Vascular targeted single-walled carbon nanotubes for near-infrared light therapy of cancer

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 Nanotechnology 22 455101
(http://iopscience.iop.org/0957-4484/22/45/455101)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.15.118.54
The article was downloaded on 15/10/2011 at 18:07

Please note that terms and conditions apply.
Vascular targeted single-walled carbon nanotubes for near-infrared light therapy of cancer

Whitney M Prickett\textsuperscript{1,2}, Brent D Van Rite\textsuperscript{1,2}, Daniel E Resasco\textsuperscript{1} and Roger G Harrison\textsuperscript{1,2}

\textsuperscript{1} School of Chemical, Biological and Materials Engineering, University of Oklahoma, 100 East Boyd, Room T-335, Norman, OK 73019, USA
\textsuperscript{2} Bioengineering Center, University of Oklahoma, 100 East Boyd, Room T-335, Norman, OK 73019, USA

E-mail: rharrison@ou.edu

Received 29 April 2011, in final form 19 August 2011
Published 13 October 2011

Abstract
A new approach for targeting carbon nanotubes to the tumor vasculature was tested using human endothelial cells and MCF-7 breast cancer cells \textit{in vitro}. Single-walled carbon nanotubes were functionalized with the F3 peptide using a polyethylene glycol linker to target nucleolin, a protein found on the surface of endothelial cells in the vasculature of solid tumors. Confocal microscopy and Raman analysis confirmed that the conjugate was internalized by actively dividing endothelial cells. Dividing endothelial cells were used to mimic these cells in the tumor vasculature. Incubation with the conjugate for 8 h or more caused significant cell death in both actively dividing endothelial cells and MCF-7 breast cancer cells, an effect that is hypothesized to be due to the massive uptake of the conjugate. This targeted cell killing was further enhanced when coupled with near-infrared laser treatment. For confluent (non-dividing) endothelial cells, no cytotoxic effect was seen for incubation alone or incubation coupled with laser treatment. These results are promising and warrant further studies using this conjugate for cancer treatment \textit{in vivo}.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Tumor growth depends on the ability of the tumor to form new blood vessels. It has been shown that cells cannot grow past the oxygen diffusion limit of about 150 $\mu$m [1]. So, tumor growth beyond 150 $\mu$m is dependent on angiogenesis, the sprouting of new blood vessels from existing ones [2]. Thus, targeting angiogenic blood vessels is a potential way to selectively treat cancerous tumors in the body.

The purpose of this research is to develop a treatment that is able to selectively target the vasculature of solid tumors and induce tumor cell death without harming the surrounding normal tissue. This study specifically focuses on the use of functionalized carbon nanotubes targeted to the tumor vasculature combined with near-infrared light therapy for breast cancer treatment.

Perhaps the most researched property of carbon nanotubes for cancer therapy in recent years has been their strong absorbance in the near-infrared light range (700–1400 nm). This property makes carbon nanotubes an enticing vehicle for selective cell killing because many biological tissues are transparent in the near-infrared range [3–5]. It is well documented that carbon nanotubes themselves are not toxic to cells but, when combined with near-infrared light therapy, they have been shown to cause cell death by thermal ablation [3, 6–10]. Nanotubes targeted to the tumor vasculature coupled with near-infrared light therapy will cause tumor endothelial cells in close proximity to die from the heat released and by cutting off the blood supply to the tumor.

Because they are actively dividing, tumor endothelial cells express specific markers that are not present on the surface of normal endothelial cells. One such cell
surface marker is nucleolin [11]. Nucleolin is a 105 kDa nucleolar phosphoprotein that is primarily found in the cell cytoplasm [12]. It has been shown to autodegrade in vivo; however, it is presumed that cell proliferation somehow inhibits this self-cleaving because intact nucleolin predominates in actively dividing cells, while non-dividing cells contain more degraded fragments of nucleolin [13]. It has also been shown that nucleolin is translocated to the cell surface during proliferation [14] and that proliferating cells express up to ten times as much nucleolin as cells in the stationary growth phase [12].

Endothelial cells within angiogenic blood vessels will be actively dividing and nucleolin has been confirmed to be present on the surface of these cells when they are dividing [15, 16]. One in vivo study using antinucleolin antibodies injected into mice bearing MDA-MB-435 tumors found that nucleolin was expressed on the surface of the angiogenic tumor blood vessels but was absent from the blood vessels of normal tissues [16]. Another study showed that the amount of nucleolin expressed on the surface of seven different cancer cell lines increased with decreasing doubling time [15]. The increased expression of nucleolin in proliferating endothelial and tumor cells makes it a potential target for homing to tumor vasculature.

