tope incorporation into total protein and into antibody-precipitable yolk protein by means of liquid scintillation counting, both directly and after gel electrophoresis. The results demonstrated that the fat body from females was able to synthesize and release into the culture medium several proteins, two of which (one major and one minor) were yolk proteins (Table 1, Figure 1a). Only fat body showed detectable synthesis of yolk proteins. Using fat body from newly emerged female flies (3 day old) we found that only one yolk protein was produced. The other yolk protein appeared during or near adult maturation (Figure 1b). The exact time of its synthesis has not been determined as yet. Fat body from males produces only small quantities of the major yolk protein (Figure 1c, d). From these results it is clear that the yolk proteins in Drosophila species are synthesized in the fat body, released in the hemolymph and taken up by the oocytes, by juvenile hormone (Kambysellis and Heed, 1974). (Supported by NSF Research Grants GB-29288 and GB-34168.)


A preliminary experiment (Woodruff and Bortolozzi, 1973) suggested that the absence of light may increase the frequency of spontaneous sex-linked lethal mutations in D. melanogaster. To test this hypothesis, the following experiment was performed.

Untreated Oregon-RC males 3 days old were pair mated with FM7, y31d w; 1z v B/sc10-l virgin females on standard corn meal medium. These matings were divided in two groups. One group (light) was kept under standard laboratory conditions in the light for about nine hours in 24 hours and the other group (dark) was kept in the dark for the entire experiment.

The F1 FM7/Oregon-RC virgin females were backcrossed with FM7 males and F2 offspring were scored for the absence of Oregon-RC males. The results of this experiment are summarized in Table 1.

The analysis of Table 1 shows that the frequency of lethal mutations in the dark is significantly higher at the 1% level (Stevens, 1942) than the frequency in the light. The reasons for this increase in spontaneous mutations are unknown. We are currently performing complementation tests with all of the lethal mutations recovered in this experiment. This will enable us to determine if any lethals belong in clusters and to determine if nondisjunction is involved.

It is of interest to speculate that D. melanogaster may have a light dependent repair system. In the dark, this system would be inoperative and would lead to an increase in the frequency of unrepaired mutations. This possibility is being currently investigated.


The senior author was supported by Fundação de Amparo à Pesquisa do Estado de São Paulo, Brazil.