Instructor: Dr. C. Kim, DEH 253, ckim@ou.edu.
Class Meetings: MW 3PM – 4:15PM, SEC P203.
Office Hours: MW 12PM – 1PM.
Prerequisites: CS 3823 (Theory of Computation).

Course Content: The course covers fundamentals of compiling techniques. Specific topics include lexical analysis, syntax analysis, syntax-directed translation, type checking, run-time environments, (intermediate) code generation, and code optimization.

Student Activities:
- Homework Assignments (20 %)
- Programming Assignments (20 %)
- Midterm Exam (25 %)
- Final Exam (35 %)

Remarks:
1. Students are required to attend all class meetings.
2. Assignments must be submitted on due dates in class.
3. All student activities are individual, not group activities. Plagiarism/cheating will result in an academic misconduct charge.
4. Any student who has a disability that may prevent him or her from fully demonstrating his or her abilities should contact me personally as soon as possible so we can discuss accommodations necessary to ensure full participation and facilitate your educational opportunities.
5. Should you need modifications or adjustments to your course requirements because of documented pregnancy-related or childbirth-related issues, please contact me as soon as possible to discuss. Generally, modifications will be made where medically necessary and similar in scope to accommodations based on temporary disability. Please see www.ou.edu/content/eoo/pregnancyfaqs.html for commonly asked questions.
6. For any concerns regarding gender-based discrimination, sexual harassment, sexual misconduct, stalking, or intimate partner violence, the University offers a variety of resources, including advocates on-call 24.7, counseling services, mutual no contact orders, scheduling adjustments and disciplinary sanctions against the perpetrator. Please contact the Sexual Misconduct Office 405-325-2215 (8-5) or the Sexual Assault Response Team 405-615-0013 (24.7) to learn more or to report an incident.

7. ABET Outcomes: By the end of the semester, students are expected to increase their ability to design, implement, and evaluate a computer-based system, process, component, or program to meet desired needs (Outcome C), and their ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices (Outcome J).

8. On-line evaluation of this course can be done at http://eval.ou.edu.