The targeting moiety used in this study is the F3 peptide, a fragment of the high mobility group protein 2 [17]. F3 is a 31-amino-acid peptide that has been shown to home to the nuclei of tumor endothelial cells and tumor cells [17, 18] and bind to cell surface nucleolin and become internalized [16]. The use of F3 to target the tumor vasculature has been widely researched in recent years [17–19]. Human MDA-MB-435 breast cancer cells were found to internalize fluorescein-labeled F3 and translocate it to the cell nucleus in vitro and in vivo [17]. Another study in which F3 was linked to an α-particle-emitting isotope yielded similar results [19]. Two hundred times more of the F3 conjugate was found in the nucleus of cells tested in vitro than in the cellular supernatant and an in vivo test in mice-bearing tumors gave an increased survival when the F3 conjugate was injected, with no toxicity due to the treatment.

This study is the first to investigate targeting carbon nanotubes that have been functionalized with the F3 peptide. Single-walled carbon nanotubes (SWNTs) having a strong optical absorbance in the near-infrared range are used in order to have maximal heating of cells using photodynamic therapy. Following incubation with the SWNT–F3 conjugate, cells are irradiated with a near-infrared laser, and the cytotoxic effect is evaluated.

2. Methods

2.1. Preparation of SWNT–F3 conjugate

Single-walled carbon nanotubes (SG 65) were obtained from SouthWest NanoTechnologies (Norman, OK). The nanotubes are produced by the CoMoCAT© method and have a tube diameter of 0.8 nm. The majority of the nanotubes are (6, 5) chirality. A 1,2-distearyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-maleimide (DSPE-PEG-maleimide) linker was purchased from Creative PEGWorks (Winston Salem, NC). The F3 peptide (KDE-PQRRSARLSAKPAPPKPEPKPKKAPAKK) was synthesized with fluorescein isothiocyanate (FITC) added at the N-terminus and an extra cysteine residue at the C-terminus (Biomatik, Wilmington, DE).

SWNTs were suspended in 1% SDS (3 mg in 5 ml) through two cycles consisting of sonication at 7 W for 30 min followed by 30 min of centrifugation at 15 680 g. The DSPE-PEG-maleimide linker was allowed to reach room temperature and was dissolved in 5 ml of deionized water (1 mg ml⁻¹). One milligram of the F3 peptide was reconstituted in 3 ml of PBS, pH 7.4 and allowed to mix with 1 ml of the linker solution at room temperature for 15 h. Unreacted ligand was blocked with l-cysteine for 1 h at a molar ratio of l-Cys/F3 of 7. An 8 h dialysis was performed using PBS at pH 7.4 with a buffer volume of 1 l and a membrane size of 2 kDa. The 4 ml F3-linker solution was then added to the 5 ml SWNT suspension and allowed to mix at room temperature for 30 min. A second 8 h dialysis was performed using deionized water with a buffer volume of 2 l and a membrane size of 100 kDa. The SWNT–F3 conjugate solution was then centrifuged at 15 680 g for 1 h to remove any existing SWNT aggregates. The F3 concentration was determined using the Bradford assay, and SWNT concentration was determined by measuring absorbance at 800 nm on a UV-2450 Shimadzu spectrophotometer and comparing to a standard curve.

2.2. Fluorescence and confocal microscopy

MCF-7 breast cancer cells were from the American Type Culture Collection (Manassas, VA), and HAAE-1 human aortic endothelial cells were from Coriell Cell Repositories (Camden, NJ). Cells were grown to 60–70% confluence on glass coverslips in 35 mm petri dishes overnight. The SWNT–F3 conjugate was diluted to 60 mg l⁻¹ in cell medium. The F3 conjugate was injected, with no toxicity due to the treatment. The SWNT–F3 conjugate was found in the nucleus of cells tested in vitro than in the cellular supernatant and an in vivo test in mice-bearing tumors gave an increased survival when the F3 conjugate was injected, with no toxicity due to the treatment.

This study is the first to investigate targeting carbon nanotubes that have been functionalized with the F3 peptide. Single-walled carbon nanotubes (SWNTs) having a strong optical absorbance in the near-infrared range are used in order to have maximal heating of cells using photodynamic therapy. Following incubation with the SWNT–F3 conjugate, cells are irradiated with a near-infrared laser, and the cytotoxic effect is evaluated.

