DROSOPHILA INFORMATION SERVICE

56

March 1981

Material contributed by DROSOPHILA WORKERS
and arranged by P. W. HEDRICK
with bibliography edited by I. H. HERSKOWITZ

Material presented here should not be used in publications without the consent of the author.

Prepared at the
DIVISION OF BIOLOGICAL SCIENCES
UNIVERSITY OF KANSAS
Lawrence, Kansas 66045 - USA
For information regarding submission of manuscripts or other contributions to Drosophila Information Service, contact P. W. Hedrick, Editor, Division of Biological Sciences, University of Kansas, Lawrence, Kansas 66045 - USA.
Table of Contents

ON THE ORIGIN OF THE DROSOPHILA CONFERENCES. L. Sandler 56: vi
1981 DROSOPHILA RESEARCH CONFERENCE ... 56: 1
1980 DROSOPHILA RESEARCH CONFERENCE REPORT .. 56: 1
ERRATA ... 56: 3
ANNOUNCEMENTS ... 56: 4

HISTORY OF THE HAWAIIAN DROSOPHILA PROJECT. H.T. Spieth 56: 6

RESEARCH NOTES

BAND, H.T. Chymomyza amoena - not a pest. ... 56: 15
BAND, H.T. Ability of Chymomyza amoena preadults to survive -2°C with no 56: 15
preconditioning. .. 56: 15
BAND, H.T. Duplication of the delay in emergence by Chymomyza amoena larvae after subzero treatment. ... 56: 16
BATTERHAM, P. and G.K. CHAMBERS. The molecular weight of a novel phenol oxidase in D. melanogaster. ... 56: 16
BECK, A.K., R.R. RACINE and F.E. WURGLER. Primary nondisjunction frequencies in seven chromosome substitution stocks of D. melanogaster. 56: 18
BEWLEY, G.C. and S. LUBINSKY. Thermal stability of catalase during development in Drosophila. ... 56: 19
BIERMONT, C. Parental effect and inbreeding depression in D. melanogaster. 56: 20
BISHOP, C.P. and A.F. SHERALD. Isolation of two third chromosome mutants conferring resistance to α-methyl dopa. ... 56: 21
CARTON, Y., J. ROUALT and H. KITANO. Susceptibility of the seven sibling species of subgroup melanogaster infected with a Cynipide parasite. 56: 24
CHADOV, B.F. Effect of aberrant Y-chromosomes on X-chromosome nondisjunction ... 56: 26
CHADOV, B.F. Nonhomologous X-2 pairing in females containing structurally normal X-chromosomes ... 56: 27
CHADOV, B.F. and E.V. CHADOVA. Nonhomologous pairing and spontaneous interchanges in D. melanogaster males. ... 56: 27
CHENEVIX TRENCH, G. An endemic inversion in the X-chromosome of D. melanogaster. ... 56: 30
CHERNYSHEV, A.I. and B.A. LEIBOVITCH. The effect of temperature during development in the amount of heterochromatin DNA fractions in D. melanogaster. 56: 30
CURTISINGER, J. Embryonic lethality associated with multiple inversion heterozygosity in D. pseudoobscura. ... 56: 33
DASMOHAPATRA, P., N.K. TRIPATHY and C.C. DAS. Distribution of different species of Drosophila in Khallikote Ghats, Ganjam District, Orissa, India. 56: 45
ECKSTAND, I.A. and R.H. RICHARDSON. Comparison of water balance kinetics between laboratory-reared and field-caught D. mimica. 56: 34
ENGELS, W.R. and C.R. PRESTON. Characteristics of a "neutral" strain in the P-M system of hybrid dysgenesis. ... 56: 35
FALK, R. Somatic mosaics produced by loss of a centric fragment. 56: 37
FOGLEMAN, J.C. and W. HEED. A comparison of the yeast flora in the larval substrates of D. nigrospiracula and D. mettleri. ... 56: 38
FUJIKAWA, K. Pilot experiments involving visible mutations induced in immature Drosophila oocytes by γ-rays at low dose rate. 56: 39
FUTCH, D.G. Crossing over in hybrid D. ananassae-D. pallidosa X-chromosome. ... 56: 40
GALUS, H.M., I.B. PERELLE and L. EHRMAN. The heritability of egg length in D. paulistorum. ... 56: 42
GILBERT, D.G. Effects of CO2 vs. ether on two mating behavior components of D. melanogaster. ... 56: 45
GILBERT, D.G. Sperm counts and initial sperm storage in D. melanogaster. 56: 46
GONCHARENKO, G.G. and I.K. ZAKHAROV. A phosphoglucomutase locus in D. virilis. ... 56: 47
GRACE, D. The Ubx/bx transfection effect in the entire compound chromosome C(2;3)EN. 56: 49
GROMKO, M.H. An attempt to reduce population size through extensive trapping. 56: 49
GUPTA, J.P. A list of drosophilid species so far known from India. 56: 50
HAGLE, K. and W.-E. KALTSCHE. 3H-thymidine labeling intensity over a prominent band group prior to and during puffing. 56: 56
HANKINS, G.R. and A.F. SHERALD. Hydropyrimidine hydrase in D. melanogaster. 56: 57
HARTMANN-GOLDSTEIN, I.J. DNA content of Malphigian tubule nuclei from white-variegated larvae. 56: 58
HEED, W.B. Central and marginal populations revisited. 56: 60
HILLIKER, A.J. Heterochromatic duplications and the meiotic segregation of compound second autosomes during spermatogenesis in D. melanogaster. 56: 61
HILLIKER, A.J. Meiotic effects of second chromosome heterochromatin deletions. 56: 62
HILLIKER, A.J., A. CHOVNICK and S.H. CLARK. The relative mutabilities of vital genes in D. melanogaster. 56: 64
HILLIKER, A.J., S.H. CLARK, W.M. GELBART and A. CHOVNICK. Cytogenetic analysis of the rosy micro-region, polytene chromosome interval 87D2-4; 87E12-F1, of D. melanogaster. 56: 65
HUNTER, A.S. Drosophila of Pompano Beach, Florida. 56: 74
JAMES, A., M. BOWNES and S. GLENN. The re-establishment of pattern elements in regenerating imaginal wing discs of D. melanogaster. 56: 75
JENKINS, J.B. Paternal age and mutagen sensitivity. 56: 77
KAIDANOV, L.Z. and E. HUGUTO. Studies on genetical possibilities of inbred stocks in Drosophila. 56: 78
KAPLIN, V. and L. KOROCHKIN. Histochemistry of the tissue distribution of some enzymes during the development in D. melanogaster. 56: 78
KAUROV, B.A. To the definition of the notion "field of gene activity". 56: 80
KAUROV, B.A. Mutation aristapedia causes the transformation of distal segments of antennae to five-segment tarsi in D. melanogaster. 56: 81
KIDWELL, M.G. The use of pupation height as a method for distinguishing between the sibling species D. melanogaster and D. simulans. 56: 81
LIEBRICH, W. In vitro differentiation of single cysts of spermatocytes of D. hydei. 56: 82
LOHS-SCHARDIN, N. A new allele of Ubx causing a strong phenotype. 56: 84
LOUKAS, M. A new esterase locus in D. melanogaster. 56: 84
LUJAN, D. A comparison of TSP's of Notch51, shibire51 and the double mutant. 56: 86
LYTTLE, T.W. Segregation in XYY males and XXY females of D. melanogaster. 56: 87
MALOGLOWKIN-COHEN, Ch. and N. LIVNI. A preliminary study on polymorphism and heterozygosity found in D. subobscura in Israel. 56: 90
MATHER, W.B. and G. BALWIN. Inversions in three species of Drosophila from the River Kwai, Thailand. 56: 91
MATHER, W.B. and G. BALWIN. Inversions in the nasuta complex from the River Kwai, Thailand. 56: 92
McINNIS, D.O. Drosophila collections from Raleigh, North Carolina. 56: 94
McINNIS, D.O. A seasonal spread of D. melanogaster and D. simulans in Raleigh, North Carolina. 56: 96
MIGLANI, G.S. and F.R. AMPY. A possible cline between the body weight and altitude in Mexican populations of D. melanogaster. 56: 96
MIGLANI, G.S. and F.R. AMPY. ADH denaturation depends on native ADH activity levels in D. melanogaster. 56: 97
MOSS, L.J. and E.A. CARLSON. EMS-induced yellow mosaics in D. melanogaster. 56: 97
MUKHINA, L.I., V.A. KULUTCHKOV and I.F. ZHIMULEV. Distribution of chromosome rearrangement breaks along the polytene chromosomes of D. melanogaster. 56: 98
NIKOSHKOV, A.B. and V.T. KAKPAKOV. Dosage compensation of sex-linked genes in established cell lines of D. melanogaster. 56: 103
OSIPOVA, N., L. KOROCHKIN, M. GOLUBOVSKY, T. KHLEBODAROVA and V. KULUTCHKOV. Bio-chemical-genetical investigation of the unstable locus lozenge in D. melanogaster. 56: 104
PLATT, S.A. Discrimination learning in individual D. melanogaster. 56: 105
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>POLIVANOV, S. Possibly non-Mendelian factor for stimulation of egg deposition.</td>
<td>56:106</td>
</tr>
<tr>
<td>POT, W. Courtship and mating success in alcohol dehydrogenase genotypes of D. melanogaster.</td>
<td>56:107</td>
</tr>
<tr>
<td>RAHMAN, R. and D.L. LINDSLEY. Ysu(f)-, a spontaneous derivative of Ymal+.</td>
<td>56:108</td>
</tr>
<tr>
<td>RAMAMOORTHY, C., N.R. PADAKI, S. NIRMALA SAJJAN and E. KRISHNAMACHARI. Mutagenic activity of quinine in D. melanogaster.</td>
<td>56:109</td>
</tr>
<tr>
<td>RAPPORT, E. and M.K. YANG. Effects of food deprivation on larval amino acid pools.</td>
<td>56:109</td>
</tr>
<tr>
<td>RICHMOND, R.C. and M.E. CLAEBERT. Ratios in crosses segregating for Esterase 6° (Null) and Esterase 6° alleles.</td>
<td>56:110</td>
</tr>
<tr>
<td>RUIZ, A. and A. PONTDEVILA. Two new chromosome arrangements in D. buzzatii.</td>
<td>56:111</td>
</tr>
<tr>
<td>SAMPSELL, B. Survival differences between Drosophila with different Adh thermo-stability variants.</td>
<td>56:114</td>
</tr>
<tr>
<td>SAPUNOV, V.B. The effect of juvenile hormone analogs on mutation frequency in D. melanogaster.</td>
<td>56:116</td>
</tr>
<tr>
<td>SAPUNOV, V.B. The effect of juvenile hormone analogs on reproductive behavior of D. melanogaster.</td>
<td>56:116</td>
</tr>
<tr>
<td>SEMJONOV, E.P. and A.F. SMIRNOV. Somatic synapsis of D. melanogaster chromosomes.</td>
<td>56:117</td>
</tr>
<tr>
<td>SENE, F.M., M.A.Q.R. PEREIRA, C.R. VILELA and N.M.V. BIZZO. Influence of different ways to set baits for collection of Drosophila flies in three natural environments.</td>
<td>56:118</td>
</tr>
<tr>
<td>SHADRAVAN, F. and J. McDoNALD. The effect of environmental 2-propanol on the ability of flies to survive in alcohol environments.</td>
<td>56:121</td>
</tr>
<tr>
<td>SHITAMOTO, T. and H. IKEDA. Differences in the diurnal rhythmicity of mating activity in D. melanogaster.</td>
<td>56:122</td>
</tr>
<tr>
<td>SIECEM, J.G. Cytological identification of autosomal breakpoints in several T(Y;2) stocks.</td>
<td>56:123</td>
</tr>
<tr>
<td>SIMMS, R.W., N.D. BEARSS and J. TONZETICH. Transfer RNA resolution in a Minute mutant of D. melanogaster.</td>
<td>56:124</td>
</tr>
<tr>
<td>SMARAGDOV, M.G., A.F. SMIRNOV, A.V. DUKELSKAYA and A.V. FELCHER. Condensation and interchromosomal heterogeneity of D. melanogaster heterochromatin.</td>
<td>56:127</td>
</tr>
<tr>
<td>SPERLICH, D. Lack of male recombination in D. subobscura.</td>
<td>56:128</td>
</tr>
<tr>
<td>STAMATTIS, N.D. Male recombination elements in a southern Greek D. melanogaster population.</td>
<td>56:129</td>
</tr>
<tr>
<td>STARK, W.S., K.G. HU and R.B. SRYGLEY. Comparisons of phototaxis properties in differing mazes.</td>
<td>56:131</td>
</tr>
<tr>
<td>STARK, W.S., R.B. SRYGLEY and R.M. GREENBERG. Analysis of a compound eye mosaic of outer rhabdomeres absent marked with cardinal.</td>
<td>56:132</td>
</tr>
<tr>
<td>STEINER, Th. and F.E. WURGLER. Oocyte stages in newly hatched females of some mus and mel mutants.</td>
<td>56:133</td>
</tr>
<tr>
<td>STEVENS, P.G. and E.A. CARLSON. Chromosome mosaics induced in ring-X by ethyl methane sulfonate and by X-rays in D. melanogaster.</td>
<td>56:135</td>
</tr>
<tr>
<td>TAKAMURA, T., H. HAYASHI, A. YOKOYAMA and I. SHIMADA. D. melanogaster can taste amino acids.</td>
<td>56:136</td>
</tr>
<tr>
<td>TEMIN, R.G. and R. KREBER. A look at SD (Segregation Distorter) in the wild population in Madison, Wisconsin, more than 20 years after its initial discovery there.</td>
<td>56:137</td>
</tr>
<tr>
<td>TOBARI, I. and M. MURATA. Fertility load and frequency of lethal second chromosomes in Drosophila populations with radiation histories.</td>
<td>56:139</td>
</tr>
<tr>
<td>TRAUT, H. An approximate χ² test as applied to mutation experiments with D. melanogaster.</td>
<td>56:140</td>
</tr>
<tr>
<td>TRIANTAPHYLLODIDIS, C.D. The esterase-A of D. auraria.</td>
<td>56:141</td>
</tr>
<tr>
<td>TRIANTAPHYLLODIDIS, C.D. Genetic localization of Est-C, Acph and w genes of D. auraria.</td>
<td>56:142</td>
</tr>
<tr>
<td>TRIBE, J. and I.R. BOCK. Drosophila collections in southeastern Australia.</td>
<td>56:143</td>
</tr>
<tr>
<td>TRIPATHY, N.K., D.P. DASMOHAPATRA and C.C. DAS. Chromosomal polymorphism in D. ananassae.</td>
<td>56:144</td>
</tr>
<tr>
<td>TRIPPA, G., A. LOVELL and M. LEPORE. Segregation distortion of second chromosomes by a wild third chromosome in D. melanogaster: modifier or SD gene?</td>
<td>56:144</td>
</tr>
</tbody>
</table>
TSAKAS, S.C. Chromosomal breaks and alteration in staining observed in vitro after ultrasonication of salivary glands of D. subobscura species. 56:145

TURNER, M.E. A laboratory overwintering experiment with D. montana and D. pseudoobscura. 56:147

WHEELER, M.R. Are the new species described in DIS validly published? 56:157

VASUDEV, V. and N.B. KRISHNAMURTHY. Effect of aspirin on D. melanogaster. II. Non-induction of sex-linked recessive lethals. 56:151

VASUDEV, V. and N.B. KRISHNAMURTHY. Effect of Dithane M-45 on rate of development and viability in D. melanogaster. 56:150

WILLIAMS, J.M. Tumorigenesis in D. melanogaster bearing the temperature-sensitive mutation shibiretsi. 56:158

VASUDEV, V. and N.B. KRISHNAMURTHY. Preliminary studies on the effects of cadmium chloride on D. melanogaster. 56:153

VILLA, T.G. and W.T. STARMER. Some carbohydrases present in axenic larvae of D. mojavensis. 56:155

WU, C.K. and P. SMITH. Calcium cyclamate induced lethal effect and genetic damage in spermatocytes of Drosophila. 56:161

XAMENA, N., R. MARCOS and A. CREUS. Effect of mating system on disruptive selection. 56:162

YOO, B.H., J.J. MOTH and J.S.F. BARKER. Abdominal bristle numbers and sex-dimorphism ratios in different Drosophila species. 56:163

Young, D.J., D.C. VAČEK and W.B. HEED. The facultatively anaerobic bacteria as a source of alcohols in three breeding substrates of cactophilic Drosophila. 56:165

ZACHARPOULOU, A., G. YANNOUPOLOS and N. STAMATIS. Cytological localization in the "cn" (cinnabar) locus in D. melanogaster. 56:166

ZOUROS, E. An autosome-Y chromosome combination that causes sterility in D. mojavensis x D. arizonensis hybrids. 56:167

DROSOPHILA RAMBLINGS. W. Prop. 56:168

TECHNICAL NOTES

ALLEMAND, R., J. BISTON and P.M. MALLE. An apparatus for recording free-running oviposition rhythm in Drosophila. 56:169

