Water, health & development in the non-networked world

Jenna Davis

University of Oklahoma, WaTER Center

27 April 2012
Outline

- Trends in water and sanitation infrastructure investment
- Three challenges of a non-networked paradigm
- Knowledge gaps and applied research
- Summary, Q&A
Trends in access to water and sanitation services

- Millennium Development Goals: proposed by the UN in the year 2000, adopted by all members
- Target 10: To reduce by ½ the proportion of people without access to improved water supply & basic sanitation between 1990 -2015

Data Source: Joint Monitoring Program
Improved water supply
• Piped connection to house/plot
• Public tap or standpipe
• Protected well or spring
• Rainwater

Unimproved supply
• Surface water
• Unprotected well or spring
Basic sanitation
• Toilet connected to sewer
• Toilet with septic tank
• Improved latrine (concrete slab)
• Composting toilet

Unimproved sanitation
• Traditional latrine
• Bucket/service latrine
• Open defecation
• Any shared facility
Improved water supply
- House/plot connection
- Public tap or standpipe
- Protected well or spring
- Rainwater

Basic sanitation
- Toilet connected to sewer
- Toilet with septic tank
- Improved latrine (concrete slab)
- Composting toilet

Valentina Zuin
Jenna Davis
Jenna Davis
Global water & sanitation infrastructure, 2010

- House tap, 53%
- Other 'improved', 36%
- Surface water, 3%
- Other 'un-improved'; 8%
- Open defecation, 19%
- Unimproved toilet, 19%
- Toilet + sewerage, 31%
- Toilet + on-site, 31%

2.5 billion
3.4 billion

Source: Joint Monitoring Program (2012)
All countries begin with unimproved, non-networked services

United States, 1800s

Lao PDR & Tanzania, 2000s

Amy Pickering
Regional trends in water access, 1990-2010

- In the world’s poorest regions, virtually all W&S gains during MDG period have been non-networked

Source: Joint Monitoring Program, 2012
Median construction cost per capita (US$), improved water supply options (2000)

Non-networked infrastructure...
1) Creates regulatory challenges
2) Confers investment and management responsibilities on users
3) Depends on accompanying behavior to realize health benefits
Non-networked infrastructure...

1) Creates regulatory challenges

2) Confers investment and management responsibilities on users

3) Depends on accompanying behavior to realize health benefits
Limited sanitation infrastructure options in many urban slums
Fecal sludge management is largely a private-sector function, difficult to regulate

Will supporting markets for recovered resources help realize public and environmental health goals?
Collection

HH Toilet

Transportation

Back-end Use

Resource Recovery
Cap Haitien, Haiti: Urban sanitation project

- Dense slum community of 1600 households
- Served only by 3 public toilets
- In-home bucket-based system, paired with resource recovery
Non-networked infrastructure...

1) Creates regulatory challenges

2) Confers investment and management responsibilities on users

3) Depends on accompanying behavior to realize health benefits
Can poor households afford networked services?

<table>
<thead>
<tr>
<th>Country</th>
<th>Haiti</th>
<th>Indonesia</th>
<th>Peru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price/m³, non-networked</td>
<td>$5.50-16.50</td>
<td>$1.20-5.20</td>
<td>US$3.00</td>
</tr>
<tr>
<td>Price/m³, piped system</td>
<td>$1.00</td>
<td>$0.09-0.50</td>
<td>$0.15</td>
</tr>
<tr>
<td>Cost reduction factor</td>
<td>5.5 - 16.5</td>
<td>2.4 - 57.8</td>
<td>20</td>
</tr>
</tbody>
</table>

To what extent does limited access to financing impede household investment?
Hyderabad, India: Microfinance for W&S

- ~4 million residents, served by semi-autonomous Water Board
- Parent population: From 950 slums, 64 identified that were ‘notified,’ on government land, in service area, and had 100+ households without service
 - 10 slums sampled
 - 1174 household interviews attempted; 905 completed
Sample household characteristics

- Median HH size: 5 persons
- Median respondent age: 34 years
- 82% homeowners
- 26% of respondents self-identify as literate
- Median monthly reported “regular” expenditures: US$70
Water supply & sanitation services
Imagine a microfinance program...

