ANOVA

Multiple Regression with Qualitative Variables

Models

- Multiple Regression
 - Response: at least ordinal
 - Independent variables: at least ordinal
- ANOVA
 - Response: at least ordinal
 - Independent variables: nominal (qualitative)

Dummy Coding

- Multiple Regression:
 - With groups
 - Create a dummy variable(s) to code the groups
 - You can use 0's and 1's
 - Model:
 - $Y=b_0 + b_1 d1 + b_2 d2 + e$

Comparing the Two Procedures

Proc Reg

data reg; input dl d2 y @@; cards; 1 1 1 1 1 3 0 0 2 0 0 4 1 0 11 1 0 15 proc reg; model y= dl d2; test dl, d2; run; Proc GLM data anova; input group y @@;cards; 1 1 1 3 2 2 2 4 3 11 3 15 proc glm; class group; model y=group; run;

Root MSE	2.0000	R-Square	0.9250
Dependent Mean	6.00000	Adj R-Sq	0.8750
Coeff Var	33.33333		
Multiple Regression			

		Parameter	Estimates		
Variable	DF	Parameter Estimate	Standard Error	t Value	Pr > t
Intercept	1	3.00000	1.41421	2.12	0.1240
d1	1	10.00000	2.00000	5.00	0.0154
d2	1	-11.00000	2.00000	-5.50	0.0118
Multiple Ro	egressio	n			

		:	y
Level of group	N	Mean	Std Dev
1	2	2.0000000	1.41421356
2	2	3.0000000	1.41421356
3	2	13.0000000	2.82842712
13-3=10 (g3 v 2-13=-11(g1 v	s g2) rs g3)		

T	est 1 Result	ts for Dependent V	ariable y	
Source	DF	Mean Square	F Value	Pr > F
Numerator	2	74.00000	18.50	0.0205
Denominator	3	4.00000		
Multiple Regressi	on			

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	2	148.0000000	74.0000000	18.50	0.0205
Error	3	12.0000000	4.000000		
Corrected Total	5	160.0000000			
ANOVA					- -

ANOVA methods require the F-distribution

- 1. The F-distribution is not symmetric; it is skewed to the right.
- 2. The values of F can be 0 or positive, they cannot be negative.
- 3. There is a different F-distribution for each pair of degrees of freedom for the numerator and denominator.

One-Way ANOVA

Assumptions

- 1. The populations have normal distributions.
- 2. The populations have the same variance σ^2 (or standard deviation σ).
- 3. The samples are simple random samples.
- 4. The samples are independent of each other.

ANOVA Statistical Logic Estimate the common value of $\sigma^{\,2}$ using

1. The variance between cells is an estimate of the common population variance σ^2 (the within variance) plus the variability among the sample means.

2. The variance within samples (also called variation due to error) is an estimate of the common population variance $\sigma^{2..}$

ANOVA Fundamental Concept Test Statistic for One-Way ANOVA

Calculations with Equal Sample Sizes

*****Variance <u>between</u> samples = $ns_{\overline{x}}^2$

Calculations with Equal Sample Sizes

Variance between samples = $ns_{\overline{x}}^2$

where $s_{\overline{x}}^2$ = variance of samples means

Calculations with Equal Sample Sizes

*****Variance <u>between</u> samples = $ns_{\overline{x}}^2$

where $s_{\overline{x}}^2$ = variance of samples means

*****Variance within samples = s_p^2

Critical Value of F

- Right-tailed test
- $\$ Degree of freedom with k samples of the same size n

numerator df = k -1

denominator df = k(n - 1)

Sums of Squares Total

SS(total), or total sum of squares, is a measure of the total variation (around $\overline{\bar{x}}$) in all the sample data combined.

$$SS(total) = \Sigma\Sigma(x - \overline{\overline{x}})^2$$

Between Sums of Squares

SS(Between) is a measure of the variation between the samples.

$$SS(Bet) = \sum n_i (\bar{x}_i - \bar{\bar{x}})^2$$

Sums of Squares

SS(total) = SS(Between) + SS(error)

Sum of Squares SS(Between) and SS(error) divided by corresponding number of degrees of freedom.