BAND, H.T. A method for growing Chymomyza amoena in the laboratory. 56:171

BAND, H.T. A medium for growing Chymomyza amoena in the laboratory. 56:171

BAUMANN, J.L. and W.L. BISCHOFF. A rapid reliable assay for glucose and fructose specific hexokinases in crude extracts of D. melanogaster. 56:172

BOULETREAU, M. and P. FOUILLET. An accurate and reliable olfactometer. 56:172

BOULETREAU, M. and O. TERRIER. A device for getting rid of excess adult flies. 56:174

CABRE, O. and S. CRESP. A simple method for electron-microscope visualization of D. melanogaster embryo polysomes. 56:174

DONE, J.H. and D.B. Mcgregor. A simple device for Drosophila containment during exposure to gases or vapors. 56:175

GRAF, U. An easy way to test for ring configuration of ring-X chromosomes in D. melanogaster. 56:176

GUPTA, A.P. A new technique for collecting Drosophila eggs. 56:177

KEKIC, V. Maze for the study of phototaxic behavior in Drosophila. 56:178

McINNIS, D.O. Estimation of the attractive radius for a Drosophila collection trap. 56:179

PLATT, S.A. and M. HOLLIDAY. A versatile apparatus for the demonstration of and selective breeding for discrimination learning in individual D. melanogaster. 56:180

SEECOF, R.L. An apparatus for rinsing Drosophila eggs. 56:181
March 1981 Table of Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>STOCK LISTS - D. MELANOGASTER</td>
<td>56:182</td>
</tr>
<tr>
<td>STOCK LISTS - OTHER SPECIES</td>
<td>56:184</td>
</tr>
<tr>
<td>NEW MUTANTS - D. MELANOGASTER. Report of:</td>
<td></td>
</tr>
<tr>
<td>M. Ashburner et al.</td>
<td>56:186</td>
</tr>
<tr>
<td>E. Gateff</td>
<td>56:191</td>
</tr>
<tr>
<td>M.A. Kotarski et al.</td>
<td>56:191</td>
</tr>
<tr>
<td>S. Kulkarni and P. Babu</td>
<td>56:192</td>
</tr>
<tr>
<td>D.L. Woods and D.T. Kuhn</td>
<td>56:192</td>
</tr>
<tr>
<td>LINKAGE DATA. Report of C.A. Strommen and R. Falk.</td>
<td>56:196</td>
</tr>
<tr>
<td>BIBLIOGRAPHY ON DROSOPHILA. PART SEVEN. I.H. Herskowitz.</td>
<td>56:197</td>
</tr>
<tr>
<td>COAUTHOR INDEX.</td>
<td>56:211</td>
</tr>
<tr>
<td>TITLE INDEX</td>
<td>56:221</td>
</tr>
<tr>
<td>PART II. GEOGRAPHICAL INDEX.</td>
<td>56:256</td>
</tr>
<tr>
<td>PART III. SYSTEMATIC INDEX.</td>
<td>56:256</td>
</tr>
<tr>
<td>ALPHABETICAL DIRECTORY.</td>
<td>56:259</td>
</tr>
<tr>
<td>GEOGRAPHICAL DIRECTORY.</td>
<td>56:271</td>
</tr>
</tbody>
</table>

Artefact Nerds Score Advantage

Scatiopigus males
it turns out
have got a better shot
at mating with caliopigus females.
Darwin was confused.
It's not the fittest pig
but the ugliest.
Even the Drosophila women
flock and mob
nerd male heterosexual fruit flies.

-- W. Prop
Contemporary Drosophila geneticists feel that Drosophila studies occupy a position close to the cutting edge of modern biology, a conviction which must be evident to participants of recent Annual Drosophila Conferences. This feeling can be objectively validated. A comparison of the material presented one year ago in Bloomington with that reported this year in Salt Lake City shows very rapid progress in many aspects of the genetic biology of Drosophila.

A second striking feature of Drosophila studies that has been amply illustrated in recent Drosophila Conferences is the exploitation for experimental purposes of multiple biological aspects of the fly. From the classical role of Drosophila as a mere vehicle for its chromosomes and its traditional use as a manipulable object in population genetics, Drosophila studies now include biochemical, developmental, neurobiological, and behavioral attacks. The depth and sophistication of this exploitation of the biology of Drosophila is shown by the range of material now considered in the specialized concurrent workshops held during Drosophila Conferences of recent years.

This sense of vitality and centrality that has animated the Conferences lately, as well as the contemporary use of Drosophila in all of its important biological aspects, were not prominent features of the earliest Drosophila Conferences. Indeed, the Drosophila Conferences mirror precisely the renaissance in, and the evolution of, Drosophila studies themselves. Today the meetings are characterized as useful, perhaps even as important. But they started as small get-togethers that could have been called "genetic analysis for fun and recreation". The very first Drosophila Conference, which took place in Madison, Wisconsin in the fall of 1958, was not a formal conference, nor did anyone there at that time imagine that it would give rise to a tradition which has now continued for over twenty years.

In 1958 Dan Lindsley, who was then at the Oak Ridge National Laboratories, flew to Chicago and joined Bill Baker, who was at the University of Chicago, and together they drove to the University of Wisconsin in Madison, where I was a postdoctoral fellow in the laboratory of Jim Crow. Ted Pittenger, a Neurospora geneticist now in Manhattan, Kansas, was then at Marquette. Because Ted had been one of the geneticists at Oak Ridge along with Bill and Dan (and, for a time, me), he joined the two of them in Milwaukee and also came to Madison. Thus, the first "Drosophila Conference", which lasted for two days, involved both Drosophila and Neurospora genetics. The meeting, however, consisted primarily of Baker, Crow, Lindsley, Pittenger, and Sandler each speaking--more or less endlessly--about his current research. Of course, other members of Crow's laboratory, his students and postdoctoral fellows, also attended and participated in the sessions. Most notably, from my point of view, was that Yuichiro Hiraizumi, with whom I was just beginning to collaborate, was present. Also there--this list is from my memory and therefore almost surely incomplete--were Rayla Greenberg (now Temin), Elaine Johansen (now Mange), and Tom Gregg.

1 R.A. Brink dropped in one morning to talk about his current studies on maize, and Hiraizumi distinctly recalls an extended discussion about the chromosomal basis of the departure from equality of the human sex-ratio. As can be seen, Drosophilists in those days were rather more tolerant of work on other, less tractable, organisms than they are today.

*aThe perspectives provided here are, of course, mine. However, I have included--mostly without specific attribution--current recollections of Bill Baker, Yuichiro Hiraizumi, Dan Lindsley, and Ted Pittenger. To them, my thanks, in part for their help here, but mostly for making me a participant in the events themselves. Those of you who have read any of my scientific works will surely wonder at the quality of the prose in this note. I haven't learned to write, merely to dictate to Ms. Barbara Hlavin, whose typewriter turns gibberish into English. You may ask, if Barbara Hlavin is responsible for the writing, and others have supplied the memories, why am I the author of this note? You may indeed ask.
It was difficult in those days to find people both interested in and able to discuss the intricacies of formal genetic analysis. The whole group of us did nothing else for two whole days, and it was, to say the least, enormous fun. While the meeting could scarcely be characterized as important, there was enthusiastic agreement that we should do the same thing again the following year, and Bill Baker suggested Chicago as the site of that meeting. In 1959, therefore, Bill sent notices to Dan, Jim and me (Neurospora and corn being summarily dismissed as temporary aberrations), to attend the "Little Men's Chowder and Marching Society". Dan, however, both to explain his absence from Oak Ridge and in order to get reimbursed for the trip, adorned the event with the title of "Midwestern Drosophila Conference". Attendance at this "Second Annual Drosophila Conference" at Chicago ballooned to about 15 or 20 (according to my best recollection), as there were rather a lot of Drosophilists at Chicago and some other workers had heard casually about the projected meeting during the year. This meeting followed the same format as the one at Madison, with individuals speaking whenever they felt they had something relevant to say.

The Chicago meeting was quite as much fun as the earlier one, but it created a considerable furor as news of its existence spread through the Drosophila community, both by word of mouth and through the medium of the bulletin put out by the Oak Ridge National Laboratories. The Christmas edition of that bulletin was received by most laboratories in the country, and contained a notice that Dan Lindsley had attended the Midwest Drosophila Conference. Ed Novitski (learning of the meeting from his new position in Eugene, Oregon) asserted that since Hawaii had become a state, Oregon was in the midwest, and he should therefore have been invited. H.J. Muller was angry that he had not been informed about it, when, after all, he worked in Bloomington, Indiana which was archetypically midwestern, while Dan Lindsley worked in Tennessee, which was the south.

In general, there developed a strong feeling about the impropriety of "exclusive congresses", like those of 1958 and 1959 (although, of course, neither had been congresses in any real sense), so that in 1960 the Third Annual Drosophila Conference, which was held in Bloomington, Indiana, had an enrollment open to anyone who knew of it and wished to come. It was, however, another year before the idea of Drosophila meetings as annual events, with all Drosophila workers formally invited, originated.\(^2\)

\(^2\)This story appears in Human and Mammalian Cytogenetics, An historical perspective by T.C. Hsu (1974). It is interesting that the Drosophila Conferences took on an official name, and, concomitantly, a certain measure of independent reality, in order to satisfy ORNL's bureaucracy!

\(^3\)It is probably worth reprinting here a section of the letter Dan Lindsley sent out on September 19, 1961 as the invitation to the Fourth Annual Drosophila Conference held at Oak Ridge:

"Three years ago Bill Baker and I got together with Larry Sandler and Jim Crow in Madison and spent two days informally telling each other of our recent experimental results. This meeting was so successful that we decided to repeat it the following year in Chicago. In Chicago we were joined by George Brosseau and Stan Zimmering among others. Last year the meeting was held in Bloomington and the attendance was again higher than the year before.

In previous years we have had no formal program and no official invitations; people simply agreed verbally to meet, and we took turns presenting material. I think that this year the group will be quite large, but we plan to follow much the same procedure as in previous discussions. In view of the annual increase in attendance, the time has come to make a decision whether we wish to formalize an annual Drosophila genetics meeting open to all investigators in the field or whether it would be preferable to disband into the originally conceived, small, regional, bull sessions."

On the copy sent to Bill Baker, Dan appends (by hand): "I decided this year we have to invite everyone--as they all know about it and want to come--or be chicken--I chose the former."
At that conference, as well as at the next several following, the format was still primarily free-form. The entire group met in a single room, and there was no fixed program. People spoke as the spirit moved them, though, as enrollment grew, it became necessary to sign up to speak just before a session was held. However, by 1962 at the latest, enrollment had grown to a point where concurrent sessions had to be scheduled, although free-form plenary sessions were still the norm. At the 1965 Seattle meeting, for example, there was only one afternoon with concurrent sessions (cytogenetics, evolutionary genetics, and physiological genetics).

Following is a list of the Conferences from 1958 through 1980, as reconstructed in 1979 in Bloomington, Indiana and put together and spot-checked by Adelaide Carpenter. There are included, parenthetically, some highlights of early meetings. Also note that the first five meetings, from 1958 through 1962, were held in the fall; afterwards they were held in the spring, and one year (1963) was skipped in the change-over.

1. 1958 Madison I
2. 1959 Chicago I
3. 1960 Bloomington I
4. 1961 Oak Ridge
5. 1962 St. Louis
6. 1964 Madison II [There was a dinner honoring A. H. Sturtevant as he approached his 75th birthday]
7. 1965 Seattle [There was a first general showing of several films depicting courtship and mating in Drosophila, including that classic example of erotica, "I Am Curious Yellow Forked"]
8. 1966 Chicago II
9. 1967 Texas [A eulogy to H. J. Muller, who had recently died, was delivered by C. P. Oliver]
10. 1968 Yale
11. 1969 Iowa
12. 1970 Pasadena
13. 1971 Ithaca College
14. 1972 North Carolina State (Raleigh)
15. 1973 DeKalb
16. 1974 Banff
17. 1975 Louisiana State University
18. 1976 Tempe
19. 1977 La Jolla
 1978 No meeting—no coal
20. 1979 Bloomington II
21. 1980 Salt Lake City
The next (by true count, the 22nd) conference will be held in Chicago at the Center for Continuing Education on the University of Chicago campus on the weekend of April 24-26, 1981. Save this date and enter it onto your 1981 desk calendar! The first notices will be mailed in mid-autumn. If you have not previously attended or received mailings of earlier conferences, and wish to hear about this one, please contact: Janice Spofford, Dept. of Biology, University of Chicago, 1103 East 57th Street, Chicago IL 60637.

1980 DROSOPHILA RESEARCH CONFERENCE REPORT

Following are abstracts of a few of the talks given at the Drosophila Research Conference in Snowbird, Utah, in May 1980.

Sex and the Single Cell
Bruce Baker
(Studies in collaboration with J. Belote and K. Ridge,
research supported by USPHS grant CM23345)

Sex determination in D. melanogaster is under the control of the X chromosome: autosome ratio and at least five major regulatory genes: transformer (tra), transformer-2 (tra-2), doublesex (dsx), intersex (ix), and Female lethal (Fl). Since sex determination affects the developmental fate of numerous primordia, information about the genetic events involved in the regulation of sex should help elucidate the mechanisms by which eukaryotes effect the expression of alternative developmental pathways.

Our studies on mutations that affect sex determination have focused on the tra, tra-2, dsx and ix loci. A comparison of the phenotypes produced in mutant/deficiency and homozygous mutant bearing flies shows that the dsx, tra-2 and tra mutants result in a loss of wild type function and probably represent null alleles at these genes. By examining the sexual phenotype of clones of homozygous mutant cells produced by mitotic recombination in flies heterozygous for a given recessive sex-determination mutant it was shown that the tra, tra-2, and dsx loci determine sex in a cell-autonomous manner. These experiments also allowed us to determine when the tra-2+, tra+ and dsx+ loci had been transcribed sufficiently to support normal sexual development. The wild-type alleles of all three loci are needed into the early pupal period for normal sex determination in the cells that produce the sexually dimorphic (in pigmentation) cuticle of the 5th and 6th abdominal tergites. tra+ and tra-2+ cease being needed shortly before the termination of cell division in the abdomen. dsx+ is required at least until the end of division. In contrast, in the foreleg the wild-type alleles of tra+ and tra-2+ have functioned sufficiently for normal sexual differentiation to occur by about 24-48 hrs prepupariation, but dsx+ is required in the foreleg at least until pupariation.

The time(s) at which the product of the tra-2 locus was needed for normal sexual development was investigated by means of temperature shift experiments with ts alleles at this locus. These experiments demonstrated that tra-2+ function is required at several different times within one tissue for normal sexual differentiation to ensue. For example, in the sex comb region of the foreleg that is sexually dimorphic in bristle number and morphology the product of the tra-2 locus is required at different times for the determination of bristle number and bristle morphology. Multiple times of action were also strikingly evident in the genital disc.

All possible homozygous double mutant combinations of ix, tra, tra-2, and dsx have been constructed and reveal a clear pattern of epistasis: dsx > tra, tra-2 > ix. It is concluded that these genes function in a single pathway that determines sex. The phenotypes and interactions of these sex determination mutants suggest that dsx+ is a bifunctional locus that in males acts to repress female sexual differentiation whereas in females it functions to repress male sexual differentiation. The tra+ and tra-2+ are suggested to act in concert in chromosomally female individuals to let dsx+ be expressed in the female mode. The ix+ gene functions subsequent to dsx+ in females.

Finally whether there is a time during development by which the X:autosome ratio has acted to irreversibly determine sex was investigated by genetically removing an X chromosome from abdominal cells of 2X2A females at various times during development. The removal of X chromosomes was brought about by (1) induced mitotic recombination in females heterozygous for a T(X:A) and (2) temperature pulses to mutants that affect mitotic chromosome stability.
When an X was removed during the early embryonic period, a 1X2A cell was produced that developed into a healthy clone of phenotypically male cells in the adult. Removal of an X during the larval/pupal period yielded very small clones that appeared to be phenotypically female.

The small size of these clones suggests to us that the hypothesis that the determination by the X/A ratio of X chromosome transcription rate has occurred in these cells prior to the time an X was removed and that once set the X chromosome's transcription rate is not reversible. Thus although these cells have a normal male chromosome complement (1X2A) their single X is being transcribed at the rate of a single X in a female which is half that of the single X in a normal male.

These observations suggest that early in development the X/A ratios function in an irreversible manner in both dosage compensation and sex determination. We view the tra\(^a\), tra\(^{2+}\), dsx\(^+\) and ix\(^+\) loci as being the means by which the decision of the X/A ratio with respect to sex is effected. Implications of these observations for the understanding of other homeotic loci were discussed.

Of Flies and Men: Human Blood and Enzyme Variation in Drosophila

Jerry Coyne

(Study in collaboration with J.A.M. Ramshaw and R.C. Lewontin, supported by Public Health Service Grant GM-24849 to R.C. Lewontin)

Standard methods of electrophoresis in Drosophila fail to detect a large number of genetic variants at certain allozyme loci. These variants can only be seen with the application of sequential electrophoretic methods, including varied pH's and gel concentrations. The patterns of gene frequencies, polymorphism, and heterozygosity emerging from these new studies may substantially alter some of our conclusions about the genetics of natural populations.

