Regression and Correlation

Finding the line that fits the data

Least Squares Criterion

Find "a" and "b" such that the sum of squares error is the smallest it can be.

$$\min = \sum_{i=1}^{n} e_i^2$$

The line that minimizes the sum of squares error is the best line.

The Best Line

$$b = \frac{n\sum xy - (\sum x)(\sum y)}{n\sum x^2 - (\sum x)^2}$$

$$a = \overline{y} - b\overline{x}$$

Х	Y	XY	X ²	Y ²
4	6	24	16	36
6	12	72	36	144
8	14	112	64	196
11	10	110	121	100
12	17	204	144	289
14	16	224	196	256
16	13	208	256	169
17	16	272	289	256
20	19	380	400	361
Σx=108	Σy=123	Σxy=1606	$\Sigma x^2 = 1522$	Σy ² =1807

Using the Regression Line

- When using a regression equation for prediction stay within the range of the available data.
- Don't make predictions about a population that is different from the population from which the sample were drawn.
- A regression equation based on old data may be no longer valid.

Correlation

- Tells you how well the line fits the data.
- The correlation ranges from -1 to 1.
- A negative correlation has a negative regression line (slope).
- A correlation of 1 (or -1) indicates a perfect fit between the line and the data.
- A correlation of zero indicates a very poor fit.

Correlation and Regression The regression line is the line that best fits the data: ŷ = a + bx The correlation tells us how well the regression line fits the data, r. The relationship between the correlation and the slope of the regression line is given by r = b Sx/Sy

•	Australia	0.500	76.5
•	Canada	0.588	76.5
•	China	0.125	70
•	Egypt	0.067	60.5
•	France	0.385	78
•	Haiti	0.004	53.5
•	Iraq	0.056	67
•	Japan	0.556	79
•	Madaga	0.011	52.5
•	Mexico	0.152	72
•	Morocco	0.048	64.5
•	Pakistan	0.014	56.5
•	Russia	0.313	69
•	South Afr	0.091	64
•	Sri Lanka	0.036	71.5
•	Uganda	0.005	51
•	United K	0.333	76
•	United S	0.769	75.5
•	Vietnam	0.034	65
		0.000	FO
•	Yemen	0.026	50

	Analysis	of Variance	(tv	vs	log	of	life	expec	ctan	ev)		
•	-							-		<u> </u>		
:							Sum of		Mean			
		Source			DE		oquares	-	quare	2 44	Lue	11 / 1
•		Model			1	143	4.87186	1434.	87186	79.	.53	<.0001
•		Error			18	32	4.76564	18.	04254			
•		Corrected To	tal		19	175	9.63750					
:												
			Root M	SE			4.24765	R-Squa	re	0.8154	(r=.	90)
•			Depend	ent M	ean	6	6.42500	Adj R-	Sq	0.8052		
•			Coeff	Var			6.39466					
					P	arane	ter Esti	mates				
•					Para	neter	5	tandard				
•		Variable	e D	F	Esti	imate		Error	t Va	lue I	Pr >	Itl
:		Interce	nt .	1	79.5	89222		1 78401	44	78	< 0	001
		tvl		1	5.3	36272		0.60135	8	. 92	<.0	001
					0	110	0					
					3	AS	Out	out				
							-					

$$\frac{b_i}{\sqrt{v(b_i)}} \sim t_{n-2}$$

Confidence Interval

$$b_i \pm t_{\alpha/2,n-2} * \sqrt{v(b_i)}$$

Variance Partitioning

 Just as in ANOVA, we can partition variability as follows: SST=SSR+SSE

$$SST = \sum (y_i - \overline{y})^2$$
$$SSR = \sum (\hat{y}_i - \overline{y})^2$$
$$SSE = \sum (y_i - \hat{y}_i)^2$$

Coefficient of Determination

- R²=1-(SSE/SST)=SSR/SST
- The proportional reduction in error from using the linear prediction equation (the variable) instead of the mean (of y) is called the coefficient of determination.

Factors Affecting the Correlation

- Correlation is not causation
- Combined Groups
- Outliers
- Restriction in range
- By the way the correlation is invariant under linear transformation

Testing Hypothesis about the Population Correlation

• Two procedures

- When the Null involves zero
- Based on the t test
- When the Null involves a value other than zero
 - A z test on the transformed correlation

Assumptions for Test of Hypotheses

- X is normally distributed (or fixed)
- The conditional distribution of y given x is normal. (x and y follow a bivariate normal distribution)

Testing a hypothesis about the population correlation

 $Ho: \rho = 0$ $Ha: \rho \neq 0$

The test is based on the t-test.