2. Methods

2.1. Preparation of SWNT–F3 conjugate

Single-walled carbon nanotubes (SG 65) were obtained from SouthWest NanoTechnologies (Norman, OK). The nanotubes are produced by the CoMoCAT© method and have a tube diameter of 0.8 nm. The majority of the nanotubes are (6, 5) chirality. A 1,2-distearyl-sn-glycero-3-phosphoethanolamine-polyethylene glycol-maleimide (DSPE-PEG-maleimide) linker was purchased from Creative PEGWorks (Winston Salem, NC). The F3 peptide (KDE-PQRRSARLSAKPAPPKPEPKPKKAPAKK) was synthesized with fluorescein isothiocyanate (FITC) added at the N-terminus and an extra cysteine residue at the C-terminus (Biomatik, Wilmington, DE).

SWNTs were suspended in 1% SDS (3 mg in 5 ml) through two cycles consisting of sonication at 7 W for 30 min followed by 30 min of centrifugation at 15 680 g. The DSPE-PEG-maleimide linker was allowed to reach room temperature and was dissolved in 5 ml of deionized water (1 mg ml⁻¹). One milligram of the F3 peptide was reconstituted in 3 ml of PBS, pH 7.4 and allowed to mix with 1 ml of the linker solution at room temperature for 15 h. Unreacted ligand was blocked with l-cysteine for 1 h at a molar ratio of l-Cys/F3 of 7. An 8 h dialysis was performed using PBS at pH 7.4 with a buffer volume of 1 l and a membrane size of 2 kDa. The 4 ml F3-linker solution was then added to the 5 ml SWNT suspension and allowed to mix at room temperature for 30 min. A second 8 h dialysis was performed using deionized water with a buffer volume of 2 l and a membrane size of 100 kDa. The SWNT–F3 conjugate solution was then centrifuged at 15 680 g for 1 h to remove any existing SWNT aggregates. The F3 concentration was determined using the Bradford assay, and SWNT concentration was determined by measuring absorbance at 800 nm on a UV-2450 Shimadzu spectrophotometer and comparing to a standard curve.

2.2. Fluorescence and confocal microscopy

MCF-7 breast cancer cells were from the American Type Culture Collection (Manassas, VA), and HAAE-1 human aortic endothelial cells were from Coriell Cell Repositories (Camden, NJ). Cells were grown to 60–70% confluence on glass coverslips in 35 mm petri dishes overnight. The SWNT–F3 conjugate was diluted to 60 mg l⁻¹ in cell medium. The F3 conjugate was injected, with no toxicity due to the treatment. The SWNT–F3 conjugate was found in the nucleus of cells tested in vitro than in the cellular supernatant and an in vivo test in mice-bearing tumors gave an increased survival when the F3 conjugate was injected, with no toxicity due to the treatment.

This study is the first to investigate targeting carbon nanotubes that have been functionalized with the F3 peptide. Single-walled carbon nanotubes (SWNTs) having a strong optical absorbance in the near-infrared range are used in order to have maximal heating of cells using photodynamic therapy. Following incubation with the SWNT–F3 conjugate, cells are irradiated with a near-infrared laser, and the cytotoxic effect is evaluated.
Figure 1. The F3 peptide was attached to a phospholipid–polyethylene-glycol linker via a reaction between a maleimide on the linker and an extra cysteine residue on the C-terminus of the peptide.

medium was removed from the plates and 300 μl of the diluted conjugate was added to each well. Cells were incubated with the conjugate for 2, 8, 16 or 24 h at 37 °C and 5% CO₂, washed four times with medium, and irradiated with an energy density of 350 J cm⁻² at 980 nm (Diodevet-50 Laser, B&W TEK Inc., Newark, DE). Cells were incubated in their respective cell medium at 37 °C and 5% CO₂ for 1 h following laser treatment before measuring cell viability. The Alamar Blue assay was performed for measuring cell viability by adding Alamar Blue solution to each well to give 10% Alamar Blue and then incubated for 4 h at 37 °C. A portion of the solution (250 μl) was transferred to an opaque 96-well plate and the fluorescence was read at 590 nm with excitation at 530 nm using a microtiter plate reader. The blank consisted of wells containing only medium and Alamar Blue solution.

2.4. Raman spectra and analysis of SWNT–F3 conjugate

Samples for Raman analysis were prepared just as those for fluorescent microscopy. Raman spectra were taken using a Jovin Yvon-Horiba Lab spectrometer equipped with a CCD detector and with a laser excitation of 633 nm (He–Ne laser). Absorbance versus wavelength data was obtained using a spectrophotometer at SouthWest NanoTechnologies.

2.5. Data analysis

To test differences in cell viability, a one-way ANOVA employing a Tukey–Kramer multiple comparison test was performed using GraphPad InStat software (GraphPad; La Jolla, CA) with various significance (p) levels.