In an attempt to calibrate the power of such methods, we performed sequential electrophoretic analysis of many human hemoglobin variants with known amino acid sequences.

Our study was divided into three parts. The first experiment was a sequential electrophoretic analysis of 20 hemoglobin variants which fell into only three charge classes. The standard electrophoretic condition used in many previous surveys resolved eight of these variants; and sequential analysis resolved 17, yielding a detectability of 85%.

The second experiment compared groups of hemoglobins, each of which consisted of identical amino acid substitutions occurring in different positions in the molecule. Sequential electrophoresis was able to distinguish 90% of these chemically identical substitutions.

Finally, we examined 5 pairs of substitutions, each of which was a charge-equivalent pair of substitutions occurring at the same position in the molecule. Four of these 5 pairs were distinguishable by our methods.

Using computer-generated pictures of the hemoglobin molecule, we examined the relationship of the position of specific substitutions with the electrophoretic mobility of the resulting variants. We concluded that, in general, substitutions occurring in the interior of the molecule do not express as much of their charge as those on the surface and, in addition, substitutions which appear spatially equivalent can nevertheless show different electrophoretic mobilities. The complexity of interactions between residues seems to be such that almost any genetic variant can be distinguished from any other by electrophoresis.

If hemoglobin is a valid model, then, standard and sequential electrophoresis are obviously capable of detecting much more than simple classes of variants with identical nominal charges. If these conclusions are confirmed in calibration studies using other molecules, we may conclude that sequential electrophoresis has detected a large fraction of the allozyme variation present in natural populations of Drosophila.

Regulatory Genes in Hawaiian Drosophila

W. J. Dickinson

In my laboratory, and several others, natural genetic variants that alter the tissue and stage specific pattern of expression of selected enzymes have been sought and investigated in hopes that they would provide insight into the mechanisms of gene regulation in eukaryotes. During the last several years, there has been increasing interest in the possibility that
changes in regulatory genes (affecting the time, place and quantity of production of proteins) may be more important in adaptive evolution than changes in structural genes (affecting the functional properties of proteins). The intra-specific regulatory variants that we and others have been studying could be the raw material on which selection would act to produce novel patterns of regulation. It therefore seemed relevant to ask how much divergence in patterns of enzyme expression has taken place during the evolution of a phylogenetically well studied group and, if possible, to investigate the nature of the genetic changes that lead to new patterns of regulation.

The tissue and stage specificity of expression of five enzymes was examined by electrophoretic analysis of relative enzyme levels in extracts of 13 larval and adult tissues in 27 species of Hawaiian picture-winged Drosophila. The developmentally regulated patterns of enzyme expression thus characterized were compared to a modal standard phenotype. About 30% of the pattern features analyzed differed significantly from the standard in one or more species. Many of these regulatory differences are essentially qualitative, with tissue specific differences in enzyme activity in excess of 100 fold for some species pairs. The adaptive significance of these pattern differences is unknown, but the results provide strong direct evidence for rapid evolution of new patterns of gene regulation in this group of organisms.

Several cases where closely related, hybridizable species pairs differ dramatically have been selected for genetic and molecular analysis. Both cis- and trans-acting elements have been recognized, and both can be invoked in producing the pattern differences affecting a single enzyme in one pair of species. Some of the cis-acting elements appear to be complex, with different tissues affected to different extents or even in opposite directions. Where investigated, the cis-acting elements affect the number of enzyme molecules present, not the catalytic properties. As expected, they are linked to the corresponding structural gene.

A hybridization probe derived from a cloned D. melanogaster ADH gene has been used to investigate the molecular basis of a qualitative difference in the tissue distribution of ADH in D. grimshawi and D. orthofascia. The former species had ADH in both larval fat body and midgut but the latter has detectable activity only in fat body. Total RNA was prepared from both tissues of each species, electrophoresed in methyl mercuric hydroxide - agarose gels and blotted to "Northern" paper. Hybridization to the melanogaster probe revealed a major RNA species indistinguishable in molecular weight from the ADH mRNA of melanogaster. This RNA was present in both tissues of grimshawi and in orthofascia fat body but was undetectable in orthofascia gut, corresponding to the absence of ADH from that tissue. Nor was there any trace of homologous RNA of a different size. Thus, this cis-acting element controlling tissue specificity of ADH expression appears to control mRNA synthesis, apparently at or very close to the transcriptional level. Investigations into the evolution of new patterns of gene expression may prove to be a powerful way to gain insight into the normal operation of regulatory mechanisms.

ERRATA

DIS 55: January, 1980

Bibliography Item No. 4266: Volume 19, not Volume 119. [p. 239]

Corrections to M. Ashburner's Report:

Df(3L)stSS103: The breakpoints of this deficiency are 73A3.4;74A6, and not as stated. [p. 196]

DTS-5 (and not DTS-3, as stated): see this DIS. [p. 196]

Su(H): Within bands 35B8.9 to 35C1 and not as stated. [p. 196]

T(Y;2)D6: The Y;2 breakpoint is at 25D6.7 and not 25D2.3 as stated. [p. 196]

cu: Within bands 86D1.2;86D4, and not as stated. [p. 196]
Sixth European Drosophila Research Conference: The Sixth European Drosophila Research Conference has been organized by the Association of Yugoslav Genetic Societies in Kupari - Dubrovnik, between 16-20th September 1979. The Conference was attended by 215 participants from 22 countries, including USSR (12), USA (8), Egypt (2), Israel (2), Canada (1) and Japan (1). A total of 140 reports were submitted at three parallel scientific sessions, (1) biochemical and cytogenetics, (2) developmental genetics, and (3) population and evolutionary genetics. Fourteen of these papers were presented as the plenary reports, such as: "The role of satellite DNA sequences in speciation" (F.J. Ayala), "Genetic instability in D. melanogaster" (B. Rasmussen), "Gene versus gene regulation polymorphisms" (J.R. Powell), "Which part may Drosophila play in solving the problem of the genetics of aging?" (F.A. Lints), "How many genes are involved in sexual isolation" (C. Petit), "Inversion, allozyme and lethal frequencies in natural populations of D. subobscura" (D. Sperlich), and others. A few round-table discussions were held during the Conference, among them on the genetics of sex determination (pres. R. Nöthiger), and on the problems of Drosophila taxonomy and evolution (pres. G. Büchli and S. Lakovaara).

The general meetings involved information about the Drosophila stock center in Umeå, discussions about the cooperation on common research projects, a consideration of possibility of organizing the international Drosophila research conference which will involve also scientists from other continents. The final decision about such proposals should be given at the Seventh European Drosophila Research Conference in Finland, which will be organized by Prof. S. Lakovaara, Dept. of Genetics, University of Oulu, in June 1981. [--Prof. D. Marinković]

The Johns Hopkins University Schools of Medicine and Arts & Sciences announce a new collaborative predoctoral training program in Human Genetics leading to a Ph.D. degree in Biology. Broad training will be offered in aspects of human biology (cell biology, biochemistry, anatomy, pathology, pathophysiology) with a special focus and research training in modern human genetics. Write to: Dr. Barbara R. Migeon, Genetics Unit, Dept. of Pediatrics, CMSC 1004, Johns Hopkins Hospital, Baltimore MD 21205.

Genetics & Biology of Drosophila price increases: Drosophilists concerned about the ridiculously high price of the latest volume in this series (volume 2d, $124.50 US dollars) should definitely communicate their unhappiness to Mr. Fred Haight, National Sales Manager, Academic Press Inc., 111 Fifth Ave., New York NY 10003. Mr. Haight has already received a few complaints and seems very willing to pass along all letters to the British Office where the prices for these volumes are set. Strongly worded letters from both buyers and authors of this series should help keep the prices of future volumes down. [--W.H. Petri, Boston College, Chestnut Hill MA]

The card catalog of the world's Drosophilidae begun by E.B. Basden (DIS 45:171, 46:75) has been taken over by me. When Mr. Basden retired in 1975, he had already abstracted all relevant papers in the Univ. Texas Publications and some of Duda's. This catalog will be continued in a modified way. Successful tests have been made with a computer based Data Retrieval System. I would be grateful for any reprints on drosophilid taxonomy, evolution, ecology, faunistics and related topics. Please put my address on your mailing list. [G. Büchli, Zoologisches Museum, Universität Zürich-Irchel, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland]

Winifred W. Doane and Lynda G. Treat-Clemons have updated the biochemical genetics map of D. melanogaster to include published material, notes, and personal communications available up to Dec. 1, 1980. The revised map, entitled Biochemical Loci of the "Fruit Fly" (Drosophila melanogaster), will appear in the January 1981 issue of the Isozyme Bulletin (No. 14), edited by G.S. Whitt. It includes an alphabetical list of all loci known to affect specific enzymes, proteins or nucleic acids. A genetic map of loci for which recombination data are available is included, as well as information on cytological mapping and a bibliography of 350 references. Loci mapped by segmental aneuploidy and/or by in situ hybridization are included. For the first time, loci for which there are physical mapping data from restriction enzyme and/or nucleotide sequencing studies are referenced.

For further information about this revised map, please write to: Dr. W.W. Doane, Dept. of Zoology, Arizona State University, Tempe AZ 85281.
Drosophila bottles: There seems to be a chronic shortage of the standard milk bottles traditionally used for culturing Drosophila. Inquiries among workers in the field indicate little interest by glass manufacturers in producing these bottles particularly when the number of potential sales is not clearly known but likely to be small by their usual standards. I have offered to coordinate the gathering of information about the consolidated need for bottles. With that information there may be the possibility of gaining the interest of a company to provide them. Please answer the following questions by letter within 30 days of its publication. Although it may appear in more than one journal, answer only once. The questions are: (1) how many bottles would you buy immediately at a reasonable price? and (2) assuming that need is met how many would you buy two years hence?

Suggestions and ideas are welcome. Address replies to: David J. Remondini, Ph.D., Genetics Study Section, Division of Research Grants, SRB, National Institutes of Health, Westwood Bldg., Room 349, Bethesda MD 20205.

Shell vials (33 mm x 100 mm) are now available through the Arthur H. Thomas Co. These shell vials are made of clear autoclavable glass and for a limited time are available for 25¢ each. Send requests to: The Arthur H. Thomas Co., P.O. Box 779, Philadelphia PA 19105, Attention: John Domalewski.

Materials requested: The Drosophila cytogenetics group in Novosibirsk (USSR) deals with the organization of two X-chromosome regions: the puff 2B and the "vermilion" band 10A1-2. The first results are published in the following papers: (2B region) Belyaeva et al. 1980, Chromosoma v. 81 & 82, in press; (10A1-2 region) Zhimulev et al. 1981, Chromosoma v. 81 & 82, in press, and DIS 56, in press. We would be glad to receive from drosophilists any stock carrying a mutation or a chromosome rearrangement tentatively affecting 2B (genetic position 0.2-0.6 map units) or 10A (genetic position 32.0-34.0) region. Any such stock will be acknowledged with gratitude. They should be sent to: Igor F. Zhimulev & Elena S. Belyaeva, Institute of Cytology & Genetics, Siberian Division of USSR Academy of Sciences, Novosibirsk 630090, USSR.

Materials requested: We have lost our source of non-absorbent cotton in rolls (Rock River in Wisconsin). Does anyone know where this can now be purchased? Please send information to: William M. Hexter, Webster Center for Biological Sciences, Amherst College, Amherst MA 01002.

"The Genetic Variations of Drosophila melanogaster" Revision

Dear Colleagues:

We are embarking on a revision of "The Genetic Variations of Drosophila melanogaster", and we wish to enlist your aid. We are soliciting material for inclusion in the forthcoming edition. We would be most grateful if Drosophila workers would submit to us the following: (1) corrections of all errors in the current volume that have come to their attention; (2) additions to current entries organized according to the categories of information as used in the format of the current edition; and (3) new entries prepared according to the format of the current volume. We are especially anxious to be as complete and as current as possible in the cytological and genetic mapping information included; thus, we are interested in information on recombination, complementation, and deficiency mapping, on the positions of breakpoints of chromosome rearrangements, and on the sites of in situ hybridization of cloned DNA sequences.

We are anxious to receive suggestions from users as to how the revised version can be made more useful, and we will be receptive to suggestions regarding format, nomenclature, and contents of the volume.

As we proceed with the revision, we propose to send selected copy to workers with expertise in different areas for approval and we sincerely request cooperation in attending to these requests with dispatch.

Dan L. Lindsley & Georgianna Zimm
Dept. of Biology, B-022
University of California, San Diego
La Jolla, California 92093
The Hawaiian Drosophila Project was initiated by D. Elmo Hardy (University of Hawaii) and Wilson Stone (University of Texas) in 1963. The following accepted their invitations to participate in the Project: H.L. Carson, University of Washington, St. Louis; Frances Clayton, University of Arkansas; W.B. Heed, University of Arizona; H.T. Spieth, University of California, Riverside; H.D. Stalker, Washington University, St. Louis; H.L. Throckmorton, University of Chicago. This group began investigations in Hawaii in June 1963.

The overriding immediate problem was the development of methods of rearing the endemic species in the laboratory. Several investigators, including Curt Stern during the 1930's and Gordon Mainland during the late 1940's, had been unable to rear any of the Hawaiian species in the laboratory. As a result the National Science Foundation funded the Project for only a single year and suggested that if successful rearing methods were devised then consideration would be given for extended support.

We quickly became aware that there also existed other refractory related problems. These can be categorized as follows: (1) collections of adequate numbers of flies; (2) successful transportation of captured flies to the laboratory in Honolulu and shipment of living specimens to Texas; (3) maintenance of the flies in healthy condition in the laboratory; and (4) identification of the individuals.

Hardy quickly educated us to the unwelcome fact that the baiting techniques used in other parts of the world were relatively useless for collecting the endemic Hawaiian species. His technique and that of other collectors was to use sturdy insect nets which they swung vigorously through the thick vegetation close to the substrate. Such a method often injured the flies and the specimens were still suitable for pinning but not for rearing. Since the flies would not come to any of the "standard" baits we perforce had to use nets.

Further, we found that the bulk of the native flies were restricted to the cool, moist-to-wet native rain forests which grow on the slopes of the volcanic cones at elevations of 600-1500 meters, with the 900-1200 meter zone containing the majority of the populations. Essentially no humans dwell in the rain forests, and few people enter them other than foresters, water officials, pig hunters, the military in some areas, and scientists. Access to the forests is under the control of private owners, State Foresters, water officials and in some areas the military. Permission to enter must be secured from one to three different agencies and the access routes or roads typically require the use of a four-wheel-drive vehicle. The volcanic terrain of the forest is rough, the footing treacherous and the vegetation often extremely dense. Fortunately, rough narrow trails have been developed for the use of foresters and the water service personnel. Nevertheless, until one has personally engaged in collecting in the rain forests it is difficult to appreciate how large an expenditure of time, energy and money is necessary.

Fortunately, there exist a few collecting sites that can be reached via paved public roads and which have living accommodations nearby. These are Kokee State Park, Kauai; Volcanoes National Park, Hawaii; and the Saddle Road area between Mauna Loa and Mauna Kea, also on Hawaii. On Oahu, with the permission of the military and the use of a four-wheel vehicle, the Mt. Kaala summit can readily be reached. The Tantalus area at the head of Manoa Valley just a few miles from the University of Hawaii campus had been during the early part of this century a major spot for collecting endemic Drosophila. It was here that Mainland and others had collected numerous species. By 1963 the majority of the species had been exterminated, apparently by the intrusion of exotic vegetation and the introduction of ants. Whenever ants, which were totally lacking in the native fauna, are introduced into Hawaii, they quickly exterminate most if not all of the native Drosophila.

We concentrated our collecting efforts during the summer of 1963 on Kokee, Tantalus, Mt. Kaala and the Volcanoes National Park. Our most productive results were achieved in Kipuka Ki and Kipuka Puaula (Bird Park) which are located in the National Park on Hawaii. Both of these kipukas have a rich and abundant Drosophila fauna. Kipuka is the Hawaiian word for "opening" and is used to designate an area that is surrounded by recent lava flows. It is thus a small area or island of relatively rich and deep soil on which the forests are older and more mature than those found on the surrounding younger lava. In a real sense a kipuka is an experimental plot on the volcanic terrain.
We followed the standard technique of placing captured flies in small vials which had a layer of food medium on the bottom. Unlike mainland species the Hawaiians often become stuck to the walls or food of the vials. Since the Hawaiian flies cannot tolerate temperatures above 20°C, we had to transport the vials back to the laboratory in insulated boxes which were cooled with containers of frozen artificial ice. This invariably resulted in some condensation in the vials and accentuated the "sticking" problem. This problem was not solved until about a year later when I developed the sugar vial technique.

