D. ananassae a member of the melanogaster species group, is highly polymorphic due to inversions in its natural populations (Kikkawa 1938; Dobzhansky and Dreyfus 1943; Freire-Maia 1960; Ray-Chaudhuri and Jha 1965 and Futch 1966). We are reporting, herewith, for the first time, a new pericentric inversion on the second chromosome of D. ananassae from its Bahadurpur population. Bahadurpur is a sparsely situated village within a dense forested area known as Samtha forest in the State of Bihar. Breakage points in this inversion were determined from the reference map prepared by Ray-Chaudhuri and Jha (1965). One of the breaks has occurred in region 14A of II L and other in 7B of II R as shown above. Freire-Maia (1960) and Futch (1966) respectively reported pericentric inversions on the second chromosome of D. ananassae from Brazil and South pacific islands. Our report is a new one in that its breakage points are located on the regions different from those reported by them.

Recent experiments with lethal 1^3DES, a suppression of which was described in DIS 46, 131, had revealed that the suppression of forked was not induced simultaneously with the suppression of the lethal, but was associated with the lethal 3DES originally. This is in accord with A. Schalet’s findings in mapping the proximal X chromosome region (DIS 46, 131). However, the reversion of the lethal does not cause reversion of su-f. The revertant flies still show suppression of forked. Therefore it seems necessary to call the new suppressor su-1^3DES and not su-fv as was suggested before. All features of the suppressor which were described previously still hold. To this may be added that the suppressor seems to be a Y suppressed lethal as XO males are inviable and homozygous females 1^3DES, su-1^3DES with a Y chromosome are viable, although sterile. The independent reversion may be interpreted to mean that 1^3DES covers more than the su-f locus only, or that there is more than one function associated with su-f which can be separated from it.