By the way, note that if r=0, then b=0.

An Example

• Suppose that we are interested in testing the claim that there is a linear relationship (correlation) between height at birth and adult height for females. If we can consider our previous sample to be a random sample from the population of American women, we can conduct the test using the data. Recall that r=.472, and n=27. Set alpha at .05

Solution

$$Ho: \rho = 0$$
$$Ha: \rho \neq 0$$

To test the claim we look a t-table, computer output, or a table of correlations. To use this table, we need to know the sample size and to find the critical value. Here n=27. For a two-tail test (with n=25) the critical value is \pm .396. Because r(=.472) is larger than .396, we reject the Null. The data support the claim that there is a relationship between height at birth and adult height.

Testing the Hypothesis that ρ is other than zero.

• If we want to test the hypothesis that the population correlation is other than zero, we must use Fisher's r to z transformation,

$$z_r = \frac{1}{2} \ln \left(\frac{1+r}{1-r} \right)$$

We can obtain the z transformation using a calculator or a table.

- Suppose that we are interested in testing the Null hypothesis that $\rho \leq .3$.
- Against the alternative that $\rho > .3$
- Let's consider our class data again: r=.472, n=27. Again, set alpha at the .05 level.
- Note that this is a one-tail test.

Spearman's Rank Order

Correlation

Rank Correlation

- uses the ranks of sample data and it is more forgiving than Pearson's r.
- used to test for an association between two variables
- H_o: ρ_s = 0 (There is no correlation between the two variables.)
- * H₁: ρ_s ≠ 0 (There is a correlation between the two variables.)

Assumptions

- 1. The sample data have been randomly selected.
- 2. Unlike the parametric methods of, there is no requirement that the data follows a bivariate normal distribution. There is no requirement of a normality at all.

Advantages

- 1. The nonparametric method of rank correlation can be used in a wider variety of circumstances than the parametric method of linear correlation. With rank correlation, we can analyze paired data that are ranks (ordinal) or can be converted to ranks.
- 2. Rank correlation can be used to detect some (not all) relationships that are not linear.

Notation

- r_s = rank correlation coefficient for sample paired data (r_s is a sample statistic)
- $\rho_s = \mbox{ rank correlation coefficient for all the population} \\ \mbox{ data } (\rho_s \mbox{ is a population parameter})$
- n = number of pairs of data
- d = difference between ranks for the two values within a pair

Test Statistic for the Rank Correlation Coefficient

Test Statistic for the Rank Correlation Coefficient

$$r_s = 1 - \frac{6 \sum d^2}{n(n^2 - 1)}$$

where each value of d is a difference between the ranks for a pair of sample data

Critical values

- If n ≤ 30, refer to a Table for Rank Order correlation
- If n > 30, use the Z-approximation

Critical Value for Spearman's Rank correlation when N>30

$$r_s = \frac{t_Z}{\sqrt{n-1}}$$

where the value of z corresponds to the significant level from the normal table

-	PRICE	CARAT	COLOR
	6958	1	3
	5885	1	5
	6333	1.01	4
	4299	1.01	5
	9589	1.02	2
	6921	1.04	4
The Drice	4426	1.04	5
The Price	6885	1.07	4
ofa	5826	1.07	5
	3670	1.11	9
Diamond	7176	1.12	2
	7497	1.16	5
	5170	1.2	6
	5547	1.23	7
	18596	1.25	1
	7521	1.29	6
	7260	1.5	6
	8139	1.51	6
	12196	1.67	3
	14998	1.72	4
	9736	1.76	8
	9859	1.8	5
	12398	1.88	6
	25322	2.03	2
	11008	2.03	8
	38794	2.06	2
	66780	3	1
	46769	4.01	3
	28800	4.01	6
	28868	4.05	7

Rank Correlation

• Spearman's rank correlation between carat (weight) and price:

r=.83, cv= \pm .364

• Sperman's rank correlation between price and color:

 $r=.-.33, cv=\pm ..364$

Applying the Rank Correlation to the tv example.

Spearman Correlation=0.8830, ASE=0.0385 Recall that the correlation without the transformation was r=.77.

And with the transformation it was r=.90 transformation.

SAS Setup for Spearman's r:
proc freq data=life;
tables tv*lexp / chisq measures;run;

Other Relations that can be examined with the correlation

- With the correlation you can examine:
 - 1. Y=a + b x
 - 2. Y=a e^{bx} , transform y by taking the Log(y) Log(y)=Log(a) + b x
 - 3. Y=a+b Log(x)
 - 4. $Y=a x^b$, take the Log of both y and x
 - 5. $Y = a + b x^2$, put x^2 in the dataset