3. Results and discussion

3.1. SWNT–F3 conjugate preparation and near-infrared spectra

A polyethylene glycol linker containing a maleimide at one end and a phospholipid at the other is used to conjugate the F3 peptide to single-walled carbon nanotubes (SWNTs) (figure 1). The phospholipid portion of the linker is then conjugated to the SWNT through hydrophobic interaction with the SWNT surface. This construct was designed for targeting the SWNTs to the nucleolin receptor expressed on the surface of endothelial cells lining the tumor vasculature.

The absorbance characteristics of the conjugate solution were compared to that of SWNTs suspended in 1% SDS to determine if the conjugation process significantly changed the absorbance qualities of the nanotubes. Figure 2 shows a comparison of the normalized absorbance at varied wavelengths for both the SWNTs in 1% SDS (SWNT control) and the SWNT–F3 conjugate.

Figure 2. Comparison of the absorbance characteristic of SWNTs suspended in 1% SDS (SWNT control) and the SWNT–F3 conjugate.

3.2. Binding and internalization of the SWNT–F3 conjugate

The binding ability of the conjugate was evaluated for both dividing endothelial cells and MCF-7 breast cancer cells. Cells were grown in petri dishes and incubated with the SWNT–F3 conjugate for 2, 8, 16 or 24 h. Binding of the conjugate was evaluated by fluorescent microscopy. Figure 3 shows fluorescent images for 2 and 16 h incubation times. Cells incubated for 16 h showed a significant increase in fluorescence intensity, indicating that more of the conjugate was binding. The intensity difference between 16 and 24 h of incubation was negligible (data not shown). Similar results were obtained for MCF-7 cancer cells. In the absence of the SWNT–F3 conjugate, there was no autofluorescence of either dividing endothelial cells or MCF-7 cancer cells.

Internalization of the conjugate was verified by confocal microscopy (figure 4) and Raman analysis (figure 5) for dividing endothelial cells. Using a confocal microscope, it was verified that the observed fluorescence was coming from
Figure 3. Dividing endothelial cells were incubated with the SWNT–F3 conjugate for up to 24 h and visualized under a fluorescence microscope. Images on the left are the bright-field images that correspond to the fluorescent images on the right. Cells incubated for 16 h (bottom) showed significantly more fluorescence than those incubated for only 2 h (top).

Figure 4. Confocal image of dividing endothelial cells following 12 h of incubation with the SWNT–F3 conjugate. Cellular membranes are stained in red with CellMask Deep Red. The green fluorescence is from the SWNT–F3 conjugate (F3 tagged at the N-terminus with FITC).

the inside of the cell, not just the surface (figure 4). The CellMask Deep Red stain delineated the cell membranes; green fluorescence from the SWNT–F3 conjugate was present in a substantial portion of the cell interiors. To confirm that this fluorescence indicated the presence of the SWNT–F3 conjugate and not F3 alone, the Raman spectra of a fluorescing cell was taken. Figure 5 shows the Raman spectra of a fluorescent endothelial cell after incubation with the SWNT–F3 conjugate for 16 h. The characteristic peak at 1590 cm$^{-1}$ indicates the presence of SWNTs in the fluorescing cell. When the Raman beam was not directed at cells, no peak at 1590 cm$^{-1}$ was observed (data not shown).

Figure 5. Raman spectra of a fluorescing endothelial cell following 16 h of incubation with the SWNT–F3 conjugate. The characteristic peak at 1590 cm$^{-1}$ indicates the presence of SWNTs within the cell, confirming the internalization of the conjugate.

Figure 6. Effect on cell viability of incubation of dividing endothelial cells with the SWNT–F3 conjugate for various times either without laser treatment (left side) or with laser treatment (right side). Cell viability was evaluated by the Alamar Blue assay after each incubation time. Data are presented as ±SE ($n = 9$) and statistical significance compared to untreated cells is denoted by * ($p < 0.05$) or ** ($p < 0.01$).

3.3. In vitro killing of dividing endothelial cells and cancer cells

Dividing endothelial cells and MCF-7 cancer cells were grown in 24-well plates. Cells were incubated with 60 mg l$^{-1}$ of the SWNT–F3 conjugate for up to 24 h, thoroughly washed and subjected to laser treatment at an energy density of 350 J cm$^{-2}$. One hour after laser treatment, cell viability was determined using the Alamar Blue assay (figures 6 and 7). Incubation with the conjugate alone caused significant cell death for both dividing endothelial cells and MCF-7 cells. Compared to untreated cells, the cell viability of endothelial cells after 24 h of incubation with the conjugate was reduced by 63% for the conjugate alone ($p < 0.05$) and by 74% for the conjugate with laser treatment ($p < 0.01$). For MCF-7 cells, the reductions in cell viability at 24 h compared to untreated cells were 99.7%
compared to untreated cells is denoted by * ($p < 0.001$).

