lead necessarily to a simultaneous variation of ethanol and water contents in the tested air
flow. Since in these experiments flies had to choose between this air flow and a control
saturated with water, the authors actually measured some interaction between the response of
flies towards ethanol and their response towards humidity. High concentrations of ethanol
probably act as air dessicators, which could explain the observed repulsion.

Choice experiments can also be carried out with this olfactometer: by adjusting pump
inputs and fitting two traps to each box, flies can be given a choice either between two
different concentrations, or between two odor mixtures.

References: Carton, Y. 1977, Coll. Int. CNRS Tours (Fr.) 285-303; Fuyama, Y. 1976,

Boulétreau, M. and O. Terrier. University of Lyon, Villeurbanne, France. A
device for getting rid of excess adult flies.

Routine rearings or experimental plans often
require the daily destruction of large numbers
of flies. A simple device was developed to
prevent flies from escaping in the lab and to
avoid disadvantages of traditional devices.

A weak electric motor (M), fitted with
a plastic fan (F), hangs on the cover of a cylindrical
plastic spice jar (1.5 liter). A 30 mm hole is
pierced through the wall of the jar, 10 cm above the
bottom. 100 ml water, added with a few drops of house-
hold detergent, are poured into the device.

By gentling drumming inverted vials or tubes above
the upper hole, flies are allowed to be sucked down by
the air swirl. They immediately sink to the bottom.
None escape or float on the surface, thus allowing
the quick drowning of next victims and making the
capacity unlimited.

Once the daily holocaust is completed, the cover
is removed, the jar is water rinsed and provided again
with water + detergent. Years of daily use proved the
device to be very efficient and suitable.

Crespí, S. and O. Cabré. Autonomous
University of Barcelona, Bellaterra,
Barcelona, Spain. A simple method for
electron-microscope visualization of
D. melanogaster embryo polysomes.

The common techniques of polysome and ribo-
some preparation are based on relatively com-
plex methods in which tissue homogenates,
gradient centrifugations, etc., are used.
These preparative methodologies are charac-
terized in subjecting the samples to drastic
treatments which can alter the native stage
of the traduction complex. Here, we propose a very simple analytic method, with mild con-
ditions, and material proceeding from only one egg. It allows the study by electron micro-
scopy of processes related to translation, with minimum interference between the experimental
treatment and its visualization.

The method consists of dechorionizing one egg in the embryonic stage that is to be
studied. The egg is disrupted in 50 µl of Na borate buffer µM pH 8.5, and left 10 min. at
room temperature. 20 µl of the sample is placed on a carbon-coated grid (300 mesh), and