Wheeler and Clayton remained in Hawaii during 1963-64, both on sabbatical leave, but the others returned to their home institutions at the beginning of the fall semester. Our achievements had been minimal but we had come to understand some of the problems we faced. During the summer of 1963 Throckmorton was able to study the reproductive anatomy and ovaries of a number of species. Heed had found the larvae of one species breeding in the leaves of the aralia Cheirodendron gauchichaudi. This was the compass sign that led to the solving of the larval substrate problem that Heed successfully pioneered and to which Steven Montgomery later contributed.

During their sabbaticals Wheeler and Clayton vigorously pursued their attempts to devise successful rearing techniques. They prepared and tested a large number of different media, but none was really adequate although they did manage to induce a few field-captured females to oviposit in the laboratory but the resulting larvae died. One morning Wheeler's young daughter refused to eat the prepared dry cereal her mother had purchased. Wheeler took the box of Kellogg's Special K to the laboratory, moistened the cereal and presented it to freshly captured Drosophila mimica from Bird Park. The females oviposited avidly and the larvae developed. From this clue the Wheeler-Clayton food was developed.

Several years later I observed that field-captured females which I was using for sexual behavior observations became lethargic when kept on the standard Wheeler-Clayton food. I instructed the food technician to omit the brewer's yeast from the Wheeler-Clayton food that he was preparing for my use. The effect was dramatic and today yeastless Wheeler-Clayton food is the standard medium for the Hawaiian species.

Wheeler and Clayton found that the mature larvae refused to pupate in the rearing vials. Instead they bored through the cotton plugs, wandered about and died. Wheeler remembered that Kenneth Frisk had solved a similar problem with Agromyzidae larvae by placing the larvae on a layer of sand. This clue led to the sand jar technique; i.e., when larvae in a food vial are almost mature, the cotton plug is removed and the vial is dropped into a large jar which has a 2-3" layer of moist, sterile sand and the jar is then tightly closed with a piece of cloth. The mature larvae leave the food vial, wander about for a considerable period of time but finally burrow into the sand and pupate. The emerging teneral adult wriggles back to the surface and then expands its wings and matures.

Throughout the life of the project undergraduates have served an important and valuable role in the conduct of the research; approximately 150 of them have participated. A large percentage of them have eventually received advanced degrees in zoology, genetics, botany, medicine, dentistry, veterinary medicine and the paramedical field. One of these undergraduates, Kenneth Kaneshiro, then a sophomore, joined the project in October 1963. Today he is Dr. Kaneshiro and a senior investigator. Ken is a superb field man, a gifted systematist, and an insightful experimentalist. I am sure that other senior investigators in the project will agree that Kaneshiro's overall intellectual grasp and knowledge of Hawaiian Drosophila are more comprehensive than that of anyone else who has participated.

In 1964 various types of fruits, vegetables and other substances were tested as baits and all were indifferently effective. Carson concentrated on this problem and found a surprising behavioral trait. On the mainland we place bait in the bottom of a bucket or similar container and collect the flies that come to feed by disturbing the container and netting the flies as they fly upward and out of the bucket. When the Hawaiian flies are similarly disturbed, they fly downward and become enmeshed in the bait. Carson therefore began to smear bait on boards or heavy cardboard which were hung vertically on tree trunks and other objects.

Throckmorton vigorously pursued his anatomical studies and by the end of the summer he was able to identify and delimit the major species groups.

Harua Tokada of Kushiro Women's College, Hokkaido, Japan, joined the project for the summer of 1964 and studied the male genitalia of 55 species of drosophiloids involving both
drosophilids and scaptomyzids. His efforts complemented Throckmorton's studies and helped to elucidate the relationships between the various species groups. Further, he concluded that all the numerous drosophilid species had descended from a single ancestral population and further that the genus Scaptomyza probably also arose from the same ancestral population.

Heed systematically searched for ovipositional sites, i.e., larval substrates. None of the native plants produces fleshy fruits so he concentrated on leaves, bark and other possible types of substrates. The two dominant trees of the forest, Matrosideros collina polymorpha (Ohia) and Acacia koa (Koa), occasionally develop slime fluxes, but proved not to be prime larval substrates.

Less numerous but rather uniformly distributed throughout the forest are individuals of the evergreen deciduous trees and shrubs of the araliads (Cheirodendron, Reynoldsia and Tetraplasandra) and the lobeliads (Clermontia and Cyanea). In the fermenting fallen leaves, rotting bark, and slime fluxes of these Heed found the larvae of many species. These discoveries led to the finding of other less frequently used substrates and today more than 35 families of plants are known to serve as larval substrates for one or more species of the native Drosophila. Most of the species are monophagic, some oligophagous and a few polyphagous.

The Wheeler-Clayton food and sand jar techniques enabled them to rear a number of species, especially some of those that belong to the picture-winged species group. The species belonging to this group are large spectacular flies and Carson found that they had large salivary gland chromosomes. He therefore took this group as his province. Clayton was also able to study the cytology of these and other species. They were both aided by the fact that field-captured females would often lay fertile eggs on Wheeler-Clayton food and from these mature larvae could be reared and used for study. Typically, however, the F1 adults which emerged from such larvae died young or if they survived refused to oviposit--thus the stock died out.

In the fall of 1964 I was on sabbatical leave, so I remained in Hawaii after other investigators had departed at the end of the summer. During the summer I had made observations on the courtships of several species and was frustrated because, although the males might court vigorously, the females were almost all uniformly recalcitrant and refused to copulate. This occurred with both field-captured and laboratory-reared virgin females. Some species simply refused to engage in sexual activity in the laboratory. I also observed that the flies, especially the males of most species, showed intense antagonism toward each other, engaging in behavior that could only be described as fighting. This occurred also in the rearing vials, and the large picture-winged flies often broke each others' wings.

Since I knew that mainland flies engage in courtship and copulations on the feeding sites in the field, I decided to spend most of the fall in searching for feeding sites as well as collecting flies, etc. I chose three places: Kokee on Kauai, Waikamoi on East Maui, and Bird Park at Volcano, Hawaii, each known to have populations of several species.

At Kokee I was able to collect flies but could find no feeding sites. Therefore, ground-up Cheirodendron leaves and other baits were used and observed for long periods of time. To my surprise the flies approached the baits in a quite different fashion than expected. Mainland species fly to the baits, often buzzing and circling before landing. In comparison, the Hawaiian species approach cautiously and slowly; they make quick, short darting flights, land, sit immobile for a period of time, then walk slowly forward and finally after many minutes reach the bait. Once there they feed quietly, engaging in no sexual or antagonistic activities. After feeding for a time, they depart by a quick downward flight and disappear.

At Waikamoi on Maui I searched for food sites and came across a spot where a number of tree ferns had been cut down a few days previously, and the stumps were covered with sap. A number of Clermontia shrubs had also been broken and cut with the result that the milky sap was exuding. Large numbers of flies of several species were ravenously feeding on these saps. Again, it was the same behavior as at Kokee. The quiet, cryptic behavior of the flies was amazing. I observed no courtships or antagonistic behavior by the flies when they were feeding. Neither did I find any courtship sites.

At Kipuka Ki, Volcano, a large limb bearing fungi had fallen and here the flies were also quiet, but as soon as they moved off the fungus food site they became antagonistic. I observed males sitting on the upper surface of nearby leaves. Whenever another individual
alighted, the male approached and courted. In another part of Kipuka Ki a large Polyporus fungus was found and again the pattern of behavior was similar to that found on the other fungi. Thus, the flies separate feeding and courtship; i.e., they engage in lek type courtships.

On the lek the males are aggressive, defending it vigorously if another male enters it. The females are extremely choosy in the selection of a male. Even when they are sexually ready and enter a lek, they will often allow a male to court for long periods and then depart without copulating.

In 1965, John Murphy came from Texas to serve as the operational manager of the project. Intelligent, tactful, and with a vivacious personality, he quickly became the individual to whom everyone turned for logistic planning and execution, both in the laboratory and in the field.

Malcolm Brown, a graduate student specializing in microbiology in the Botany Department at Texas, arrived in Hawaii in June of 1965 and began an investigation of the yeasts and other microorganisms found associated with the native vegetation and especially those found on or in the decomposing substrates in which the Drosophila larvae were living or upon which the adults fed, especially Cheirodendron and Clermontia. He isolated a number of the favored yeasts and collectors then began to hang petri dishes which had been inoculated with these yeasts in the field as baits.

The Hawaiian species are cryptic, in both their coloration and behavior. The adults often sit motionless on the vegetation for prolonged periods, especially in the areas surrounding a natural food source. If disturbed they typically fly or dive downwards. Kaneshiro and Jack Fujii exploited this behavior of the flies. They searched the vegetation, moving cautiously and deliberately. Finding a specimen on the underside of a limb or leaf or on the trunk of a tree, they slowly thrust the open end of an 8-dram glass vial over the fly. Invariably the specimen then dove to the bottom of the vial. This technique became known as the "pick off" method. Later the use of glass tube aspirators was introduced and today these two techniques are the standard methods for collecting those species that are attracted to baits as well as those individuals sitting on the vegetation. For those species for which we have as yet no effective baits, sweeping with nets is still mandatory.

Brown isolated a species of yeast from rotting Clermontia. Kaneshiro inoculated Gerber's baby banana with this yeast and then used the fermenting banana to smear on the trunks and under surfaces of limbs of trees and shrubs. Such bait proved attractive to a considerable number of species, especially the picture-winged flies. It was easy to use in the field and the method of application allowed the pick-off technique to be employed. This then became the standard baiting and collecting procedure. A number of species, however, especially those that oviposit on Cheirodendron leaves, only occasionally come to this bait.

Two persistent problems continued to exist in the rearing of the flies: (1) the food in the large shell vials known as Texas vials became moldy and this smothered the eggs which had been deposited into them and also debilitated the adults; (2) the adults tended to "stick" to the food or the walls of the vials. Our normal practice was to insert into the food a small amount of loosely folded Kleenex tissue, with the major part of the paper extending upward above the food; i.e., this portion served as material for the flies to sit on, thus preventing them from becoming "stuck".

Kaneshiro developed the method of folding a small piece of Kleenex into a rectangular pad of about 1 x 2 inches, moistening this with a sterilized solution of yeast, sugar water, and propionic acid. This pad was then pressed against the inside wall of a vial and almost in contact with the food at the bottom. The food vial was then laid on its side with the pad on the "bottom". Thus, the adults could sit on the pad and feed when they desired on the vertically oriented food.

At Texas, Stone with the aid of Kathleen Resch was engaged in building up stocks of the Hawaiian species. Suffice it to say that if Resch cannot keep a species alive and healthy in the laboratory, no one can. Her skill has been invaluable in making it possible for various investigators, especially those at Texas, to study and publish findings on species and species groups that otherwise would not have been available. Kathleen spent the period of February-July 1966 in the laboratory at Honolulu. She had earlier determined that by immersing fresh Cheirodendron leaves in distilled water soluble fungistatic sub-
stances escaped from the leaves. This became known as Cheirodendron "tea". She also suggested that dampened Toniac tissues be used for making the pads rather than Kleenex.

Kaneshiro methodically made teas from the leaves and stems of all of the various native plants that we knew were used as ovipositional substrates. Not surprisingly, at least in retrospect, he found that all of these contained fungistatic substances and also that the teas provided ovipositional stimulus to the females. Cheirodendron tea proved to be the least effective and the many species that use Cheirodendron leaves as their ovipositional sites still remain recalcitrant to oviposition in the laboratory. Clermontia tea is the most effective and broad spectrum for mold control and ovipositional stimulation. Another advantage of the pads is that the females prefer to oviposit in the paper. When the larvae emerge they migrate to the food.

Forbes Robertson of Edinburgh, who had had considerable experience in the area of Drosophila nutrition, joined the group from May to late August of 1966. He chose to investigate D. waddingtoni, then known as D. disticha, which uses decaying Cheirodendron leaves as its larval substrate and whose eggs, larvae and adults can be readily collected in numbers at Waimam Radio, East Maui. Robertson made the significant discovery that while the adults use yeasts, the larvae of waddingtoni feed exclusively on bacteria. He was, however, unable to rear stocks of the species in the laboratory. Even today, 14 years later, we still cannot maintain stocks of the varied and numerous species which use Cheirodendron as a larval substrate. During the late afternoon of the day that the Robertsons were to depart for Scotland, the laboratory personnel had a picnic for them at Hanauma Bay, and I took the opportunity to talk with him about his investigations on waddingtoni and other Hawaiian species. He ended the discussion by saying: "It will be really pleasant to get back to Edinburgh and work with normal Drosophila for these Hawaiian species literally make one psychotic."

Joseph Grossfield came to Hawaii at the same time as Kathleen Resch. He investigated the field biology of the flies with emphasis on their responses to different light intensities. In doing so he made the valuable discovery that the Hawaiian species are light dependent, i.e., they do not mate in darkness.

The period from 1967 to 1970 was one of great achievements by the various investigators. Carson pursued his studies on the polytene chromosomes of the picture-winged species. Clayton methodically and effectively studied the cytology of many species, concentrating especially on the picture-winged flies. Heed pursued the difficult and often frustrating investigations of the ovipositional substrates and also began his studies on the populations of various kipukas on the big island of Hawaii.

Because the Cheirodendron species, i.e., those whose larvae developed on some part of the trees, were so resistant to laboratory rearing it was suggested that perhaps there was some peculiar characteristic in the biochemistry of Cheirodendron that was responsible for their behavior. Heed had earlier solved a somewhat similar problem with D. pachea which uses the Senita cactus. He therefore joined with Henry Kircher, a biochemist at the University of Arizona, in an intensive analysis of Cheirodendron. Unfortunately, they did not solve this particular problem but they did learn a great deal about the biochemistry of Cheirodendron.

In 1967 Mike Kambysellis arrived in Hawaii. He and Heed soon joined together to investigate what can be broadly described as the reproductive strategies of the species of various species groups. A senior investigator of the project once remarked to me that Heed was probably the one member of the group who had not received adequate recognition for his contributions to the project, and there is substance to this evaluation. All of the problems to which Heed devoted his efforts were complex, elusive, time consuming, and often frustrating—but in every instance he achieved significant and basic information which he analyzed with skill and clarity.

At Texas Mrs. Yang and Wheeler investigated the problem of hybridization, using numerous species of the picture-wingeds. Their valuable studies complemented the work of Carson and gave us an understanding of the relationship of the various species, as well as helping to further delimit the parameter of the species group.

Hardy and Kaneshiro described numerous new species that continued to appear in the collections constantly being made. They also determined the geographical ranges, identified sibling species, and gave insight into the speciation process, especially within the picture-winged flies.
Kaneshiro completed his undergraduate studies in 1966, became a graduate student and functionally a senior investigator as well as the prime field collector and skilled rearer of species in the Honolulu laboratory. His studies on the male genitalia enabled him to delineate clearly the subgroups within the picture-winged flies. This investigation plus data from Carson's studies showed that the species of the genus Idiomyia really constitute a subgroup of the picture-winged species group. Idiomyia has now been synonymized with Drosophila. Kaneshiro also studied the anomalous species group known as the crassifemur group, showing that it constitutes an intermediate unit between the genus Scaptomyza and the genus Drosophila.

Two young investigators broke "new" ground: Carmen Kanapi and Susan Rockwood, both graduate students at the University of Texas, were the first to use allozyme procedures on the Hawaiian species.

Although Stalker did not return to Hawaii after 1963, he did use the salivary chromosomes to elucidate the relationship of the picture-winged flies to the mainland robusta species group, thus giving a clue to the relationship of the Hawaiian flies to their ancestors.

Yeastless Wheeler-Clayton food is excellent for maintaining adults and many, but not all, species will oviposit in the Tomac pads that have been moistened with Clermontia "tea", commonly also called "juice". The young larvae migrate to the W-C food but it is a rather Spartan larval substrate. Resch therefore formulated a cornmeal food that is much richer and the standard procedure today is to allow the young larvae first to thoroughly "work over" the W-C food. Then a generous amount of cornmeal food is added to the vials. This technique allows a large number of larvae to be reared to maturity in a single vial. The resultant adults from such larvae are healthy and robust individuals. The rearing techniques for the Hawaiian flies are thus more complicated and time-consuming than those used for melanogaster and other mainland species. Further, the life cycle is long; typically each full generation, from oviposition of the egg to the sexually mature adult, spans a period of at least 40-60 days.

Although the years from 1966-70 were years of accomplishment, there was also tragedy. Wilson Stone died in 1968. His slipping away deprived us of his wisdom, understanding support, and advice. For myself it was not only the loss of a scientific colleague of great stature but also the loss of one of my closest personal friends. No one is indispensable but Wilson Stone certainly approached being that not only for the Drosophila Project but also for his department at the University of Texas.

A considerable number of investigators from various institutions located in diverse parts of the world have participated in the efforts of the Project during the period from 1970-80; some for short periods, others for prolonged stretches. Their individual efforts in the main complement and extend those of the various investigators who had originally founded the Project. In a brief history it is not feasible to comment on their contributions and areas of study. Their names are included in an addendum. Hopefully a full bibliography of the Project will be published, thus enabling their individual contributions to be specifically identified.