Figure 7. Effect on cell viability of incubation of MCF-7 cancer cells with the SWNT–F3 conjugate for various times either without laser treatment (left side) or with laser treatment (right side). Cell viability was evaluated by the Alamar Blue assay after each incubation time. Data are presented as ± SE ($n = 9$) and statistical significance compared to untreated cells is denoted by * ($p < 0.001$).

dots (qdots) to tumor blood vessels [25]. The F3-PEG-qdots were intravenously injected into mice bearing MDA-MB-435 xenograft tumors and were found to home onto the tumor blood vessels and become internalized by the cells. There were no detectable qdots found in the other tissues tested and no side effects in the mice were reported.

3.4. Selectivity of SWNT–F3 conjugate

The selectivity of the SWNT–F3 conjugate for dividing endothelial cells versus confluent endothelial cells was then evaluated. Endothelial cells were grown to a confluent monolayer of cells in order to mimic the endothelial cells in normal blood vessels. The confluent (non-dividing) endothelial cells were then subjected to the same binding and laser killing tests as the MCF-7 cells and dividing endothelial cells. No fluorescence was observed for cells incubated with the conjugate for any of the tested time lengths. Cells also remained viable after incubation with the conjugate for all time lengths and after laser treatment following incubation (figure 8). These results suggest that the conjugate will not bind to normal endothelial cells in the body, since nucleolin has been found in in vivo studies to be absent from the blood vessels of other tissues [16]. Therefore, the targeted therapy will only affect tumor cells and endothelial cells within angiogenic blood vessels, where nucleolin has been shown in in vitro studies to be present on the cell surface [16].

To verify that the decrease in cellular viability of the dividing endothelial cells and MCF-7 cells following incubation with the SWNT–F3 conjugate and without laser treatment was due to uptake of the SWNT conjugate, another experiment was done. A conjugate was made that lacked the F3 targeting moiety. This control conjugate was made following the same protocol as before without the addition of the F3 peptide. Dividing endothelial cells were then incubated with this conjugate for 0, 2, 8, 16 or 24 h and not treated with the laser. No cell death was observed from incubation with the conjugate that lacked the targeting moiety (figure 9). This result suggests that the cytotoxic effect is dependent on the
presence of the F3, supporting the idea that it is the uptake of the SWNT–F3 conjugate that causes a decrease in cellular viability in nucleolin expressing cells.

Possible toxicity of SWNTs administered systemically is a potential concern. However, in a biodistribution study by Liu et al [26], this was not found to be a problem; for mice injected i.v. with SWNT–PEG at a dosage up of 1 mg kg$^{-1}$, no obvious toxicity or negative health effects were observed over 3 months of monitoring. No mortality or significant loss of body weight was seen in any of the mice (>30). There was near-complete clearance of the SWNTs from the main organs in about 2 months. The biodistribution data suggested possible urinary and biliary excretion routes for the SWNTs.

4. Conclusion

This paper presents strong evidence that SWNTs conjugated to the F3 peptide have the ability to selectively target the nucleolin expressed in the tumor vasculature. Using confocal microscopy and Raman analysis, dividing endothelial cells, which are known to express nucleolin on their surface, were shown to internalize the SWNT–F3 conjugate. In contrast, confluent endothelial cells showed no binding of the conjugate by fluorescence microscopy. Significant cell death was observed in both dividing endothelial cells and MCF-7 cancer cells following incubation with the SWNT–F3 conjugate; while confluent endothelial cells, that do not express cell surface nucleolin, remained fully viable. The targeted cell killing of cells expressing surface nucleolin was further enhanced with near-infrared laser treatment. These in vitro results are promising and warrant further studies using this conjugate for cancer treatment in vivo.

Acknowledgments

We thank Veronica Irurzun for her help with the Raman microscope and Samuel VanGordon for his help with the fluorescence microscope. This research was supported by a grant from the US Department of Energy-Basic Energy Sciences (DE-FG02-06ER64239).

References


Figure 9. Effect on cell viability of incubation of confluent endothelial cells with the SWNT conjugate lacking F3 and not laser-treated. Cell viability was evaluated by the Alamar Blue assay after each incubation time. Data are presented as ±SE (n = 6). No groups were statistically different from untreated cells at p < 0.05.