MS (Between) is mean square for treatment, obtained as follows:

Mean Squares (MS)

MS (error) is mean square for error, obtained as follows:

$$MS (error) = \frac{SS (error)}{N - k}$$

SAS Setup: One way ANOVA

data wheat; input_id variety yield moist; datalines; 10

41 1 2 1 69 57

proc glm data=wheat; class variety; model yield = variety; means variety /hovtest; run;

- The HOVTEST=BARTLETT option specifies Bartlett's test (Bartlett 1937), a modification of the normal-theory likelihood ratio test.
- The HOVTEST=BF option specifies Brown and Forsythe's variation
 of Levene's test (Brown and Forsythe 1974). Seems to be the best out of all of these, good power and good control of Type(I) error. See Olejnik and Algina, 1987.
- The HOVTEST=LEVENE option specifies Levene's test (Levene 1960), which is widely considered to be the standard homogeneity of variance test. You can use the TYPE=option in parentheses to specify whether to use the absolute residuals (TYPE=ABS) or the squared residuals (TYPE=SQUARE) in Levene's test. TYPE=SQUARE is the default.
- The HOVTEST=OBRIEN option specifies O'Brien's test (O'Brien 1979), which is basically a modification of HOVTEST=LEVENE(TYPE=SQUARE). You can use the W= option in parentheses to tune the variable to match the suspected kurotiss iof the underlying distribution. By default, W=0.5, as suggested by O'Brien (1979, 1981).

		Resu	ılts		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	9	4089.06666	454.340741	4.78	0.0001
Error	50	4756.33333	95.126667		
Corrected Total	59	8845.40000			

R-Square	Coeff Var	Root MSE	yield Mean
0.462	17.14	9.753	56.90

Lovelof		yie	ld
variety	N	Mean	Std Dev
1	6	59.500	10.559
2	6	47.000	5.4405
3	6	60.000	11.045
4	6	50.833	8.0849
5	6	64.500	6.7156
6	6	63.000	14.546
7	6	39.666	10.984
8	6	57.166	10.515
9	6	58.833	10.361
10	6	68.500	5.244

	Levene's ANOVA o	Test for Homo f Squared Devi	geneity of yield ations from Gro	Variance oup Means	
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
variety	9	116051	12894.6	1.50	0.1747
Error	50	430418	8608.4		

Post-hoc Multiple Comparisons

data wheat; input id variety yield moist; datalines; 1 1 41 10 2 1 69 57 proc glm data=wheat; class variety

Г

proc glm data=wheat; class variety; model yield = variety; means variety /hovtest; means variety / lsd waller tukey regwq; run;

Alpha	0.0
Error Degrees of Freedom	5
Error Mean Square	95.1266
Critical Value of t	2.0085
Least Significant Difference	11.3

Waller-Duca	n Test
Kratio	10
Error Degrees of Freedom	5
Error Mean Square	95.1266
F Value	4.7
Critical Value of t	2.0280
Minimum Significant Difference	11.4

	Waller Gro	uping	Mean	Ν	variety
	А		68.500	6	10
	A				
	Α		64.500	6	5
	A				
	Α		63.000	6	6
	A				
в	Α		60.000	6	3
В	A				
В	Α		59.500	6	1
в	A				
В	Α		58.833	6	9
в	A				
В	Α	С	57.167	6	8
В		С			
в	D	С	50.833	6	4
	D	С			
	D	C	47.000	6	2
	D				
	D		39.667	6	7

Alpha	0.0:
Error Degrees of Freedom	50
Error Mean Square	95.1266
Critical Value of Studentized Range	4.68144
Minimum Significant Difference	18.64

	REGWQ Grouping	Mean	N	variety
	А	68 500	6	10
	A			
В	A	64.500	6	5
В	A			
В	Α	63.000	6	6
В	A			
В	A	60.000	6	3
В	A			
В	A	59.500	6	1
В	A			
В	A	58.833	6	9
В	A			
В	A	57.167	6	8
В	Α			
В	A	50.833	6	4
В		2		
В		47.000	6	2
		2		
		39.667	6	7

Planned and Post-hoc Comparisons

- Post-hoc comparisons should be conducted when there are no specific hypotheses about the means.
 – Regwq (Ryan's)
- Planned comparisons should be conducted when there are specific hypotheses about the means.
 Contrast statement
 - Contrast statement
 - Estimate statement

Estimate Statement data wheat; input id variety yield moist; datalines; 1 41 10 1 57 2 1 69 proc glm data=wheat; class variety; model yield = variety; means variety /hovtest; means variety / lsd waller tukey regwq; estimate 'one vs three' variety 1 0 $\neg 1$ 0 0 0 0 0 0; run;