John Murphy resigned in 1970 when he accepted a responsible position with the Texas Department of Health Resources. The day-to-day management of the laboratory then fell upon Kaneshiro, a position which he still occupies. Busy as his days had been, they became even busier and his responsibilities more demanding.

At about the same time that Murphy departed, Steven Montgomery (then an undergraduate) began to work with Heed and others in investigating the ovipositional substrates of the picture-winged flies. This species group consists of over 100 species and although Heed had found the substrates of a goodly number of the species, there were many he had not discovered. Montgomery, a superb field investigator, made invaluable additions to Heed's earlier studies.

In 1970 Carson joined the Genetics faculty at the University of Hawaii, a move which vastly improved his effectiveness in his research for now he not only was constantly in Hawaii but also he was able to have his graduate students and postdoctoral fellows cooperate more fully in the investigation of the Hawaiian species. He continued his studies on the salivary chromosomes and expanded into allozyme investigations and intensively into the problem of the dynamics of speciation, concentrating on closely related species of the picture-winged. In these speciation studies he and Kaneshiro have cooperated closely and effectively.
Recently he has turned his attention to the courtship behavior and the role that it serves in speciation and phylogeny of closely related species.

Heed has turned his attention primarily to the study and identification of the wild yeasts that the larvae use in their substrates as well as to the competition between larvae in the substrates, such as a single decomposing leaf of Cheirodendron. These studies of Heed and his graduate students have involved both desert species of Southwestern North America and the Hawaiian species. During a 1972-73 sabbatical at Davis he, in cooperation with Herman Phaff and Martin Miller, investigated various yeasts. He and Francisco Ayala also developed a technique which enabled them to begin to effectively quantify the biology of leaf breeding Hawaiian species.

At Texas Richard Richardson, Wheeler and Yoon, assisted by Kathleen Resch, have studied the salivary chromosomes and the evolution of the crassifemur, antopocerus and part of the modified-mouthparts species groups. Although all of these are exceedingly difficult to handle in the laboratory, they have been able to elucidate the relationships and evolutionary histories of the crassifemur and antopocerus species groups and also to determine the relationships of the modified-mouthparts to other species groups. Their findings have filled large lacunae in our ignorance.

Hardy and Kaneshiro continued their basic studies on the systematics of various species groups. By now large collections have been accumulated and Hardy has revised the antopocera and split-tarsi species groups. They are in the process of revising several other groups, basic information which is mandatory for further investigation into the evolutionary dynamics, biology and ecology of the various species groups.

Kipuka Puaulu, known as Bird Park because of the considerable number of native birds that dwell therein, has been an important research area for the Drosophila Project as well as for other scientific investigations. It is approximately 56 acres in extent. Until it was incorporated into Volcanoes National Park during the second decade of this century, it was used as a fattening pen for cattle. It is still recovering from the evil effect of such usage and is a prime example of the necessity of the maintenance of preserves which cannot be decimated by the short-sighted activities of human society.

Richardson, aided by his students and associates, intensively investigated a number of problems in Bird Park and nearby Kipuka KI which receives less precipitation than does Bird Park.

In 1964 Heed and I observed Drosophila engyochracea, a large picture-winged species which has its geographical range limited to the two kipukas and the immediately surrounding area. During daylight hours the flies hide away in the moss found on the trunks of trees. We found that during darkness the flies ascend into the foliage and sit on the undersides of leaves. Spencer Johnston investigated this behavior and found that the flies move to considerable heights and scatter through the forest—indicating how movements in the population occur.

Richardson then investigated in detail the movements of D. mimica, a modified-mouthparts species. The adults typically hide in the litter on the forest floors but under appropriate conditions do move; he was able to elucidate these movements and the environmental factors bearing upon such activities. He and his students have also directed their efforts towards understanding the dynamics and possible sympatric nature of speciation that may have occurred. They intensively studied three species that dwell in Bird Park and Kipuka KI. Their conclusions have attracted attention, including considerable skepticism, but above all they have stimulated others of us to rethink and re-evaluate our ideas as to how speciation may have occurred in the exceedingly rich and complex Hawaiian drosophilid fauna.

Kambysellis continues his excellent and unique studies on the reproductive strategies of the flies, currently concentrating on allozyme investigations of the eggs of numerous species.

Clayton, despite a long period of debilitating illness, continues to provide new and important cytological data.

I was able to study with the cooperation of Heed, who spent a sabbatical year in Davis in 1972-73, two mainland species, D. pinicola and D. flavopinicola, which are restricted to the Pacific coastal area. We concluded that they are, on the basis of morphology, physiology and behavior, more closely related to the Hawaiian species than are species of the robusta species group. Since these species oviposit on mushrooms and the adults feed on mushrooms,
I concluded that perhaps rotting domestic mushrooms might serve as a bait to attract the species of the Hawaiian light-tipped scutellar group, often called the fungus feeders. We knew that one of the species, fungigerda, was attracted to large Polyporus fungi and used such fungi for a larval substrate.

I therefore went back to Hawaii and, although I was myself somewhat dubious about the outcome, my colleagues were downright skeptical about the use of mushrooms as bait. A trial run on Kauai, however, even under adverse conditions, was highly successful. Not only do the fungus feeders come in large numbers to the bait, but also all of the antopocerus, the crassifemur, and the majority of the picture-winged species are attracted in numbers. In typical fashion Kaneshiro quickly improved my original technique of using mushrooms impaled in twigs; i.e., he soaked thin cellulose sponges in "juice" of the rotting mushrooms and then attached them to tree trunks, etc.

The mushroom bait gives us a reliable method of capturing large numbers of individuals of at least 200 species. Unfortunately, mushrooms attract very few of the Cheirodendron leaf breeders nor most species of the modified-mouthparts and ciliated-tarsi species group. This last group is probably the most primitive species group of the Hawaiian fauna and we essentially know nothing about its biology, behavior or evolution at this point in time. The mushroom technique enabled Hardy, Kaneshiro, Ayala and myself to join together in a study on the systematics, allozymes and behavior of the crassifemur, fungus-feeder and picture-winged species--a project now under way and yielding considerable new data.

Kaneshiro continued to shoulder the main responsibility for the day-to-day operation of the laboratory, the organization and logistics of field collecting, and the maintenance of relationships with the various organizations whose help and permission we constantly need--doing all of this in addition to pursuing his own extensive research program. Fortunately, the project acquired in 1976 the services of Mrs. Joyce Karihara. Earlier as an undergraduate Joyce, then Miss Sato, had served as a student assistant. She proved to be competent, resourceful, and responsible. Upon graduation she had become a public school teacher, but after being assaulted and badgered by students, she quit teaching. The Project was fortunate to have her back with it because student assistants, although quite capable and responsible, work only a few hours a week and each deals with only a limited number of species. Joyce, however, provided continuum and oversight for the laboratory.

During the entire period 1963-80 the National Science Foundation provided funds for the support of the Hawaiian Drosophila Project. The major portion of these funds was used to support the specialized "low-temperature" laboratory (which is necessary for maintaining and rearing the Hawaiian species), for media preparation, and for salaries paid to the undergraduate and non-academic staff that cared for the numerous Drosophila stocks, etc. As of this year (1980) this support has been discontinued, despite the fact that the last review visitation team indicated that at least another decade of support was justified. Thus, in a real sense the Hawaiian Drosophila Project as conceived by Hardy and Stone now belongs to history.

This is not to say that research on the Hawaiian Drosophila fauna has ceased. A number of investigators have grants in their own names, and the specialized laboratory still exists. By making contributions from their grants the laboratory is operating, albeit at a reduced level. Investigators in various parts of the world are now able to maintain stocks in their own facilities. Thus, research is still continuing on some aspects of the fascinating, unique and complex Hawaiian Drosophila fauna.

In no sense is this a complete history of the Hawaiian Drosophila Project. What I have tried to do is (1) to show how two intelligent and thoughtful scholars, Hardy and Stone, assembled a group of investigators in order to solve a seemingly intractable problem, (2) how the answers to at least some of the major problems were developed, and (3) the role that serendipity plus that elusive ingredient called insight contributes to the solutions.

Senior Investigators of the Hawaiian Drosophila Project

Jayne N. Ahearn University of Hawaii
Francisco Ayala University of California, Davis
Visut Baimai Mahidol University, Thailand
Stephen M. Beverley Stanford University
*R. Malcolm Brown (Unavailable)
Peter J. Bryant
*Hampton L. Carson
*Frances E. Clayton
W. Joseph Dickinson
*Theodosius Dobzhansky
Antonio Fontdevilla
Helen Gelti-Douka
*Joseph Grossfield
*D. Elmo Hardy
*William B. Heed
Lewis Held
Ralph J. Hodosh
John A. Hunt
Duane E. Jeffrey
Walter E. Johnson
J. Spencer Johnston
*Michael P. Kambysellis
Elysse (Craddock) Kambysellis
*Carmen G. Kanapi
*Kenneth Y Kaneshiro
*Henry W. Kircher
Karen Loeblich
Terrence W. Lyttle
Robert Mangan
George Miklos
*Puliyampetta S. Nair
Alan T. Ohta
*Toyohi Okada
Rody Raikow
Richard Richardson
John M. Ringo
*Forbes W. Robertson
Fabio de Melo Sene
Susan Rockwood Sluss
Eliot Spiess
*Herman T. Spieth
*Harrison D. Stalker
William T. Starmer
William W. Steiner
*Wilson S. Stone
W. Dorsey Stuart
*Haruo Takada
Alan T. Templeton
*Lynn H. Throckmorton
John Tonzetich
Francisca C. do Val
Graeme Watson
*Marshall R. Wheeler
Thomas Wolfe
Hei Yang
Jong Sik Yoon

University of California, Irvine
University of Hawaii
University of Arkansas
University of Utah
Deceased, 1976
University of Santiago, Spain
Athens University, Greece
City College of New York
University of Hawaii
University of Arizona
University of California, Irvine
University of Maine
University of Hawaii
Brigham Young University
Case Western University
Texas A&M
New York University
University of Santa Tomas, Philippines
University of Hawaii
University of Arizona
University of California, Davis
University of Hawaii
Pennsylvania State University
Australian National University, Canberra, Australia
Southern Illinois University, Carbondale
University of Hawaii
Tokyo Metropolitan University, Japan
University of Pittsburgh
University of Texas
University of Maine
University of Aberdeen, Scotland
University of São Paulo, Brazil
University of Arizona
University of Illinois, Chicago Circle
University of California, Davis
Washington University
Syracuse University
University of Illinois, Urbana
Deceased, 1968
University of Hawaii
Sapporo University, Japan
Washington University
University of Chicago
Bucknell University
University of São Paulo, Brazil
University of Melbourne, Australia
University of Texas, Austin
Washburn University
California Academy of Science
Bowling Green University

*Those whose names are marked with an asterisk began their participation in the Project prior to 1970.

Graduate Students

Lorna Arita
Elizabeth Thomas Arthur
Patrick Conant
Tina Dallas
Wayne Ibara
Melanie Kam
Jeremy Montague
Steven Montgomery

The genus Chymomyza in the family Drosophilidae is of world-wide distribution (Throckmorton 1975). In North America they are typically regarded as forest or woodland species and are generally considered to be sap feeders (Wheeler 1963, 1965, 1970). As late as 1952 Chymomyza amoena in Michigan was still being collected around the cut ends of trees (Steyskal 1952) while Sturtevant (1921) reported that this species had been bred from walnut and butternut husks and acorns.

C. amoena in Michigan has now been found to be breeding in fallen apples in abandoned, remnants of abandoned and in commercial apple orchards. Both adults and larvae are able to use fresh apple as a food source. However, adults require a break in the skin in order to feed, and at the study sites outside East Jordan, Michigan eggs have only been found on apples on the ground, especially those which have been nibbled on by small animals or pecked by birds. Hence although individuals can be found in the trees, the MSU Pesticide Center does not consider C. amoena to be a pest.

Wheeler (1965) has commented that although economic pests in the family Drosophilidae are rare, some species may act as vectors for the transmission of plant diseases. Judging from the diseases manifest by the fruits on these long unattended trees at the East Jordan study sites, C. amoena may be such a species. Males are territorial, aggressive, and spar vigorously since lek behavior has not evolved. In the trees individuals may sit quietly wing-waving (a genus characteristic) on apples, but if challenged, chase one another over stems, leaves, branches and attached apples. Certainly they may transport mites; newly established mini-cages (small glass jars placed horizontally from which food dishes may be removed and inserted with forceps) may sometimes contain as many as 3 species of mites and several transfers of C. amoena larvae are required to get rid of them.

Chymomyza amoena, a member of the Family Drosophilidae, in Michigan is now living in apple orchards where it can overwinter in some pre-adult stage, presumably the late larval stage. Development of a media for growing this species in the laboratory has enabled experimental work on the mechanism of cold hardiness. In the process of determining that neither larvae nor pupae accumulate glycerol or other polyols when stored for 4 or more weeks at -2°C, late instar larvae—when disturbed—were found to have a tendency to leave the media en masse. This migratory tendency is not abated by mere transfer to 10°C for preconditioning at a low non-freezing temperature prior to subzero treatment.

Therefore larvae and pupae have been transferred directly from room temperature (22°C) to -2°C. The following data have been accumulated on the subsequent ability of either phase to complete development. Larval size is approximately 1 mg in weight.

Table 1. Emergence time following storage at -2°C for C. amoena larvae and pupae—no preconditioning.

<table>
<thead>
<tr>
<th>Source</th>
<th>Stage</th>
<th>Days at -2°C</th>
<th>No. larvae or pupae</th>
<th>No. to emerge</th>
<th>No. days to emerge after -2°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. Jordan '78</td>
<td>larvae</td>
<td>3</td>
<td>7</td>
<td>6</td>
<td>14 days minimum</td>
</tr>
<tr>
<td>E. Jordan '79</td>
<td>larvae</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>14 days minimum</td>
</tr>
<tr>
<td>E. Jordan '78</td>
<td>larvae</td>
<td>8</td>
<td></td>
<td>larvae dead</td>
<td></td>
</tr>
<tr>
<td>Grand Rapids</td>
<td>larvae</td>
<td>7</td>
<td></td>
<td>larvae reactive but not motile</td>
<td></td>
</tr>
<tr>
<td>Lansing</td>
<td>pupae</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>3 days</td>
</tr>
<tr>
<td>E. Jordan '78</td>
<td>pupae</td>
<td>5</td>
<td>20</td>
<td>1</td>
<td>7 days</td>
</tr>
<tr>
<td>E. Jordan '79</td>
<td>pupae</td>
<td>4</td>
<td>20</td>
<td>2</td>
<td>12 days</td>
</tr>
<tr>
<td>E. Jordan '78</td>
<td>pupae</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td>no record</td>
</tr>
</tbody>
</table>

Under random photoperiod in the laboratory, all larval stages and pupae can endure 24 h at -2°C. Late instar larvae (1 mg or larger) can resume development, pupate and emerge after 72 h at -2°C, but by 7 days are per-
manently injured if not preconditioned at a low nonfreezing temperature. Emergence records from pupae after 48 h at -2°C are variable, may depend upon the stage at which pupae encounter the subzero temperature, and imagoes from cold-treated pupae are often weak, fail to unfold their wings and their appearance would offer no support to an hypothesis that the pupal stage is the overwintering stage for *C. amoena*.

However, the ability of the larvae to survive 72 h at mild subzero temperatures without injury indicates that the freeze resistance factor(s) is(are) present despite maintaining cultures at room temperature. Zachariassen and Hammel (1976) found that freeze tolerant tenebroid beetles lost this capacity upon warm acclimation; Duman (1977a,b) discovered that the thermal hysteresis factor in a tenebroid larva disappeared only after a 16 h photoperiod and short daylength, low relative humidity or low temperature could all induce production of the thermal hysteresis factor. These insects within the continental United States are not relying on the accumulation of glycerol or other polyols for freeze resistance but on proteins. Thermal hysteresis factors lower the supercooling point in a freeze susceptible insect; cryoprotectants enable an insect to freeze without injury; some contain both (Duman 1979) although diptera investigated (Duman 1979) did not show evidence of thermal hysteresis. Further work on the effects of photoperiod and on the mechanism by which *C. amoena* larvae survive subzero conditions in winter is planned.

Chymomyza amoena is a cold-hardy drosophilid that now can be grown in the laboratory. Emergence time from field-collected apples in summer versus spring indicates that the overwintering stage is the late larval stage. Experiments subjecting larvae and pupae to -2°C have shown that all stages can be stored at that temperature for 24 h and recover, but only the late instar stage can withstand prolonged storage at this mild subzero temperature provided the larvae are preconditioned first at a low nonfreezing temperature. Timed emergence tests after storage at -2°C and -5/6°C have now been carried out. -2°C is achieved in the freezing compartment of a refrigerator, -5/6°C in a Labline incubator in which the temperature fluctuated between -5°C and -6°C during the time cultures were kept in it. For -5/6°C preconditioning intervals at 10°C and -2°C varied, and larvae were transferred from room temperature appropriately to fresh media so that all were subjected to -5/6°C and postconditioning temperatures simultaneously.

