

Models

- Multiple Regression
- Response: at least ordinal
- Independent variables: at least ordinal
- ANOVA
- Response: at least ordinal
- Independent variables: nominal (qualitative)

Dummy Coding

- Multiple Regression:
- With groups
- Create a dummy variable(s) to code the groups
- You can use 0's and 1's
- Model:
- $\mathrm{Y}=\mathrm{b}_{\mathrm{o}}+\mathrm{b}_{1} \mathrm{~d} 1+\mathrm{b}_{2} \mathrm{~d} 2+\mathrm{e}$

Comparing the Two Procedures

Proc Reg

data reg; input d1 d2 y @@; cards;
$\begin{array}{llllll}1 & 1 & 1 & 1 & 3\end{array}$
$\begin{array}{llllll}0 & 0 & 2 & 0 & 0 & 4\end{array}$
proc reg; model $y=d 1$ d2;
test d1, d2; run;
Proc GLM
data anova; input group y @@;cards;
1113
2224
$\begin{array}{llll}3 & 11 & 3 & 15\end{array}$
proc glm; class group; model y=group; run;

ANOVA methods require the F-distribution

1. The F-distribution is not symmetric; it is skewed to the right.
2. The values of F can be 0 or positive, they cannot be negative.
3. There is a different F-distribution for each pair of degrees of freedom for the numerator and denominator.

ANOVA Statistical Logic

Estimate the common value of σ^{2} using

1. The is an estimate of the common population variance σ^{2} (the within variance) plus the variability among the sample means.
2. The
(also called) is an estimate of the common population variance $\sigma^{2 .}$

ANOVA Fundamental Concept

$$
F=\frac{\text { variance }}{\text { variance }}
$$

One-Way ANOVA

1. The populations have normal distributions.
2. The populations have the same variance σ^{2} (or standard deviation σ).
3. The samples are simple random samples.
4. The samples are independent of each other.

ANOVA Fundamental Concept

ANOVA Fundamental Concept

A excessively $\quad F$ test statistic is evidence against equal population means.

Calculations with Equal Sample Sizes
Variance between samples $=\boldsymbol{n s} s_{\bar{x}}^{2}$

Calculations with Equal Sample Sizes

* Variance between samples $=\boldsymbol{n} \boldsymbol{s}_{\overline{\mathbf{x}}}^{2}$
where $s_{\overline{\mathrm{x}}}^{2}=$ variance of samples means

Calculations with Equal Sample Sizes

$\%$ Variance between samples $=\boldsymbol{n} \boldsymbol{s}_{\overline{\mathbf{x}}}^{2}$
where $s_{\mathrm{x}}^{2}=$ variance of samples means
$\%$ Variance within samples $=s_{\mathrm{p}}^{2}$

Critical Value of F

```
*Right-tailed test
*Degree of freedom with \(\mathbf{k}\) samples of the same size \(n\)
\[
\begin{aligned}
& \text { numerator } d f=k-1 \\
& \text { denominator } d f=k(n-1)
\end{aligned}
\]
```


Sums of Squares Total

SS(total), or total sum of squares, is a measure of the total variation (around $\overline{\mathbf{x}}$) in all the sample data combined.

$$
S S(\text { total })=\Sigma \Sigma(x-\overline{\bar{x}})^{2}
$$

Between Sums of Squares

SS (Between) is a measure of the variation between the samples.

$$
S S(B e t)=\Sigma n_{i}\left(\bar{x}_{i}-\overline{\bar{x}}\right)^{2}
$$

Sums of Squares Error

SS(error) is a sum of squares representing the variability that is assumed to be common to all the populations being considered.

$$
\begin{aligned}
\operatorname{SS}(\text { error }) & =\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}+\left(n_{3}-1\right) s_{3}^{2} \ldots n_{k}\left(x_{k}-1\right) s_{i}^{2} \\
& =\Sigma\left(n_{i}-1\right) s_{i}^{2}
\end{aligned}
$$

Mean Squares (MS)

Sum of Squares SS(Between) and SS(error) divided by corresponding number of degrees of freedom.

MS (Between) is mean square for treatment, obtained as follows:

Mean Squares (MS)

MS (error) is mean square for error, obtained as follows:

Sums of Squares

$$
\text { SS(total) }=\mathbf{S S}(\text { Between })+\mathbf{S S}(\text { error })
$$

Mean Squares (MS)

Sum of Squares SS(Between) and SS(error) divided by corresponding number of degrees of freedom.

MS (Between) is mean square for treatment, obtained as follows:

$$
\mathbf{M S B}=\frac{\text { SS (Between) }}{k-1}
$$

Mean Squares (MS)
MS (error) is mean square for error, obtained
as follows:

Mean Squares (MS)

MS (error) is mean square for error, obtained as follows:

$$
\mathbf{M S}(\text { error })=\frac{\mathbf{S S} \text { (error) }}{\mathbf{N}-\mathbf{k}}
$$

SAS Setup: One way ANOVA

data wheat;
input id variety yield moist;
datalines;

1	1	41	10
2	1	69	57

proc glm data=wheat; class variety;
model yield = variety;
means variety /hovtest;
run;

The HOVTEST=BARTLETT option specifies Bartlett's test (Bartlett 1937), a modification of the normal-theory likelihood ratio test.

