Promoting Safe & Sustainable Well Construction in Malawi

STEVE SCHNEIDER
BSME, MGWC

Past President & Director
National Ground Water Research & Educational Foundation
Charitable arm of the NGWA

VP - Drilling Operations
Schneider Water Services
MALAWI

Pop: 15 million
85% live in rural areas
Agriculture
GNI <$1.00/day
English & Bantu dialects
‘The Warm Heart of Africa’
MZUZU, MALAWI

- NGWREF’s first DN E&T grant
- Two courses over a week
 - 3 day – Drillers (incl. interpreter) - 27
 - 2 day – NGO’s, Government & Students - 17
- Partner – SMART Centre, Mzuzu U
- Setting the bar – Recognizing challenges as opportunities
E. coli Free Drinking Water Wells

Stephen J Schneider, BSME, MGWC
steve@schneiderwater.com

ESTABLISHED GOALS, GUIDELINES & STANDARDS

World Health Organization (WHO)

According to World Health Organization (WHO), testing for organisms such as *Escherichia coli* (*E. coli*) as an indicator of faecal pollution is a well-established practice. This is the practice of testing for faecal contamination in the assessment of drinking water quality. *E. coli* is used as the verification or surveillance parameter.

Thermotolerant *E. coli* can be used as an alternative to the test for *E. coli* in many circumstances. Water intended for human consumption should contain no faecal indicator organisms. In the majority of cases, monitoring for *E. coli* or thermotolerant *E. coli* provides a high degree of assurance because of their large numbers in polluted water. The WHO guideline value clearly indicates that *E. coli* or thermotolerant *E. coli* should not be detectable in any 100 ml sample. (Guidelines for Drinking Water Quality – Fourth Edition WHO, 2011)

PROPER WELL CONSTRUCTION – BUILDING ASSETS

Location, Location, Location

- Begin with the end in mind – *E. coli* free.
- Proximity and gradient from open defecation must be considered.
- Setbacks are only lateral guidelines.
- Think 3 dimensionally – i.e. a safe target aquifer.

BACKGROUND

United States Environmental Protection Agency (USEPA)

National Primary Drinking Water Regulations

- Contaminant:
 - *Escherichia coli* (faecal coliform and *E. coli*)
 - MCLG: 0 mg/L
 - MCL: 0 mg/L

NOTES

1. Maximum Contaminant Level Goal (MCLG) – The level of a contaminant in drinking water below which there is no known or expected risk to health.
2. Maximum Contaminant Level (MCL) – The level of a contaminant in drinking water, beyond which public health could be at risk.
3. The system has an acute MCL (Maximum Contaminant Level) violation.

METHODS

The Safety and Difficulty of Constructing and Maintaining a Sanitary Sewer System, and the Cost of the Large Annular Surface Seal Required

NOTE: A dug well should not be confused with a manually drilled well.

WATER SUPPLY WELL GUIDELINES for use in DEVELOPING COUNTRIES – Schneider, S. Third Edition 2014

USGS & CDC studies find hand dug wells more likely to be *E. coli* contaminated.

Quality of Water from Domestic Wells in Principal Aquifers of the United States (USGS, 1976-2004)

A Survey of the Quality of Water Drawn from Domestic Wells in Nine Midwestern States (USGS)

A Well Construction Cost-Benefit Analysis (CBA): For Water Supply Well Guidelines for use in Developing Countries (J Whinnery, 2012)

Demonstrated that properly constructed wells with ongoing operation and maintenance that are *E. coli* free will have 40 times more value than the cost.

A Well Construction Cost-Benefit Analysis (CBA): For Water Supply Well Guidelines for use in Developing Countries (J Whinnery, 2012)

Demonstrated that properly constructed wells with ongoing operation and maintenance that are *E. coli* free will have 40 times more value than the cost.

DOCUMENTATION & REPOSITORY

Well logs (labels) and well logs (as-built), along with a publicly accessible repository of the well logs, provide:

- Location information for other wells
- Design information for other wells
- Drilling plan information for other wells
- Aquifer characterization

CONCLUSIONS

- Wells can and should be constructed to provide safe and sustainable drinking water supplies. Safety no longer means ‘clean’; safety means it must as a minimum be *E. coli* free. Sustainable no longer defines the short term yield of a well; it means the long term protection of the groundwater resource from contamination and waste.
- Safe and sustainable wells are assets.
- Improperly constructed wells have a negative cost-benefit ratio and may have a far reaching negative impact on the sustainability of safe drinking water. Proper decommissioning of wells is expensive. Such wells are liabilities.
- Continued education and training reminds us of the bar to be achieved and how we can get there in a positive impact on millions more lives.

CONTACT

STEVE SCHNEIDER

BSME, MGWC
Past President & Director
www.nagwa.org/Foundation

Charitable arm of the NGWA
Provider of groundwater-related Education & Training programs

steve@schneiderwater.com

PDF of CBA and WATER SUPPLY WELL GUIDELINES book are available at: www.schneiderwater.com, click on hydrophiliarchy, then book cover.
SAFETY & SUSTAINABILITY

- Public Safety - **Safe vs clean** drinking water
 Goal is SAFE = ZERO E-coli (<1/100ml)
 & within guidelines for other minerals/chemicals

- Safety: Those constructing (e.g. dug wells)

- Up to 80% non-functioning wells in SSA

- Groundwater resource protection – quantity and quality (future generations)
COURSE FORMAT

- Powerpoint
- Course text – including ‘homework’
- Whiteboard – w/discussions
- Classroom demos
 - Drilling fluid (alternative to dung)
 - Bentonite chips (for annular sealing)
 - Water quality sampling protocol & testing
 - Sand tank demonstration
- Field drilling demonstrations
COURSE PRESENTERS

- MU Water Dept professionals
- Drillers (field demos)
- NGWREF RG
- NGWREF MGWC
CUSTOMIZED CONTENT

- Well Components
- Cost-Benefit Analysis
- Groundwater Flow
- Safety
- Ethics
- Contracts
- Opportunities (distributors)
- Regulations
VISUAL LEARNING - Petrifilm
PERCUSSION - FLOODED RC (SLUDGING) & ROPE PUMPS

DRILLING:

- Capital cost $500
- Portability public transportation
- Cost to operate <$1/hour
- Spare parts readily available
‘A BIG DEAL’

Malawi Minister of Water and Prof. Russel Chidya
RESPONSE
from Malawi

‘Just a note to thank you for a wonderful program here in Mzuzu last week. Both the programs exceeded our expectations, and have challenged us to do a better job for safe and sustainable well construction. But, also to not just accept the status quo.’

R Holm, PhD
E&T IMPACT (since 2011)

- Individuals improving all/part of their well construction; or teaching to others >70
- Wells impacted >7,000
- Individuals impacted (initially) ~2,000,000
- Add’l individuals impacted INCALCUABLE
Build **ASSETS**
Not **LIABILITIES**

“If we don’t take care of our groundwater; groundwater won’t take care of us.”
MAKE AN IMPACT!

Thank You

steve@schneiderwater.com

www.schneiderwater.com

click on ‘Hydrophilanthropy’

click on image of front cover: