Three-way ANOVA

Divide and conquer

General Guidelines for Dealing with a 3-way ANOVA

- · ABC is significant:
 - Do not interpret the main effects or the 2-way interactions.
 - Divide the 3-way analysis into 2-way analyses. For example, you may conduct a 2way analysis (AB) at each level of C.
 - Follow up the two-way analyses and interpret them.
 - Of course, you could repeat the procedure for, say, the AC interaction at different levels of B.

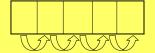
Three-way ANOVA

- ABC is NOT significant, but all of the 2way interactions (AB, AC, & BC) are significant:
 - You may follow up and interpret the two way interactions, but not the main effects.
 - Plot the AB interaction ignoring C to interpret it. You could also compare the means on the AB-table using post-hoc (or planned) comparisons.
 - You may repeat the procedure for the AC and BC interactions.

Three-way ANOVA

- ABC is not significant
- · AB is not significant
- · AC is not significant
- · BC is significant
- A is significant

You can follow up interpret the BC interaction and the A main effect.


Three-way ANOVA

- · ABC is not significant
- · AB is not significant
- · AC is not significant
- · BC is not significant
- · A is significant
- · B is significant
- · C is not significant

You can follow up and interpret the A and B main effects.

Repeated Measures Designs

 Simple repeated Measures Design: Uses the same subjects in all conditions.

Simple Repeated Measures Design

- The observations are not independent over conditions.
- It is an extension of the correlated (or paired) t-test.
- This analysis is also called a Within Design

SAS Setup for a Simple Repeated Measures Design

data repeated; input ss y1-y3; cards;

1 22 24 19 10 18 17 23

proc print; run; proc means;run;

proc glm; model y1-y3= / nouni;

repeated repfact 3; run;

Means and Standard Dev.

	Variable	N	Mean	Std Dev	Minimum	Maximum
	SS	10	5.500	3.0276	1.00	10.00
	yl	10	17.500	2.798	11.00	22.00
	y2	10	18.900	2.685	15.00	24.00
Į	y3	10	22.400	2.221	19.00	26.00

Multivariate Tests

Manova Test Criteria and Exact F Statistics for the Hypothesis of no repfact Effect
H = Type III SSCP Matrix for repfact
E = Error SSCP Matrix

S=1 M=0 N=3									
Statistic	Value	F Value	Num DF	Den DF	Pr > F				
Wilks' Lambda	0.421	5.49	2	8	0.0315				
Pillai's Trace	0.578	5.49	2	8	0.0315				
Hotelling-Lawley Trace	1.373	5.49	2	8	0.0315				
Roy's Greatest Root	1.373	5.49	2	8	0.0315				

The circularity assumption is not needed for the multivariate tests to be valid.

						Adj Pr > F	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	G-G	H - F
repfact	2	127.40	63.70	8.00	0.0033	0.0052	0.0033
Error(repfact)	18	143.26	7.95				

Circularity Assumption is Met when epsilon is one

Greenhouse-Geisser Epsilon	0.8712
Huynh-Feldt Epsilon	1.0626

Epsilon

 Epsilon is a (sample) measure of how well the circularity assumption has been met. It ranges from

$$1/df_{rep} \le \epsilon \le 1$$
.

In our previous example, the range is

$$1/2 \le \epsilon \le 1$$
.

When epsilon is one, the circularity assumption has been met. If epsilon is $1/df_{rep}$, circularity has been violated in a bad way.

More on Epsilon

- If epsilon is not one, the usual univariate F-test must be adjusted.
- When considering the univariate F-test we have three possibilities for adjusting the degrees of freedom:
 - Usual
 - Conservative
 - Adjusted

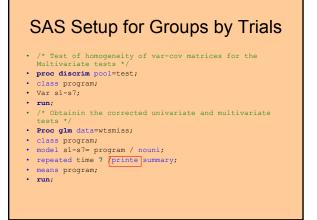
Adjusting the df's in the Univariate F-tests

- · Usual F-test: use the usual dfs
 - a-1=2; (a-1)(s-1)=2*9=18;
 - df's=2,18
- Conservative F-test (assume that ε=.5)
 - Then the df's are 1 and 9.
 - F_{.05,2,18}=3.55 F_{.05,1,9}=5.12
- Epsilon corrected F-tests
 - Compute the sample epsilon and multiplied the dfs by this estimate.

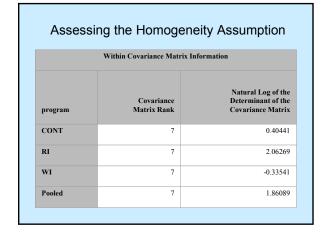
Which Test is Best?

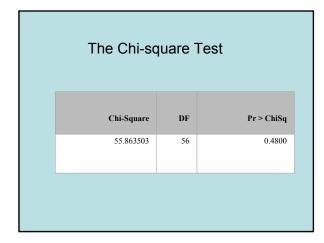
- Multivariate test makes less assumptions but it is not always more powerful.
- The e-adjusted test is a good alternative and can be more powerful than the multivariate tests.
- Ordinarily we look at both tests. If both of them are significant, then report the one.
- Never rely on the usual univariate F-test.

Two-way ANOVA One Within and One Between

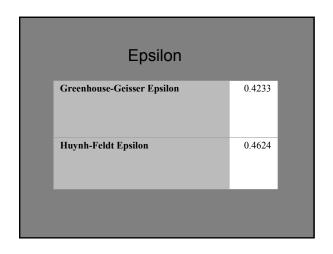

- Lets say B is the within factor
- · And that A is the between factor

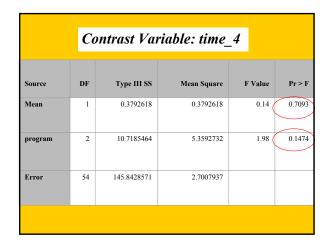
	B ₁	B ₂	B ₃	B ₄
A ₁	s ₁		D (1	
	s _{n1}			<i>₹</i> >
A ₂	S _{n1+1}			
	s _{n2}			


F-test for the Groups by trials


Source	df	F-test
А	(a-1)	
S/A (error for A)	(n-1)a	
В	(b-1)	
B*A	(b-1)(a-1)	
B*S/A (error for B and B*A)	(b-1)(s-1)a	

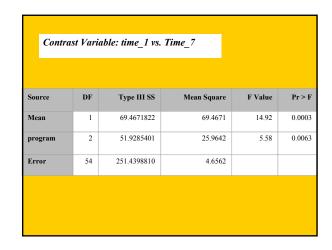
Weight Training Data input subj program\$ s1 s2 s3 s4 s5 s6 s7; datalines; CONT 85 85 86 85 80 79 79 79 77 84 84 85 84 80 81 80 80 76 78 77 78 79 79 80 79 76 76 76 75 77 78 78 78 79 CONT 78 78 76 77 CONT CONT CONT 79 79 80 CONT 74 CONT CONT

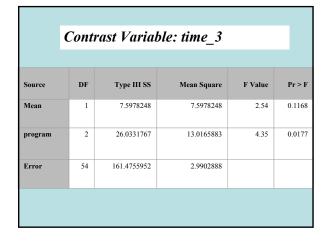

Looking at the "Programs" - /* Running the simple main effect tests on the programs*/ - proc glm data=wtsmiss; - class program; - model s1-s7= program; - means program /tukey; - run;

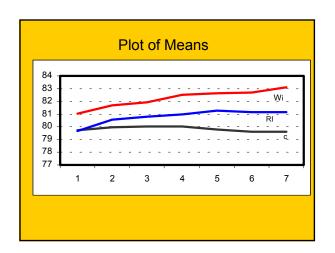


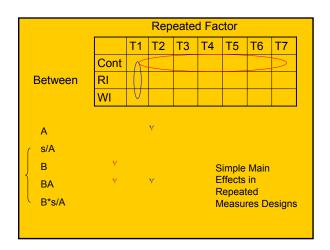
Interaction Effect Manova Test for the Hypothesis of no Time*program Effect H = Type III SSCP Matrix for time*program E = Error SSCP Matrix S=2 M=1.5 N=23.5										
Statistic	Value	F Value	Num DF	Den DF	Pr > F					
Wilks' Lambda	0.7316	1.38	12	98	0.1880					
Pillai's Trace	0.2818	1.37	12	100	0.1943					
Hotelling-Lawley Trace	0.3481	1.40	12	73.199	0.1847					
Roy's Greatest Root	0.2825	2.35	6	50	0.0442					

Time Effect Manova Test Criteria and Exact F Statistics for the Hypothesis of no time Effect H = Type III SSCP Matrix for time E = Error SSCP Matrix S=1 M=2 N=23.5								
Statistic	Value	F Value	Num DF	Den DF	Pr > F			
Wilks' Lambda	0.5584	6.46	6	49	<.0001			
Pillai's Trace	0.4415	6.46	6	49	<.0001			
Hotelling-Lawley Trace	0.7905	6.46	6	49	<.0001			
Roy's Greatest Root	0.7905	6.46	6	49	<.0001			


Test of Circularity for the Repeated Factor								
Sphericity Tests								
Variables	DF	Mauchly's Criterion	Chi-Square	Pr > ChiSq				
Transformed Variates	20	0.0009992	357.70745	<.0001				
Orthogonal Components	20	0.0403737	166.18471	<.0001				


Univariate Analysis: The Between Effect								
Source	DF	Type III SS	Mean Square	F Value	Pr > F			
program	2	419.435	209.717631	3.07	0.0548			
Error	54	3694.690	68.420186					
			1					


Univariate Tests: Time & Interaction										
						Adj P	r > F			
Source	D F	Type III SS	Mean Square	F Value	Pr>	G-G	H - F			
time	6	53.3542	8.8923	7.43	.0001	.0003	.0002			
time*program	12	43.0002	3.5833	2.99	.0005	.0130	.0104			
Error(time)	32 4	387.7867	1.1968							


Program Effect									
Source	DF	Type III SS	Mean Square	F Value	Pr > F				
program	2	419.435262	209.717631	3.07	0.0548				
Error	54	3694.690051	68.420186						

Contrast Variable: time_2 vs. Time_7					
Source	DF	Type III SS	Mean Square	F Value	Pr > F
Mean	1	16.8194570	16.8194570	3.50	0.0669
program	2	32.4047306	16.2023653	3.37	0.0418
Error	54	259.6303571	4.8079696		
		-		<u> </u>	

Simple Main Effect with Repeated Factors

- When going across the repeated factor at a level of the between factor: Use the error term for the repeated factor.
- When going across the between factor at a level of the within factor: Pool the between and within error terms.

$$MS_p = \frac{SS_{s/A} + SS_{Bs/A}}{df_{s/A} + df_{Bs/A}}$$