Table 1. Emergence data on *C. amoena*, field collections + laboratory.

<table>
<thead>
<tr>
<th>Source</th>
<th>No. Collections</th>
<th>Emergence period after maintenance at 22°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Field collected apples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spring (March, April, May)</td>
<td>4</td>
<td>15-23 days</td>
</tr>
<tr>
<td>Summer-Fall</td>
<td>7</td>
<td>22-49 days</td>
</tr>
<tr>
<td>Laboratory apples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>media</td>
<td>Oct. '78 F2s</td>
<td>26-52 days</td>
</tr>
<tr>
<td>oviposition to pupa</td>
<td>3</td>
<td>20 days minimum</td>
</tr>
<tr>
<td>pupa to imago</td>
<td></td>
<td>10 days</td>
</tr>
</tbody>
</table>

In the larval stage, the last 3 days the larvae are equivalent in size to *D. m.* 3rd instars, i.e., 1 mg or greater in weight. This is the size which has been stored successfully 28-33 days at -2°C and which was used in the experiments reported here. Table 2 gives the days stored at the specified temperatures, the number of larvae recovered from the media and transferred again to fresh media, number pupating and number of imagoes as well as duration of the larval and pupal stages after subzero treatment.

Table 1 summarizes the emergence data on *C. amoena* obtained from field-collected fallen apples, from apples in the laboratory and from *C. amoena* media. Duration of larval and pupal stages on media have been the same for *C. amoena* populations from Northern Lower (East Jordan) and mid-Michigan (Lansing, Grand Rapids).
Table 2. Emergence data on C. amoena larvae after subzero treatment.

<table>
<thead>
<tr>
<th>Source</th>
<th>Days at specified t°</th>
<th>Numbers</th>
<th>Days</th>
<th>Source</th>
<th>Days at specified t°</th>
<th>Numbers</th>
<th>Days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10°C</td>
<td>-2°C</td>
<td>-5/-6°C</td>
<td>-2°C</td>
<td>10°C</td>
<td>l-p</td>
<td>p-i</td>
</tr>
<tr>
<td>E.J.</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>E.J.</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>G.R.</td>
<td>-</td>
<td>-</td>
<td>22h</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>G.R.</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>G.R.</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>8</td>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

As shown in Table 2, successful emergence after -5/-6°C requires at least several days preconditioning at 10°C and -2°C beforehand. This is similar to the previous discovery that storage at -2°C a week or longer requires preconditioning at 10°C and is therefore equivalent to what botanists call "hardening". Whatever changes are occurring are necessary to withstand successive lower temperatures, which in Michigan may be well below -6°C when there is no snow cover.

After both -2°C and -5/-6°C larvae require at least 5 days to reach the pupal stage again. Emergence data are comparable, 15-16 days, and compare favorably to emergence data for C. amoena from spring-collected apples kept in the laboratory at 22°C.

As a check that the 3rd or late instar is the overwintering stage for C. amoena, apples were collected from a nearby orchard in early March after a period of very cold weather in a winter of little snow cover. They were held at 10°C overnight, then inspected for C. amoena larvae. Five were found; one 2nd instar was dead, three of those actively mobile and feeding were late instars, and one was borderline late instar in size. The apples were quite soggy after defrosting, which suggests that C. amoena larvae may be freeze tolerant rather than freeze-susceptible with a very low supercooling point (Zachariassen and Hammel 1976a,b).

Beck, A.K., R.R. Racine and F.E. Würgler.
Institute of Toxicology, Swiss Federal Institute of Technology, and University of Zürich, Switzerland. Primary nondisjunction frequencies in 7 chromosome substitution stocks of D. melanogaster.

In continuation of the work by Racine, Beck and Würgler (1979) a number of chromosome substitution stocks were studied for the frequency of primary nondisjunction in females. The balancer stock contained the following chromosomes: Cy = In(2LR)SM5, a12 Cy 1Cv cn2 sp2; Pm = In(2LR)bw1; Ubx = In(3LR)Ubx-3°; Sb = In(3R),Sb; pol = spapol. H indicates unmarked chromosomes from a Hikone-R stock, P unmarked autosomes from a stock containing the attached-XY chromosome Parker Iio-8 and A the autosomes with inversions (balancer stock). Since all chromosome substitution stocks contain identical X-chromosomes (from the Hikone-R stock) and identical 4th chromosomes (pol from the A stock) the abbreviations used indicate only the stock constitution with respect to chromosomes 2 and 3 (see the table).

In the nondisjunction tests we studied the meiotic segregation of the sex-chromosomes in the females of the chromosome substitution stocks. We crossed 1-2 day old males of the males of the genotype YBX.YL, In(1)EN, y B to 1 day old females. Three pairs were used per vial. After 3 days the parents were discarded. The progeny were classified according to sex and phenotype. Two types of males could not be distinguished by phenotype: YBX.YL, In(1)EN, y B/O (resulting from primary nondisjunction in XX females) and YBX.YL, In(1)EN, y B/Y (resulting from secondary nondisjunction in XXY females). These males were crossed to C(1)DX, y f / y+ Y BS; bw; st pP females and surviving C(1)DX progeny indicated the presence of a free Y chromosome in the male tested, because C(1)DX, y f contains a Y-suppressed lethal.
The results with the numbers of progeny scored and the observed frequencies of primary nondisjunction are shown in the table. With all crosses more male than female progeny were obtained. The frequencies of primary nondisjunction show some variation. In particular the HR stock displayed an unexplained high number of exceptional males. But all the nondisjunction frequencies are within the range found with wild type stocks. This demonstrates that no meiotic mutants are present in the chromosome substitution stocks studied.

This work was supported by the Swiss National Science Foundation, project no. 3.1560.77.

Reference: Racine, Beck and Würgler 1979, Mutation Res. 63:87-100.

determination of the molecular weight of this new enzyme by Sephadex G-150 gel filtration. D. melanogaster pupae (48 hours old) from the Silvan (Victoria) population were homogenized (6 g pupae/4 ml buffer) in ice cold 50mM Tris/HCl buffer pH 8.3 containing 10% (w/v) sucrose and 2M urea. The homogenate was centrifuged at 10,000g for 30 min at 4°C. The supernatant (6.0 ml) was applied to a Sephadex G-150 column (5.0 x 75 cm) equilibrated with homogenization buffer lacking sucrose and urea. Fractions (15 ml) were collected at a flow rate of 40-45 ml/hr. Effluent was monitored for absorbance at 280nm, MDH activity (malate dehydrogenase: internal standard) after McReynolds and Kitto (1970) and polyacrylamide gel electrophoresis to detect phenol oxidase (after Batterham and McKechnie, 1980). The column was calibrated with chymotrypsinogen (a-CT: 25,000), ovalbumin (OA:45,000) and bovine serum albumin (BSA monomer: 68,000; BSA dimer 136,000).

The molecular weight of MDH was taken as 71,500 (G.K. Chambers unpublished). The elution position of the PHOX enzyme was judged to be 44.5±0.5 fractions, from which we calculated a molecular weight of 108,000±4,000 for the PHOX oligomer--see Fig. 1.

Fig. 1. Calibration of Sephadex G-150 column and calculation of the molecular weight of PHOX.

PHOX, a newly discovered form of phenol oxidase (O-diphenol: O2 oxidoreductase E.C. 1.10.3.1.) encoded by the Phox locus (II 80.6) in D. melanogaster has been described by Batterham and McKechnie (1980). To firmly establish the novelty of this enzyme it was important to devise a test to distinguish it from A component phenol oxidases (see Seybold et al. 1974). We report here
We would recommend this experimental approach to other workers involved in allozyme surveys of natural populations in view of recent suggestions that enzyme variability is correlated with subunit size (e.g., Nei et al. 1978).

We are indebted to Dr. J.B. Gibson in whose laboratory this work was carried out.

An analysis of the thermal stability of the enzyme catalase (H2O2:H2O2 oxidoreductase, E. C. 1.11.1.6) during Drosophila development was conducted on crude extracts of an Oregon-R-6 strain and the results are illustrated in Figs. 1 and 2. The optimum temperature for this study was considered to be 56°C since about half the activity decayed in 5 min (Fig. 1). In extracts from each developmental stage, there is a break in the semilog plot after 5 min, with a half-life of 6.5 min in adult and pupal extracts and 14 min in larval extracts (Fig. 2). Similar results have been obtained in screening 20 different wild type laboratory stocks. Such a bimodal curve indicates the possibility that more than one molecular form of the enzyme exists, although isozymic patterns are not yet evident on electrophoretic gels. Multiple forms could arise by one or more of the following mechanisms, although none of these have been rigorously ruled out in our current studies: (1) isozymes coded for by different structural genes, although only a single enzyme dosage-sensitive region has been identified by segmental aneuploidy (Lubinsky and Bewley 1979); (2) post-translational modification of a primary gene product leading to conformational alterations; (3) the partitioning into compartmentalized and soluble fractions of the enzyme; and (4) dissociation of the enzyme into enzymatically active subunits.

Fig. 1. The effect of increasing temperature on the thermal stability of catalase in adult crude extracts incubated for a period of 5 min.

Fig. 2. Thermal denaturation at 56°C of catalase activity in crude extracts. a. Crude adult (O) and crude pupal (0) extracts. b. Crude larval extracts.
It has previously been demonstrated that a fraction of catalase is compartmentalized in the glyoxosomes of maize (Scandalios 1974) and the liver peroxisomes of mammals (Holmes 1971). In our studies, the use of triton X-100 increased the amount of soluble extracted enzyme by 1/3 in adult extracts and by two-fold in larval extracts. These results may indicate that a fraction of the catalase activity is compartmentalized or membrane-bound to subcellular organelles in Drosophila.

Supported by NIH Grants GM-23617 and AG-01739.

Biémont, C. Université Lyon I, Villeurbanne, France. Parental effect and inbreeding depression in D. melanogaster.

Natural populations of Drosophila carry genetic loads consisting of deleterious variants which reduce the viability of their carriers when homozygous as a result of inbreeding (see Lewontin 1974). Dying of inbred offspring ranges from early embryogenesis to larval and pupal stages. Recently, in D. melanogaster, I interpreted such effects in terms of a single gene hypothesis (Biémont 1978, 1979). An Is (inbreeding sensitivity) gene, located on chromosome III, with alleles Is- and Is+ is involved in morphogenetic events. Its expression in homozygous (Is-/Is-) embryos depends on the presence in one parent of an Is+ allele which promotes embryogenesis. Crosses between Is-/Is- sibs produce embryonic deaths, of a level that varies according to the regulation of the expression of the Is- allele. We now report further evidence supporting the parental control of expressivity of the gene involved.

Brother-sister couples which laid eggs showing blocking in development were selected and the male and female separated. Once females from these couples of presumed Is-/Is- constitution were no longer producing fertilized eggs, they were crossed with Cy/Pm H/Sb males. Is-/Is+ Cy Sb flies from different sibships were then intercrossed leading to four classes of offspring with phenotypes

\[+: \left(\frac{++ + \text{Is}^-}{++ + \text{Is}^-} \right), \quad \text{Cy:} \left(\frac{\text{Cy} + + \text{Is}^-}{++ + \text{Is}^-} \right), \]

\[\text{Sb:} \left(\frac{++ + \text{Is}^-}{++ \text{Sb} +} \right) \quad \text{and} \quad \text{Cy Sb:} \left(\frac{\text{Cy} + + \text{Is}^-}{++ + \text{Sb} +} \right). \]

In each class, brothers and sisters were mated and viability of their offspring was evaluated as the proportion of wild type individuals (all +Is-/+Is-) obtained from the eggs laid by the sibs. Therefore, to each Is- Is+ Cy Sb x Is- Is+ Cy Sb parental couple, is associated the inbreeding response of the four classes of their offspring. Since our study is based on the egg-to-adult survival of wild type flies, I have eliminated the Cy Sb class in the progeny of which only 1/16 of wild type flies is expected; the number of such flies obtained was too small for valuable statistical analysis. The rank correlation coefficient of Spearman reveals a significant link between the values of the + and Cy classes (Fig. 1) \((r = 0.57; t = 2.5; P < 0.05) \). This correlation was not significant either between
classes + and Sb (r = -0.019; t = 0.63; P > 0.05) nor between classes Cy and Sb (r = 0.14; t = 0.53; P > 0.05). Consequently, inbreeding depression is similar in the + and Cy classes but independent of that in the Sb class. As a result of our experimental scheme, all wild type individuals descending from the brother-sister matings were homozygous Is-/Is-. So, the difference between the +, Cy and Sb classes seems associated with the homozygous Is-/Is- constitution of the flies of the + and Cy class as compared with the Is-/Is+ heterozygous state of the flies of the Sb class. This observation suggests that the proportion of wild type flies, therefore the mortality rate during development, depends on the genomic constitution of the parents. The extent of inbreeding depression appears to characterize the parental couple, thus suggesting regulation by cytoplasmic factors, as previously inferred (Bimont 1978).

Such a parental effect has to be taken into account when inbreeding effects with different mating systems, or various natural populations, are compared. Indeed, whatever the nature of the implied gene, variation of its frequency in populations may influence the extent of viability depression after inbreeding and thus estimate of genetic load.

I thank R. Grantham and C. Gautier for their help with the manuscript.

Bishop, C.P. and A.F. Sherald*. University of Virginia, Charlottesville, Virginia; George Mason University, Fairfax, Virginia. Isolation of two third chromosome mutants conferring resistance to α-methyl dopa.

α-methyl dopa (α-MD) is an in vitro inhibitor of dopa decarboxylase (DDC) and it was originally thought that α-MD might be used to screen for mutants with altered levels of the DDC enzyme. Although the original screen for resistance to α-MD produced two strains with elevated levels of DDC (Sherald and Wright 1974), screens for sensitivity to the inhibitor produced mutants with no effect on the enzyme (Sparrow and Wright 1974). Furthermore, it has been subsequently shown that the greater the number of DDC gene copies, the greater the sensitivity to α-MD (Wright, unpublished). Sensitivity to α-MD, it was discovered, was due to a locus, l(2)amd, other than the structural locus for DDC (Wright et al. 1976a, 1976b). Since the l(2)amd locus maps very close to the structural gene for DDC, the mutants with both elevated resistance and enzyme activity may be control mutants (Marsh and Wright 1979).

The two α-MD resistant mutants we report here were isolated from a total screen of 1,715 EMS mutagenized (Lewis and Bacher 1968) progeny from a lethal free third chromosome bw; st stock. They were isolated by survival on 0.8 mM DL α-MD, well above the concentration that is lethal to wild type flies (less than 0.4 mM). A total of 80 putative resistant mutants were recovered, 18 of which showed resistance upon retesting and two (PR40 and PR45) of these were selected for further study.

Table 1 shows that the locus responsible for resistance clearly segregates with the mutagenized third chromosome. Preliminary mapping of one of the mutants, PR45, places the locus between hairy (3-26.5) and thread (3-43.2) (Lindsley and Grell 1968). Using the L form of α-MD, which is roughly twice as lethal as the DL form, the LD50 for the two mutants has been established at 0.325 mM L α-MD for PR40 (bw; Tm3 Ser Sb/st*40) and 0.35 mM L α-MD for PR45 (bw; Tm3 Ser Sb/st*445). The LD50 for control stocks was below 0.1 mM L α-MD.

In addition to showing dominant resistance to α-MD, these mutagenized third chromosomes are recessive lethal. During preliminary mapping of PR45, replacement of large portions of the third chromosome did not permit construction of a homozygous resistant stock. Crosses between the two resistant mutants produced very few flies (roughly 5% of expected) carrying both resistant chromosomes, indicating that the two chromosomes fail to complement. The fact that the two independently isolated mutants are lethal in trans configuration and that a homozygous resistant stock could not be established even after replacement of significant portions of the third chromosome suggests that dominant resistance and recessive lethality may be due to hits in a single locus.

It is not surprising that more than one locus can affect resistance to a lethal substance. The function of the l(2)amd locus and the locus reported here are unknown. The sites of possible action could include uptake or detoxification of the compound or alterations in the target protein. The genetic relationship between l(2)amd locus and the third chromosome...
locus is being explored as is the relationship of the other 16 putative resistant mutants.

