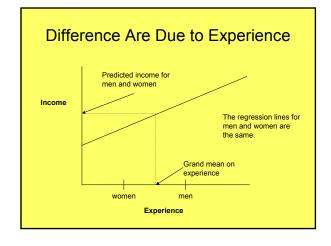
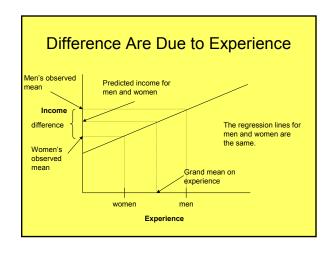
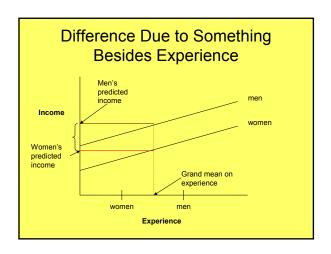
ANCOVA

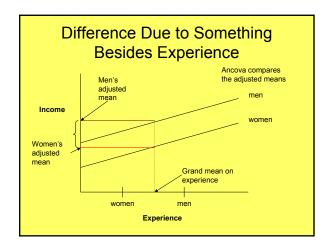
Combining Quantitative and Qualitative Predictors

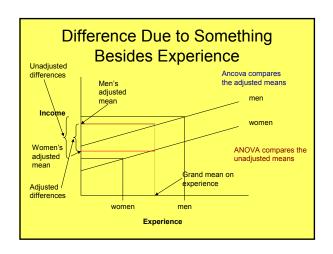
ANCOVA

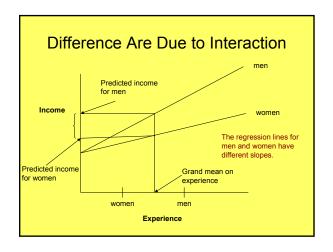

- In an ANCOVA we try to adjust for differences in the quantitative variable.
- For example, suppose that we were to compare men's average faculty income to women's average faculty income here at OU faculty.
 - Looking for a difference involves an ANOVA
 - Explaining the difference (if one is found) involves an ANCOVA

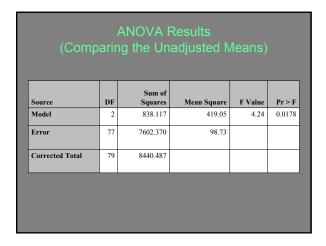

Explaining the Difference


- In trying to explain the difference between men and women, we may want to control for certain variables:
 - Experience
 - Rank
 - Performance record
 - Etc.
- That is, we would like to show that the difference is due to relevant performance criteria. If we can't show that this is the case, then we have a serious discrimination problem.


What if?


- The ANCOVA is many ways is a what if analysis— what if men and women had the same amount of experience? Would we still see the difference in income?
- Inherent in this analysis is the possibility that the what if question is relevant. For example, it would be silly to compare basketball teams adjusting for the heights of players. This would be a meaningless comparison.



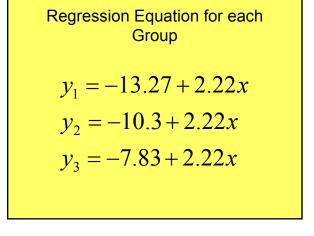


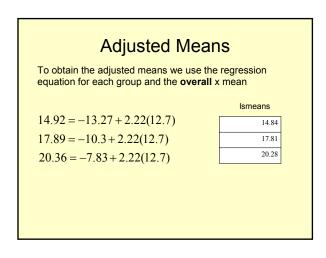
Situational and Individual Differences

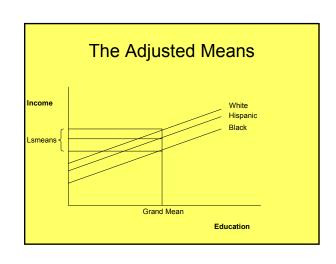
- In the social sciences researcher use ANCOVA to adjust the results for individual differences.
- Suppose that you are looking at ethical decisions under a variety of situations (personal gain, accountability, etc.)
 - You would also like to see if certain individual difference variables (introversion, conscientiousness, cognitive style, etc.) moderate the situational results, you can adjust for these individual difference variables using an ANCOVA design.

SAS ANCOVA Setup Annual income for three groups proc glm; class race; model inc = educ race / solution; means race / tukey; lsmeans race / tdiff adj=tukey; ANCOVA /* Note that contrast and estimate statements are based on the adjusted means */ contrast 'black vs white' race 1 0 -1; estimate 'black vs white' race 1 0 -1; run; proc glm data=anc; class race; model inc= race; ANOVA estimate 'black vs white' race 1 0 -1; contrast 'black vs white' race 1 0 -1;run;

ANOVA: Unadjusted Means						
Blacks Variable	N	Mean	Std Dev	Minimum	Maximu	
Income education	16 16	13.87 12.25	6.64 3.35	8.00 7.00	33.0 19.0	
Hispanics Variable	N	Mean	Std Dev	Minimum	Maximu	
Income education	14 14	15.50 11.64	6.40 2.30	8.00 8.00	29.0 16.0	
Whites Variable	N	Mean	Std Dev	Minimum	Maximu	
Income education	50 50	21.24 13.12	11.43 2.80	9.00 7.00	60.0 20.0	