	Est	imate		
Parameter	Estimate	Standard Error	t Value	Pr > t
one vs three	-0.50000000	5.63106463	-0.09	0.9296

Bonferroni Inequality

• The Bonferrroni inequality provides a way to control for the overall probability of Type One Error:

$$\alpha_s \le P(I) \le \sum \alpha_i$$

$$y_{ij} = \mu + \alpha_j + e_{ij}$$

Or

$$y_{ij} = \mu_{ij} + e_{ij}$$

- Involves two nominal factors
- Partitions data into subcategories called cells

Factors

- Factors can be:
 - Fixed: inference valid only to levels present in the design.
 - Random: inference valid to the population of levels.
- Factors can also be
 - Crossed
 - nested

A	1	А	2
B1	B2	B3	B4

Model for a Two-way ANOVA $y_{ijk} = \mu + \alpha_j + \beta_k + \alpha \beta_{jk} + e_{ijk}$

Assumptions

- 1. For each cell, the sample values come from a population with a distribution that is approximately normal.
- 2. The populations have the same variance.
- 3. The samples are simple random samples.

Definition

There is an interaction between two factors if the effect of one of the factors changes for different categories of the other factor.

	0	verall Mo	del Results		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	1339.024889	95.644635	4.87	<.0001
Error	75	1473.766667	19.650222		
Corrected Total	89	2812.791556			

Т	wo-	way ANG	OVA Resul	ts	
Source	DF	Type I SS	Mean Square	F Value	Pr > F
method	2	953.1562222	476.5781111	24.25	<.0001
variety	4	11.3804444	2.8451111	0.14	0.9648
method*variety	8	374.4882222	46.8110278	2.38	0.0241

	Effe	ct Size	
R-Square	Coeff Var	Root MSE	yield Mean
0.476048	24.04225	4.432857	18.43778

Source	D F	Sum of Squares	Mean Square	F Value	Pr >
			•		
Model	14	1339.0248	95.644635	4.87	.000
Error	75	1473.7666	19.650222		
Corrected	89	2812.7915			

Brown and Forsythe's Lest for Homogeneity of yield variance ANOVA of Absolute Deviations from Group Medians						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
trt	14	92.4716	6.6051	0.88	0.5862	
Error	75	565.0	7.5339			

Variety 1					
Source	D F	Sum of Squares	Mean Square	F Value	Pr> F
Model	2	134.00111	67.0005556	3.11	0.074
Error	15	323.25000	21.5500000		
Corrected Total	17	457.25111			

Means with the same di	letter are no fferent.	ot signif	ficantly	Variety 1
REGWQ Grouping	Mean	N	method	
А	21.767	6	a	
А				
A	18.417	6	с	
А				
A	15.083	6	b	

method*variety Effect Sliced by variety for yield							
variety	DF	Sum of Squares	Mean Square	F Value	Pr > F		
1	2	134.0011	67.000556	3.41	0.038		
2	2	138.9033	69.451667	3.53	0.034		
3	2	192.7033	96.351667	4.90	0.010		
4	2	562.293333	281.146667	14.31	<.0001		
5	2	299.743333	149.871667	7.63	0.0010		

Table of Means						
		V1	V2	V3	V4	v5
{	A1	21.76	21.85	23.13	25.96	22.33
	A2	15.08	15.23	15.45	13.50	19.21
	A3	18.41	19.91	17.31	14.83	12.55

Executing the Planned Comparisons: Two-way ANOVA

class method variety; model yield= method variety method*variety; estimate 'method a vs methods b & c' method 2 -1 -1; /* The ordering of the table is determine by the class statement */ estimate 'vl vs v2 within al' variety 1 -1 0 0 0 method*variety 1 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0; estimate 'al vs a3 within vl' method 1 0 -1 method*variety 1 0 0 0 0 0 0 0 0 0 -1 0 0 0 0; run;

Planned Comparisons Standard Parameter Estimate Error t Value Pr > |t|13.71666 1.982433 <.0001 method a vs methods b & c 6.92 -0.0833333 2.559311 0.9741 v1 vs v2 within a1 -0.03 a1 vs a3 within v1 3.350000 2.559311 0.1945 1.31

Special Case: One Observation Per Cell and <u>No</u> Interaction

- When you have only one observation per cell the interaction effect can not be calculated.
- If it seems reasonable to assume (based on knowledge about the circumstances) that there is no interaction between the two factors, make the assumption and then proceed with a two-way anova with no interaction.