Table 1. Segregation of resistance to α-MD with the mutagenized third chromosome.¹

<table>
<thead>
<tr>
<th></th>
<th>PR45 (bw; Tm3 Ser Sb/st*₄⁵) X Con B (bw; Tm3 Ser/st₅)²</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc.</td>
<td>L α-MD</td>
<td>#eggs hatched</td>
<td>bw; Tm3 Ser/st*₄⁵</td>
<td>bw; st*₄⁵/st₅</td>
<td>bw; Tm3 Ser Sb/st₅</td>
</tr>
<tr>
<td>0 mM</td>
<td>271</td>
<td>50</td>
<td>63</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>.1mM</td>
<td>257</td>
<td>71</td>
<td>58</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>.2mM</td>
<td>241</td>
<td>60</td>
<td>61</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>.3mM</td>
<td>265</td>
<td>50</td>
<td>43</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>.4mM</td>
<td>178</td>
<td>11</td>
<td>12</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>PR40 (bw; Tm3 Ser/st₄⁰) X Con #1 (bw; Tm3 Ser Sb/st₁)³</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conc.</td>
<td>L α-MD</td>
<td>#eggs hatched</td>
<td>bw; Tm3 Ser/st*₁</td>
<td>bw; st₄⁰/st₁</td>
<td>bw; Tm3 Ser Sb/st*₄⁰</td>
</tr>
<tr>
<td>0 mM</td>
<td>249</td>
<td>62</td>
<td>53</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>.1mM</td>
<td>276</td>
<td>2</td>
<td>61</td>
<td>78</td>
<td></td>
</tr>
<tr>
<td>.2mM</td>
<td>286</td>
<td>0</td>
<td>37</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>.3mM</td>
<td>287</td>
<td>0</td>
<td>12</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>.4mM</td>
<td>121</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

1) Data from reciprocal crosses were pooled since no maternal effect was found.
2) Con B was a control stock which had been through the same crosses as PR40, except that it was not mutagenized.
3) Con #1 was a mutagenized control stock isolated from the screen and carried through the same crosses as PR45.

This work was supported by Public Health Service Grant GM19242 to T.R.F. Wright.

Acknowledgements: We thank C. Ferguson, K. Walker and C. Dillard for valuable technical assistance and Dr. T.R.F. Wright for his help and encouragement.

Beckenbach, A.T. Simon Fraser University, Burnaby, B.C., Canada. Map position of the esterase-5 locus of D. pseudoobscura: a usable marker for "sex-ratio".

Recently, Anderson and Norman (1977) published a map of D. pseudoobscura mutants. The purpose of this note is to add the esterase-5 (est-5) locus to that map. The primary impetus for the work was to determine whether the est-5 alleles would provide usable markers for the "sex-ratio" (SR) X-chromosome in laboratory population studies. Efforts to obtain recombinants between est-5 and SR have thus far failed (Beckenbach, unpubl.; Curtsinger and Feldman 1979). However, Sturtevant and Dobzhansky (1936) have provided a recombination map relating the SR and standard (ST) chromosomes for a number of visible markers. Thus by localizing est-5 with respect to the visibles on the ST chromosome, it was hoped to obtain a better estimate of the linkage relationship between that locus and the SR inversions.

Stocks used: (1) A marker strain of D. pseudoobscura carrying the visible mutants yellow (y), singed (sn), vermillion (v), compressed (co) and short (sh) was obtained from Dr. W.W. Anderson. This stock was found to be homozygous for the 1.07 allele of est-5. (2) A strain of the species, homozygous for the 0.85 allele, was obtained from Dr. G.A. Cobbs. This strain was originally derived from an isofemale line from a citrus grove in Riverside, California, and was made homozygous by recurrent inbreeding. Both strains carried the ST arrangement of the X-chromosome. Virgin females of the marker stock were crossed to est-5 males. A total of 887 F2 progeny (431 females, 456 males) were examined for the presence of the visible markers and then tested for est-5 genotype, using polyacrylamide vertical slab gel electrophoresis and the technique described by Cobbs (1976).

Results: The results are given in the table. Esterase-5 maps to the position 111.8, just distal to co on the right arm of the X-chromosome. Graphic representation of the map of part of the X-chromosome, with comparison to recombination values in SR/ST heterokaryotypes (from Sturtevant and Dobzhansky 1936) is given in Fig. 1.

Curtsinger and Feldman (1979) have placed the upper limit (95% confidence interval) of recombination between est-5 alleles and the SR chromosome in SR/ST heterokaryotypes at 1.5%. That value is based on 0 recombinants in 240 males examined. The results of this study suggest that their value is quite conservative. Comparison to Sturtevant and Dobzhansky's map suggests an upper limit of 0.5%. This value, too, may be excessive.

SR differs from ST by three non-overlapping inversions and a considerable homosequential length of chromosome exists between the proximal pair of inversions and the distal one (Dob-

<table>
<thead>
<tr>
<th>Region</th>
<th>Number Observed</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-recombinants</td>
<td>297</td>
<td>0.335</td>
</tr>
<tr>
<td>y - sn</td>
<td>103</td>
<td>0.116</td>
</tr>
<tr>
<td>sn - v</td>
<td>18</td>
<td>0.020</td>
</tr>
<tr>
<td>v - co</td>
<td>194</td>
<td>0.219</td>
</tr>
<tr>
<td>co - est-5</td>
<td>54</td>
<td>0.061</td>
</tr>
<tr>
<td>est-5 - sh</td>
<td>418</td>
<td>0.471</td>
</tr>
</tbody>
</table>

Fig. 1. Map positions for the visible markers and esterase-5 in the ST/ST homokaryotype and recombination frequency in the SR/ST heterokaryotype. Map positions (upper figure) are taken from Anderson and Norman (1977), Sturtevant and Tan (1937) and this study. The symbol f refers to "forked"; mg refers to "magenta"; other symbols are defined in the text. Recombination values (lower figure) are taken from Sturtevant and Dobzhansky (1936).
Recombinants between SR and ST are known from that region (Wallace 1948; Anderson, pers. comm.), isolating the small distal inversion. The "sex-ratio" phenotype is carried in the proximal pair of inversions (Wallace 1948). It is quite likely that the recombination in the homosequential region accounts for much of the recombination found by Sturtevant and Dobzhansky. Since over 90 map units separate est-5 from sh, it is likely that most recombinants occur distal to est-5, beyond the region conferring the "sex-ratio" phenotype.

Specific parasites are an important component of the niche and it has been assumed that development of genetic defense mechanisms could play a role during the speciation process. The seven sibling species of the melanogaster sub-group appear to originate from West Africa where speciation process occurs (Tsacas 1979). The existence in this area of parasitic Cynipidae specific to Drosophila (Barbotin et al. 1979) might play a role in this process. Cothonaspis boulardi is a solitary, endophagous parasite (parasitoid) that oviposits into larvae of several species of Drosophila. We have tried to estimate the differential susceptibility of the seven sibling species of Drosophila towards this parasite. For this purpose we retained the following experimental procedure. Females of this solitary parasite lay their eggs (at 25°C) in the second instar larvae of the host; consequently, the exposure of host larvae to the parasite was limited to 24 hrs. Ten wasp females were introduced into a plexi-
glas box containing 40 second instar larvae deposited on a thin disc of medium. 24 hrs. later, the larvae were collected and divided into two equal batches. The first replicate batch was dissected 48 hrs. after the beginning of infestation; we were able to estimate the experimental mortality (RLM), the degree of infestation (DIF), the average number of parasite eggs per parasitized larva (MNE) and the encapsulation rate (EPR), i.e., the intensity of cellular immunity of Drosophila species against the parasite (% of larvae which encapsulated all the parasite eggs).

For the second replicate batch, observed on the 21st day, information was obtained on the following: number of hosts surviving (RHE: rate of host emergence) comprising non-infested hosts plus infested hosts with successful immune reaction, experimental pupal mortality (RPM: rate of pupal mortality) including the hosts with remains of developing parasites, nonemerged fully developed parasites, and "mummified" pupae where no distinguishable parasite or fly remains were evident, and number of hosts producing parasite progeny (RSP: rate of successful parasitism). We must point out that the values for RLM and RPM were obtained from the experimental mortality subtracted from mortality obtained in controls. For each Drosophila species, the test was replicated eight times (i.e., 640 larvae).

The data were treated by a multivariate analysis. The analysis of correspondence has the advantage of allowing the simultaneous study and projection of the experimental results (n = 56, since eight experiments at least were performed for each Drosophila species) and of the seven variables (DIF, MNE, EPR, RHE, RSP, RLM and RPM). To each group of experimental results showing the same characteristics (i.e., the same species of Drosophila) it is possible to associate a gravity center and an equidensity ellipse (50%) (Fig. 1). In the same figure, we can observe the reparation of the different species, the localization of the different variables and the degree of association between the last two. It is therefore interesting to point out the main physiological features which characterize Drosophila species in response to C. bouardi.

Concerning defense capacity, D. yakuba and D. teissieri are the most effective (association with EPR); consequently these two species have the highest rate of host emergence (association with RHE). On the contrary, D. melanogaster has no encapsulation reaction; this species is the best host for C. bouardi (association with RSP on the graph). The other species present an intermediate position. D. erecta and D. orena are more susceptible to infestation; there is a good association on the graph between the two species and RLM. On the contrary, D. simulans presents susceptibility only at the pupal stage.

In this representative graph (Fig. 1) we observe the following correlations:

D. melanogaster

D. mauritiana

D. simulans

D. yakuba

D. teissieri

D. erecta

D. orena

This representation, in some way, parallels the phylogenetic relationships established by chromosomal analysis (Lemeunier et al. 1976). This parallelism strongly suggests that such specific host divergences played a role in the present situation. In other words, differences in susceptibility to the parasite would require long evolutionary periods and would be genetically stable.

Chadov, B.F. Institute of Cytology and Genetics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk 630090, USSR. Effect of aberrant Y chromosomes on X chromosome nondisjunction.

It is known that structural mutations of X chromosomes and autosomes change considerably the frequency of secondary nondisjunction of X chromosomes. The latter changes with the age of the females, but to a lesser degree.

The effect of aberrant Y chromosomes on the secondary X chromosome nondisjunction was studied in order to obtain some lines contrasting for this character (Chadov 1971). The following Y chromosomes have been used: Y (structurally normal from Berlin wild stock), y+Y, B5y+Y, YL, scV1, R(Y)L bb+, R(Y)L, YS, YS, scV1, YS. Every Y chromosome was introduced into the genome of y scV1 In 49 v sc8/v v (female I), In(1)dl-49+BM1, y2 sc wa v BM1/y v f (female II), and In(1)dl-49+BM1, sc v BM1/sc v f (female III). The females were crossed to yellow males and the frequency of X chromosome nondisjunction in each of 27 stocks was determined (see table).

This table shows that the stocks studied had different frequencies of X nondisjunction. To elucidate to what degree these differences depend on the Y chromosome structure or on the genetic background of the lines, the relative effect of each Y chromosome was determined by the formula

\[
f_o - f_n
\]

\[
\frac{f_o}{f_n}
\]

where \(f_o\) stands for nondisjunction frequency in the line containing structurally normal Y chromosome (control) and \(f_n\) represents the frequency in the line containing an aberrant Y chromosome. These values determined in each of the three lines for eight Y chromosomes are shown in the histogram. Each Y chromosome is presented as a triad of columns, YL-scV1 and YS-YS as diads. It is evident that the aberrant Y chromosome effect doesn't depend considerably on the background of the line in which it was determined. The main tendency is that the smaller the Y chromosome size, the smaller is the frequency of X nondisjunction. The Y chromosomes deleted for the long arm (scV1-YS and YS) reduce a control frequency in the greatest degree, followed by YS-YS chromosome; Y chromosomes deleted for the short arm (YL-scV1, R(Y)L bb+, R(Y)L) have a lesser effect; and "whole" Y chromosomes (y+Y and B5y+Y) have the least effect.

<table>
<thead>
<tr>
<th>Frequency of secondary nondisjunction (%)</th>
<th>Female I</th>
<th>Female II</th>
<th>Female III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y (normal)</td>
<td>54.2 ± 2.2</td>
<td>70.9 ± 2.0</td>
<td>69.6 ± 2.3</td>
</tr>
<tr>
<td>y+Y</td>
<td>53.5 ± 2.2</td>
<td>68.5 ± 1.2</td>
<td>71.7 ± 0.5</td>
</tr>
<tr>
<td>B5y+Y</td>
<td>52.8 ± 1.5</td>
<td>70.7 ± 2.0</td>
<td>70.0 ± 2.4</td>
</tr>
<tr>
<td>YL-scV1</td>
<td>51.3 ± 1.9</td>
<td>67.2 ± 1.7</td>
<td>---</td>
</tr>
<tr>
<td>R(Y)L bb+</td>
<td>49.9 ± 1.9</td>
<td>59.8 ± 2.0</td>
<td>60.6 ± 2.2</td>
</tr>
<tr>
<td>R(Y)L</td>
<td>48.6 ± 1.5</td>
<td>58.5 ± 1.8</td>
<td>62.6 ± 1.9</td>
</tr>
<tr>
<td>YS-YS</td>
<td>43.2 ± 1.5</td>
<td>---</td>
<td>52.7 ± 1.5</td>
</tr>
<tr>
<td>YS</td>
<td>39.6 ± 1.8</td>
<td>48.3 ± 1.6</td>
<td>37.7 ± 1.6</td>
</tr>
<tr>
<td>scV1,YS</td>
<td>20.8 ± 1.4</td>
<td>21.8 ± 1.3</td>
<td>15.8 ± 1.3</td>
</tr>
</tbody>
</table>
Thus, the data obtained strongly suggest that the secondary X nondisjunction is a result of X-Y pairing and the frequency of this pairing depends on a correspondence of X and Y sizes, in agreement with Grell's rule for nonhomolog pairing (Grell 1964).

Chadov, B.F. and E.V. Chadova. Institute of Cytology and Genetics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk 630090, USSR. Nonhomologous pairing and spontaneous interchange in D. melanogaster males.

X chromosomes took place in mitotically divided spermatogonial cells of sc8.Y/y;C(2L)RM, b pr;c(2R)RM, cn males bearing autosomal compounds C(2L)RM, b pr and C(2R)RM, cn. The appearance of chromosome 2L.2R,b pr cn with the standard order of genes was expected as a result of interchanges between the compounds in their centromeric regions, and the appearance of half-translocations Y.2L,b pr or X.2L,b pr, containing arm 2L with b and pr genes, as a result of interchanges C(2L)-Y and C(2L)-X.

In experiments the males mentioned above were mated to C(1)DX,y;b j pr cn/T(Y;2)C and C(1)DX,y;+/T(Y;2)C females. These females produce several types of gametes: some of them are euploid and complementary to sperm cells with new arising chromosome 2L.2R,b pr cn; others are aneuploid and complementary to sperm cells with half-translocations Y.2L or X.2L. The progeny of females in three crosses constituted 225 individuals. Judging by phenotypes, 156 individuals contained chromosomes 2L.2R and 12 individuals, half-translocations bearing arm 2L. As the subsequent analysis showed, some of the 225 individuals were sterile, 123 individuals contained chromosome 2L.2R,b pr cn and 5 individuals, half-translocation Y.2L,b pr. 35 individuals arose from sperm and egg cells with nondisjunctional autosomes 2. The progeny with interchanged chromosomes arose in clusters. The data obtained have shown that in spermatogonial cells of Drosophila males nonhomologous pairing and interchanges take place.

Chadov, B.F. Institute of Cytology and Genetics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk 630090, USSR. Nonhomologous X-2 pairing in females containing structurally normal X chromosomes.

If two nonhomologs don't conjugate for some reason, I have observed two cases when chromosomes, whose conjugation was not purposely disturbed, participated in nonhomologous pairing.

(1) Females with structurally normal X chromosomes and heterozygous Sm1, a1 2 Cy cn 2 sp inversion were tested for formation of oocytes aneuploid for autosomes 2 and X's (Chadov et al. 1970). In mating with C(2L)RM,b pr;c(2R)RM, cn males they produced progeny arising from the following oocytes:

<table>
<thead>
<tr>
<th>Oocyte type</th>
<th>XX</th>
<th>XX22</th>
<th>2-2</th>
<th>0</th>
<th>X22</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>20</td>
<td>-</td>
<td>41</td>
<td>0</td>
<td>39</td>
<td>63</td>
</tr>
</tbody>
</table>

Double aneuploid oocytes, i.e., oocytes aneuploid both for the X's and autosomes 2, constituted 55% of all oocytes. The double aneuploid oocytes were of two types only: XX and 2-2. Based on these data, it may be supposed that X-2 pairing takes place and X and 2 disjoin after the nonhomologous pairing. If X-2 pairing did not take place and autosomes 2 and the X's were distributed independently, the double aneuploid oocytes would rarely arise and four types of such gametes instead of the two types observed would be formed.

Phenomena of nonhomolog pairing usually arise in genotypes in which a conjugation of no less than two chromosome pairs was purposely disturbed or some supernumerary chromosomes were introduced into the genome. One may suppose, however, that the nonhomolog pairing is not restricted to the above mentioned range of genotypes, but can take place in any genotype.
(2) Females y/y;C(2L)RM4,dp;C(2R)RM4,px were crossed to C(2L)P4,++;C(2R)Pr,+ males (Chadov and Podoplelova, in press). They produced, among others, 123 individuals resulting from the nondisjunction of matroclinal dp and px compounds. 49 of them arose from double aneuploid oocytes: 32 of XX type and 17 of C(2L);C(2R) type. Oocytes of XX;C(2L);C(2R) and 0 types were absent. One can suppose that the formation of double aneuploid oocytes is a result of pairing between the autosomal compounds and X's.