- Loans of US$75-$250 available, earmarked for water connection, toilet/sewer, both
- Annual interest rate randomly varied between 15%, 20%, 25%, and 30%
- Repayment period randomly varied between 18 and 24 months
• Borrowing households must form “joint liability group”
• Each group member must save ~US$3 per week for 8 weeks before receiving loan
• Average monthly payments between US$6 - 15
• NGO provides on-site servicing, Water Board facilitation and information
- Complex program
- Respondent’s questions solicited, answered four times
- Handouts reviewed by enumerators
- Respondents given opportunity to think, discuss with family, and resume interview in a later appointment (1%)
Demand for water microloans
(Over all interest rates, repayment periods)

- **No water or toilet** (n=273)
 - Have toilet: 10%
 - No water or toilet: 90%

- **Have toilet** (n=353)
 - Want loan for water supply: 55%
 - Want loan for both: 45%
Reasons for declination
(Unprompted; multiple answers allowed)

- Don't want to form a group
- Satisfied with current situation
- Monthly payment too high
- Renter: Don’t want to invest
- Renter: Landlord won't permit
- Can't meet savings requirement
- Interest rate is too high
- Feels services should be free
Supply meets demand: Hyderabad

- Sample filters, reflecting lenders’ priorities, eliminated ~90% of the unserved from consideration
- Of those left in the sample, a little over ½ expressed willingness to borrow given program description
- Among these, half will likely not be desirable borrowers from an MFI’s perspective (housing stock, income, employment, home ownership)
- Implies that microfinance as currently structured will have limited impact, and will be utilized largely by better-off households
- Next steps: Program being launched in Kenya
Non-networked infrastructure...

1) Creates regulatory challenges

2) Confers investment and management responsibilities on users

3) Depends on accompanying behavior to realize health benefits
Greatest W&S-related health impacts associated with networked infrastructure

Mean reduction in child mortality (%)

- Water supply
- Sanitation

Developing countries, 1990’s & 2000’s
N~750,000

Gunther and Fink (2010)
Tanzania: Mapping household risk

- House entrance
- Household floor
- Food preparation
- Water activities
- No activities
- Latrine entrance
- Latrine floor
- H-L midpoint
- Location of soil sample
Water collected
Utensil cleaned
Hardware *versus* software

- Largest city in Tanzania (~3m)
- 9th fastest growing city in the world; population doubling time ~16 years
- ~1/3 of households connected to municipal water network, <10% to sewer network
- Water utility (DAWASA) targeting non-networked system investments in vulnerable populations
- Less-than-expected impacts on health
Collaborative research between Stanford, DAWASA, and Muhimbili University of Health & Allied Sciences

- Sampling of water at source, in the home
- Hand rinse samples
- Enumeration of fecal indicator bacteria

Photos: Amy Pickering
Finding: High-quality water at source deteriorates in storage

E. coli concentrations in source versus stored water

How to motivate improved sanitation, water management & hygiene?
• 300 HHs with >1 under-5 child in 3 neighborhoods
• 4 visits per HH over 3-month period
• Interview of mother / caretaker
• Sampling of stored, stored water
• Hand rinse samples

• Health messages booklet and strategy card reviewed, left with all respondents
• For 3 cohorts: Water, hand, or both test results provided & explained
Respondent’s sample (CFU per 100mL E. coli)

Median value for HHs in neighborhood

“Low” <10 CFU/100mL
“Medium” 11-100 CFU
“High” >100 CFU

“Low” <10 CFU/100mL
“Medium” 11-100 CFU
“High” >100 CFU
Selected results:

• Self-reported rates of handwashing and water treatment increased for entire set of study participants
• No effect of water/hand test; ‘information only’ cohort had highest rates of change
• Little association between behavior change and levels of fecal indicator bacteria.

Implications

• Current approach to infrastructure investments should not be expected to yield health gains.
• Are non-networked solutions really cheap?
Summing up

• Non-networked water and sanitation investments dominate in developing countries
• Full suite of costs, benefits, and impacts of this paradigm not understood
• Applied research can help address regulatory, management, investment, and health behavior challenges
• Opportunities exist (particularly in sanitation) to inform (inspire?) industrialized countries’ investment strategies
Thank you

jennadavis.stanford.edu
h2o.stanford.edu

Photo: Amy Pickering