Tukey on the Unadjusted Means Comparisons significant at the 0.05 level are indicated by ***. Difference Between Means Simultaneous 95% Confidence Limits race Comparison 3 - 2 -1.440 5.740 12.920 0.544 14.186 7.365 3 -1 2 - 3 -5.740 -12.920 1.440 2 -1 1.625 -7.065 10.315 1 -3 -7.365 -14.186 -0.544 -1.625 -10.315 1 - 2 7.065


Source	DF	Type I SS	Mean Square	F Value	Pr
race	2	838.117	419.058	7.01	0.0
ed	1	3061.307	3061.307	51.23	<.0
	DE	Type III SS	Mean Square	F Value	Pr
Source	DF	J			
Source race	2	365.145	182.572	3.06	0.0


race 1	inc LSMEAN 14.8444275	LSMEAN Number
2	17.8147554	2
3	20.2816517	3
	see that even after we adjust for edue is still a difference between the ave	

	justment for Multiple Compa	arisons: Tukey-Kra	amer			
Least Squares Means for Effect race t for H0: LSMean(i)=LSMean(j) / Pr > t Dependent Variable: inc						
1		-1.04771	-2.43112			
		0.5493	0.0453			
2	1.047706		-1.03581			
	0.5493		0.5567			
	2.43112	1.035813				
3						

Parameter	Estimate		Standard Error	t Value	Pr > t	
Intercept	-7.831	В	4.2060	-1.86	0.0665	
race 1 (Blacks)	-5.437	В	2.2365	-2.43	0.0174	
race 2 (Hispanics)	-2.466	В	2.3816	-1.04	0.3036	
race 3 (Whites)	0.000	В	-			
ed	2.215		0.3095	7.16	<.0001	
Blacks $y_1 = (-7.83 - 5.44) + 2.22x$						

Estimate Statements					
ANCOVA Parameter	Estimate	Standard Error	t Value	Pr > t	
black vs white	-5.43722419	2.23651016	-2.43	0.0174	
ANOVA Results Parameter	Estimate	Standard Error	t Value	Pr > t	
black vs white	-7.36500000	2.85401409	-2.58	0.0118	

SAS Type Sum of Squares for unequal n's							
Source	SSI	SS II	SS III				
A	SS(A μ)	SS(A μ,B)	SS(A μ, B,AB)				
В	SS(B μ,A)	SS(B µ ,A)	SS(B µ ,A,AB)				
A*B	SS(AB µ ,A,B)	SS(AB µ ,A,B)	SS(AB μ ,A,B)				

Unequal n's Designs and Ancova Models

- Under the MCAR (Missing data complete at random) assumption:
 - SAS Type III Sum of Squares provides a test of the partial effects, all submodels are compared to the overall model,

$$y_{ij} = \mu + \tau_j + \beta x_i + e_{ij}$$
$$= \beta_{oj} + \beta x_i + e_{ij}$$

Sequential Sum of Squares SAS Type I

 SAS model statement: (testing the equality of slopes assumption in ancova)

model y= trt cov trt*cov;

SS(trt | µ)

SS(cov | µ, trt)

SS(trt*cov | µ, trt, cov)

For Type I SS, the sum of all effects add up to the model SS:

SS(trt)+SS(cov)+SS(trt*cov)+SS(error)=SS(total) SS's are also independent

SAS Type II SS

· SAS model statement:

model y= trt cov trt*cov;

SS(trt | µ,cov)

SS(cov | µ, trt)

SS(trt*cov | µ, trt, cov)

Type II SS do not necessarily add up to the model SS.

The SS's are not independent.

SAS Type III SS Partial Sum of Squares

· SAS model statement:

model y= trt cov trt*cov;

SS(trt | µ, cov, trt*cov)

SS(cov | µ, trt, trt*cov)

SS(trt*cov | µ, trt, cov)

Type III SS do not necessarily add up to the model SS.

• The SS's are not independent


Partial F Test Type III SS

$$F = \frac{(SS_r - SS_f)/1}{df_e}$$
$$= \frac{(R_f^2 - R_r^2)}{(1 - R_f^2)/df_e}$$

The reduced model is the full model minus the element being tested.

SAS ANCOVA Setup Unequal Slopes Model

proc glm; class race;
model inc = educ race educ*race / solution;
means race / tukey;
lsmeans race / tdiff adj=tukey;
run;

Testing for Difference in Means for a Given Value

```
proc glm; class race;
model inc = educ race educ*race / solution;
means race / tukey;
/* Comparison at the mean */
lsmeans race / tdiff adj=tukey;
/* Comparison at 10 grade level */
lsmeans race / tdiff adj=tukey at educ=10;
estimate `one vs two` race 1 -1 0
educ*race 10 -10 0;
run;
```