- The HOVTEST=BF option specifies Brown and Forsythe's variation of Levene's test (Brown and Forsythe 1974). Seems to be the best out of all of these, good power and good control of Type(I) error. See Olejnik and Algina, 1987.
- The HOVTEST=LEVENE option specifies Levene's test (Levene 1960), which is widely considered to be the standard homogeneity of variance test. You can use the TYPE=ABS) o the squed (TYPE =SQUARE) in Leves TYPE=SQUARE is the default
- The HOVTEST=OBRIEN option specifies O'Brien's test (O'Brien 1979), which is basically a modification of HOVTEST=LEVENE(TYPE=SQUARE). You can use the $\mathrm{W}=$ option in parentheses to tune the variable to match the suspected kurtosis of the underlying distribution. By default, $\mathrm{W}=0.5$, as suggested by O^{\prime} Brien $(1979,1981)$.

Post-hoc Multiple Comparisons

data wheat;
input id variety yield moist;
datalines;

1	1	41	10
2	1	69	57

proc glm data=wheat; class variety;
model yield = variety;
means variety /hovtest;
means variety / lsd waller tukey regwq;
run;

Planned and Post-hoc Comparisons

- Post-hoc comparisons should be conducted when there are no specific hypotheses about the means. - Regwq (Ryan's)
- Planned comparisons should be conducted when there are specific hypotheses about the means.
- Contrast statement
- Estimate statement

Estimate Statement

data wheat;
input id variety yield moist;
datalines;

1	1	41	10
2	1	69	57

proc glm data=wheat; class variety;
model yield = variety;
means variety /hovtest;
means variety / lsd waller tukey regwq;
estimate 'one vs three' variety $10-10000000 ;$
run;

Bonferroni Inequality

- The Bonferrroni inequality provides a way to control for the overall probability of Type One Error:

$$
\alpha_{s} \leq P(I) \leq \sum \alpha_{i}
$$

$$
\begin{aligned}
& \text { ANOVA Model } \\
& y_{i j}=\mu+\alpha_{j}+e_{i j}
\end{aligned}
$$

Or

$$
y_{i j}=\mu_{i j}+e_{i j}
$$

Two-Way Analysis of Variance Involves two nominal factors

Partitions data into subcategories called cells

Factors

- Factors can be:
- Fixed: inference valid only to levels present in the design.
- Random: inference valid to the population of levels.
- Factors can also be
- Crossed
- nested

We can test for interaction.

Model for a Two-way ANOVA

$$
y_{i j k}=\mu+\alpha_{j}+\beta_{k}+\alpha \beta_{j k}+e_{i j k}
$$

Assumptions

1. For each cell, the sample values come from a population with a distribution that is approximately normal.
2. The populations have the same variance.
3. The samples are simple random samples.

Definition

There is an interaction between two factors if the effect of one of the factors changes for different categories of the other factor.

Simple Main Effects

- When the two-way interaction is significant we generally do not interpret the main effects.
- Instead of interpreting the main, we divide the two-way ANOVA into one-way ANOVA'S- these one-way anova's are called simple main effects.

Consider the Grass by Method

ANOVA
By Method

Simple Main Effects by Method

SAS Setup: Two-way ANOVA d (Data from Little, Stroup, Fruend, 2002)

- proc glm data=factorial;
- class method variety;
- model yield= method variety method*variety;
- run;
- proc means data=factorial noprint;
- by method variety;
- output out=factmean mean=yldmean;
- run;

Interaction

- proc plot data=factmean;
- plot yldmean*variety=method;run;

	Overall Model Results				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	14	1339.024889	95.644635	4.87	$<.0001$
Error	75	1473.766667	19.650222		
Corrected Total	89	2812.791556			

	Two-way ANOVA Results				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
method	2	953.1562222	476.5781111	24.25	$<.0001$
variety	4	11.3804444	2.8451111	0.14	0.9648
method*variety	8	374.4882222	46.8110278	2.38	0.0241

Using SAS's by Statement

- We can use the SAS's by statement to obtain simple main effects proc sort data= ; by rows; proc glm; class column; model $\mathrm{y}=$ column; means column / regwq; by rows; run;

Using the "by" statement to obtain simple main effect by variety

- proc sort data=factorial; by variety;
- proc glm; class method;
- model yield=method;

Simple

- means method / regwq; $\} \quad \begin{aligned} & \text { Main } \\ & \text { Effect }\end{aligned}$
- by variety; run;

Not a very powerful approach

Homogeneity Test on the TwoWay ANOVA

```
proc glm data=factorial;
class trt;
model yield=trt;
means trt /hovtest=bf regwq;
run;
proc glm data=factorial
class method variety;
model yield= method variety method*variety;
run;
```

Treating the Two-way as a One-way

Source	D F	Sum of Squares	Mean Square	F Value	Pr $>$ F
Model	14	1339.0248	95.644635	4.87	.0001
Error	75	1473.7666	19.650222		
Corrected Total	89	2812.7915			

Simple Main Effects: Using the Slice Statement within Lsmeans

proc glm data=factorial;
class method variety;
model yield=method|variety;
means method variety / regwq;

* lsmeans method*variety/slice=variety cl pdiff adjust=tukey; */
Lsmeans method*variety/slice=variety;
run;


```
Executing the Planned Comparisons: Two-way ANOVA
proc glm data=factorial;
class method variety;
model yield= method variety method*variety;
estimate 'method a vs methods b \& c ' method 2 -1 -1;
/* The ordering of the table is determine by the class statement */
estimate 'v1 vs v2 within al' variety 1 -1 0000
method*variety 1 -1 00000000
00000 ;
estimate 'al vs a3 within v1' method \(10-1\)
method*variety 1000000000
-1 00000 ;
run;
```


Special Case:
 One Observation Per Cell

* When you have only one observation per cell the interaction effect can not be calculated.
\& If it seems reasonable to assume (based on knowledge about the circumstances) that there is no interaction between the two factors, make the assumption and then proceed with a two-way anova with no interaction.

