- Register Transfer and Microoperations
- Basic Computer Organization and Design
- Programming Issues
- Microprogrammed Control
- Central Processing Unit
- Principles of Pipelining and Vector Processing
- Computer Arithmetic
- I/O Organization
- Memory Organization
- Introduction to Multiprocessors

Grading: Approximately five homework sets will be assigned. A short in-class quiz will be given covering the material of each homework assignment.

Five lab exercises will be assigned. Each lab exercise will typically consist of a pre-lab portion followed by an in-class exercise where hardware circuits will be constructed.
One assembly language programming project will be assigned. Three exams, including the final, are also scheduled.

<table>
<thead>
<tr>
<th></th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quizzes</td>
<td>15%</td>
</tr>
<tr>
<td>Labs</td>
<td>15%</td>
</tr>
<tr>
<td>Programming Project</td>
<td>10%</td>
</tr>
<tr>
<td>Exam 1</td>
<td>15%</td>
</tr>
<tr>
<td>Exam 2</td>
<td>15%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>30%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>

ABET Outcomes: The course will measure ABET outcome I – an ability to use current techniques, skills, and tools necessary for computing practice.

Students with Disabilities: Any student who, because of a disabling condition, may require some special arrangements in order to meet course requirements should contact the instructor as soon as possible to make necessary accommodations.

Academic Integrity: All work submitted for an individual grade, such as homework and projects should be the work of that single individual, not their friends or their tutor. Students who fail to do their own work not only violate the Code of Conduct for the University of Oklahoma, but also may fail to learn critical learning objectives for the class.

1. Do not show another student a copy of your homework or projects before the submission deadline.
2. Do not email your project to another student, even if they promise they will not copy it.
4. Make sure that your computer account is properly protected. Use a good password, and do not give your friends access to your account or your computer system.
5. Do not leave thumb drives around a laboratory where others might access them.
3. The penalties for knowingly permitting your work to be copied are the same as the penalties for copying someone else’s work.

Upon the first documented occurrence of collaborative work, I will report the academic misconduct to the Campus Judicial Coordinator. The procedure to be followed is documented in the University of Oklahoma Academic Misconduct Code. In the unlikely event that I elect to admonish the student, the appeals process is described at http://integrity.ou.edu/summary_of_the_process.html

Rights and responsibilities under the academic misconduct code, University of Oklahoma Norman Campus can be found here: http://www.ou.edu/provost/integrity-rights/

Student ratings: The College of Engineering utilizes student ratings as one of the bases for evaluating the teaching effectiveness of each of its faculty members. The results of these forms are important data used in the process of awarding tenure, making promotions, and giving salary increases. In addition, the faculty uses these forms to improve their own teaching effectiveness. The original request for the use of these forms came from students, and it is students who eventually benefit most from their use. Please take this task seriously and respond as honestly and precisely as possible, both to the machine-scored items and to the open-ended questions.