In both cases the conjugation of the X chromosomes was not purposely disturbed, but a part of them was involved in pairing with autosomes. The frequency of X-2 pairing is nearly 1% in the first genotype and 8% in the second. According to Weinstein's data nearly 5% of X's are non-crossovers even if they are structurally normal (Weinstein 1936). Probably, these X's have taken part in the nonhomologous pairing. However, in the second genotype the frequency of nonhomolog pairing is higher than the 5% level. It is not ruled out that some crossover X's could be involved in nonhomologous pairing with autosomal compounds. Recent data concerning spontaneous formation of half-translocations in y/XY;C(2L);C(2R) females showed that some of them arising as a result of XY-C(2L) interchanges are X crossovers (Chadov and Podoplelova, in press).

The data obtained, from the methodical point of view, show that the registration of double aneuploid gametes is a simple and sufficiently sensitive test for the presence of nonhomolog pairing. In principle, it makes possible the study of this process also in structurally normal genotypes.

The tandem repeat chromosome Dp(1;1)Gr, y^2 sc (w^*-spl sn^3)(w^c sn^3), which duplicates approximately one quarter of the euchromatic part of the X-chromosome (3A2-3;8B4-C1), was checked for an intrachromosomal effect (reviewed by Lucchesi 1976) on the v - f and f - car region. Dp(1;1)Gr is homozygously and hemizygotously lethal (Kalisch 1973). Crossover values are decreased within and adjacent to the duplication (Kalisch 1975). Exceptions come from patroclinous males and intrachromosomal exchanges between the two parts of the tandem repeat after double loop pairing (Kalisch 1976).

Data of experiments no. 3 and 4 in Table 1 show that the crossover decrease in region 1 is accompanied by a significant crossover increase in regions 2 and 3. The long distance between vermilion (33.0) and forked (56.7) as well as the values of regions 1 and 3 suppose that the crossover value of region 2 could be composed of a decreased value near vermilion and an increased one in the rest of the region. Table 2 shows a comparison of the intrachromosomal effect in different X-chromosomal chromosome mutations on the f - car region. Surprisingly there is neither a correlation between the genetic length nor between the crossover reduction in the distal part (v-v region) and the strength of the intrachromosomal effect on the proximal part of the euchromatic chromosome region (f - car region). The simultaneous effects of the heterozygous Dp(1;1)Gr chromosome (intrachromosomal effect) and of two heterozygous inversions in the autosomes (Interchromosomal effect) on the f - car region have also been tested. The data of the experiments no. 2, 4, 5 and 6 in Table 1 show that the simultaneous effects are in the range of the summation of the two separate effects (90.63 ± 47.98 : 157.51).
Table 1. Intrachromosomal effect of heterozygous Dp(1;1)Gr females. Exceptions among the F1 males (patroclinous males and intrachromosomal exchanges; Kalisch 1976) are not listed, but included in the data. The numbers in parentheses are quotients obtained by dividing the finding for that region by the finding for that region in the control.

<table>
<thead>
<tr>
<th>No.</th>
<th>Genotype of P-generation*</th>
<th>Number counted</th>
<th>Region 1</th>
<th>Region 2</th>
<th>Region 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Region</td>
<td>Region</td>
<td>Region</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>y - v</td>
<td>v - f</td>
<td>f - car</td>
</tr>
<tr>
<td>1</td>
<td>y v f/+ x y v f/Y</td>
<td>5,078</td>
<td>23.95 ± 0.59</td>
<td>22.65 ± 0.58</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>f car/+ x f car/Y</td>
<td>9,290</td>
<td>---</td>
<td>---</td>
<td>6.19 ± 0.25</td>
</tr>
<tr>
<td>3</td>
<td>Dp(1;1)Gr, y^2sc/v f car x y v f/Y</td>
<td>1,439**</td>
<td>9.68 ± 0.77 (40.41)</td>
<td>29.27 ± 1.19 (129.22)</td>
<td>11.19 ± 1.33*** (180.77)</td>
</tr>
<tr>
<td>4</td>
<td>Dp(1;1)Gr, y^2sc/f car</td>
<td>4,803**</td>
<td>---</td>
<td>---</td>
<td>11.80 ± 0.46 (190.63)</td>
</tr>
<tr>
<td>5</td>
<td>f car/+;SM1/+;TM2/+</td>
<td>3,567**</td>
<td>---</td>
<td>---</td>
<td>9.16 ± 0.48 (147.98)</td>
</tr>
<tr>
<td>6</td>
<td>Dp(1;1)Gr, y^2sc/f car;SM1/+;TM2/+</td>
<td>1,286**</td>
<td>---</td>
<td>---</td>
<td>15.94 ± 1.01 (257.51)</td>
</tr>
</tbody>
</table>

* Dp(1;1)Gr chromosomes are additionally marked by (w—spl sn^3)(wC sn^3) within the duplication. Females of exp. no. 4-6 were crossed to v f^36a car males.
** Data collected from single and mass cultures.
*** From 554 F1 males.

Table 2. Comparison of the intrachromosomal effect by two heterozygous X-chromosomal inversions (data from Grell 1962) and by heterozygous Dp(1;1)Gr females (Table 1, exp. no. 4) in the f - car region.

<table>
<thead>
<tr>
<th>Cytological position and length</th>
<th>Map length*</th>
<th>Region**</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y - v</td>
<td>f - car</td>
</tr>
<tr>
<td>In(1)sc7/+</td>
<td>1B4-6;5D3-6</td>
<td>13.7 %</td>
</tr>
<tr>
<td>In(1)65/+</td>
<td>1C;10B</td>
<td>34.0 %</td>
</tr>
<tr>
<td>Dp(1;1)Gr/+</td>
<td>3A2-3;8B4-C1</td>
<td>26.0 %</td>
</tr>
</tbody>
</table>

* Within the limits of the chromosome mutation in normal sequence X-chromosomes.
** Percent value for each region is the quotient obtained by dividing map length for that region in heterozygous females by map length for that region in the control with normal X-chromosomes.

An endemic paracentric inversion has been found in the X-chromosome of D. melanogaster. 35 progeny from a multiple mating (12 virgin females from a wild population, Dahomey, mated with 5 males of the Oregon-K inbred strain) were examined cytologically by salivary gland preparation. In addition, 2 or 3 larvae from each of 5 single crosses were examined. This new inversion, which has been named In(1)A, was found in 20 of the 47 individuals examined. It is a small paracentric inversion with break-points at 16D and 18D, and was always observed to form an inversion loop in salivary gland cells of female larvae.

This discovery is particularly interesting in view of the rarity of X-chromosome inversions. Dahomey is a wild type stock, collected in West Africa in 1969 and maintained in large cage populations in Edinburgh, whence this population came. It is noted for the high level of genetic variation which it has retained in the laboratory.

Chernyshev, A.I. and B.A. Leibovitch. Institute of Molecular Genetics, USSR Academy of Sciences, Moscow, USSR. The effect of temperature during development on the amount of heterochromatin DNA fractions in D. melanogaster.

It has been shown earlier by cytophotometry that low temperature may cause underreplication of heterochromatin in a number of different organisms (Evans 1956). Heterochromatin DNA in Drosophila basically consists of ribosomal DNA and highly reiterative DNA. The latter contains two fractions: satellite and rapidly renaturing DNA. Satellite DNA consists of long blocks of simple repeats which differ from the main DNA fraction in buoyant density and are localized, with a few exceptions, in centromeric heterochromatin (Peacock et al. 1974). The rapidly renaturing DNA fraction consists of short blocks of simple repeats which do not differ from the main fraction in buoyant density (Hearst et al. 1974) and are localized in centromeric heterochromatin and some other loci, as follows from in situ hybridization (Fig. 1).
To find out whether the amount of heterochromatin DNA depends on the conditions of the flies' growth, we determined the amount of ribosomal, rapidly renaturing and satellite DNA in larvae and flies of the wild Oregon-RC stock which had been kept at 16°C for two generations and in control flies permanently kept at 25°C. For this purpose RNA was hybridized, in the presence of excess RNA, with 3H ribosomal RNA and with 3H complementary RNA synthesized by E. coli RNA polymerase on the total satellite DNA (a mixture of satellites I, II and IV) and on the rapidly renaturing DNA. The satellite DNA was isolated in a CsCl gradient with actinomycin D (Peacock et al. 1974) and the rapidly renaturing DNA with Cot 10-1 was obtained from the main band DNA fraction by fractioning on hydroxyapatite (Hearst et al. 1974).

The low temperature during development was found not to cause any decrease in the amount of the above heterochromatin DNA fractions either in larvae or in adult males (Table 1). Moreover, the amount of rDNA and rapidly renaturing DNA was the same in adult females reared at 16°C and 25°C. A significant difference was observed only with respect to satellite DNA in adult females reared at 16°C as compared with the control females (25°C). If the amount of ribosomal DNA and rapidly renaturing DNA is invariable, it is unlikely that the increase in satellite DNA content should be due to a relative decrease of the main DNA fraction. Since a large part of female DNA is constituted by oocyte DNA and that of the polytene nurse cells, the underreplication of satellite DNA at 25°C may be due to a greater polyteny of the nurse cells at normal temperature. But there is a reverse situation in the case of Drosophila salivary glands (Hartmann-Goldstein and Goldstein 1979). Another possible explanation of the cold-induced increase in the proportion of satellite RNA may be an increase in the amount of unfertilized eggs at 16°C, the proportion of satellite DNA in them being as high as 80% of total DNA (Travaglini et al. 1972).

The above suppositions may explain the lack of excess satellite DNA in males unlike females. At the same time we cannot exclude the possibility that the highly heterochromatized Y chromosome in males affects the heterochromatin of the ausotomes. This seems to be suggested by the fact that the introduction of an additional Y chromosome into the Drosophila genome causes a smaller increase of satellite DNA than could be expected from the satellite DNA content in the Y chromosome (Wollenzien et al. 1977). However, all these are suppositions that must be tested.

It is remarkable that adult females have twice as much satellite DNA as larvae, whereas the amount of ribosomal and rapidly renaturing DNA differs only slightly (Table 1). The excess of satellite DNA in flies corresponds to a smaller proportion of polytene tissues as compared with larvae. Meanwhile satellite DNA is more underreplicated than ribosomal DNA in larval salivary glands. The salivary glands of D. melanogaster contain 100 to 200 times less satellite DNA than the diploid tissues (Gall et al. 1971) but only 4 to 6 times less genes for rRNA than the diploid tissues (Spear and Gall 1973). The differences observed are probably due to this selective underreplication.

Lately it has been hypothesized that the amount of satellite DNA is unstable, for it may vary in closely related species (Gall et al. 1974) and in different tissues within one organism in the course of aging (Prashad and Culter 1976). Our data on the effect of temperature during development upon the satellite DNA content in Drosophila possibly support this hypothesis.

Table 1. The amount of different fractions of heterochromatin DNA in larvae and flies reared at 25°C and 16°C.

<table>
<thead>
<tr>
<th>DNA source</th>
<th>t°C</th>
<th>% of DNA 25°C*</th>
<th>% of total DNA</th>
<th>% of DNA 25°C*</th>
<th>% of total DNA</th>
<th>% of DNA 25°C*</th>
<th>% of total DNA</th>
<th>N</th>
<th>% of DNA 25°C*</th>
<th>% of total DNA</th>
<th>% of DNA 25°C*</th>
<th>% of total DNA</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>25°C larvae</td>
<td>82</td>
<td>2.587 (100)</td>
<td>95</td>
<td>3.6 (100)</td>
<td>62</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16°C larvae</td>
<td>84</td>
<td>2.593 (100)</td>
<td>94</td>
<td>3.67 (100)</td>
<td>54</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°C imago</td>
<td>14</td>
<td>6.2 (100)</td>
<td>101±1.6</td>
<td>94</td>
<td>6.84 (100)</td>
<td>118±1</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16°C imago</td>
<td>14</td>
<td>6.32 (100)</td>
<td>102±3</td>
<td>94</td>
<td>6.84 (100)</td>
<td>118±1</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25°C imago</td>
<td>113</td>
<td>3.695 (100)</td>
<td>112</td>
<td>7.43 (100)</td>
<td>128</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16°C imago</td>
<td>116</td>
<td>3.729 (100)</td>
<td>115</td>
<td>7.01 (100)</td>
<td>95±4</td>
<td>102</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The hybridization of DNA immobilized on nitrocellulose filters was carried out with an excess of labeled RNA. 1 to 2 μg of DNA deposited on a 5 mm HAWP filters was annealed in 25 μl of 4 SSC for 18 hours at 66°C in the presence of 0.1 μg of 3H rRNA or 1-2 μg of 3H RNA complementary to the satellite or rapidly renaturing RNA. After annealing the filters were treated with RNAase and counted by a scintillation counter.

N = the number of experiments.

* Results expressed as mean ± standard deviation.
In several species of Drosophila females heterozygous for two or more unlinked inversions produce high frequencies of inviable embryos (Riles 1965 and references therein). Intense selection against multiply heterozygous females can result: Terzagli and Knapp (1960) reported 95%, 93%, 79% and 59% egg hatchability among progeny of D. pseudoobscura females heterozygous for zero, one, two, and three unlinked inversions respectively. The resulting selection might account for the restriction of inversion polymorphism mostly to one chromosome: once an inversion system is established, the increase of new inversions (initially present only in heterozygous condition) on nonhomologous chromosomes would be inhibited by reduced fitness of some carriers.

In D. pseudoobscura the X-linked "Sex-Ratio" inversions are the only widespread structural polymorphisms other than the extensive system of inversions on III. Anderson et al. have investigated possible selective interactions between the X chromosome and third chromosome inversions by measuring egg-to-adult viability among progeny of females jointly heterozygous for "Sex-Ratio" and third chromosome inversions. They found no reduced fitness compared to progeny of singly heterozygous or doubly homozygous females. However, the method of fitness estimation employed confounds embryonic mortality with larval and pupal viability. Direct measures of embryonic mortality among progeny of females heterozygous for "Sex-Ratio" and third chromosome inversions. They found no reduced fitness compared to progeny of singly heterozygous or doubly homozygous females. However, the method of fitness estimation employed confounds embryonic mortality with larval and pupal viability. Direct measures of embryonic mortality among progeny of females heterozygous for "Sex-Ratio" and third chromosome inversions. They found no reduced fitness compared to progeny of singly heterozygous or doubly homozygous females. However, the method of fitness estimation employed confounds embryonic mortality with larval and pupal viability. Direct measures of embryonic mortality among progeny of females heterozygous for "Sex-Ratio" and third chromosome inversions. They found no reduced fitness compared to progeny of singly heterozygous or doubly homozygous females. However, the method of fitness estimation employed confounds embryonic mortality with larval and pupal viability. Direct measures of embryonic mortality among progeny of females heterozygous for "Sex-Ratio" and third chromosome inversions.

Results of the zygotic mortality observations are shown in the table. Standard X heterozygotes and Sex-Ratio heterozygotes produce indistinguishable proportions of inviable embryos, provided individuals are also homozygous for inversions on III. However, among third chromosome heterozygotes, X chromosome heterozygotes consistently produce more inviable embryos than X chromosome homozygotes. Thus the deleterious effect of multiple inversion heterozygosity in D. pseudoobscura is confirmed for the two sets of inversions which are widespread in natural populations.

While the pertinent pair-wise comparisons of embryonic mortality shown in the table are statistically significant, the resulting selection differentials are small compared to those reported by Terzaghi and Knapp (1960) for other inversions. Excessive embryonic mortality among progeny of multiply heterozygous females might result from meiotic mis-pairing and subsequent production of aneuploid gametes. Sex-Ratio heterozygotes could be less sensitive to mis-pairing as a result of the unique inversion arrangement, consisting of three non-overlapping inversions which preserves chromosome "flexibility". On the other hand, the proportions of inviable embryos observed in this study show no obvious relation to the length of third chromosome inversions carried by double heterozygotes.

<table>
<thead>
<tr>
<th>Maternal genotype</th>
<th>Total eggs</th>
<th>Percent hatch</th>
<th>t-test</th>
<th>Probability 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>X/X ST/ST</td>
<td>225</td>
<td>.964</td>
<td>t=0.11</td>
<td>p=0.912</td>
</tr>
<tr>
<td>X/SR AR/ST</td>
<td>231</td>
<td>.978</td>
<td>t=2.99</td>
<td>p=0.003</td>
</tr>
<tr>
<td>X/SR TL/ST</td>
<td>196</td>
<td>.990</td>
<td>t=3.10</td>
<td>p=0.002</td>
</tr>
<tr>
<td>X/X FF/ST</td>
<td>186</td>
<td>.896</td>
<td>t=2.17</td>
<td>p=0.030</td>
</tr>
<tr>
<td>X/SR PP/ST</td>
<td>150</td>
<td>.880</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X/X CH/ST</td>
<td>227</td>
<td>.991</td>
<td>t=4.52</td>
<td>p<0.001</td>
</tr>
<tr>
<td>X/SR CH/ST</td>
<td>215</td>
<td>.907</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All single hets.</td>
<td>1026</td>
<td>.974</td>
<td>t=5.85</td>
<td>p<0.001</td>
</tr>
<tr>
<td>All double hets.</td>
<td>773</td>
<td>.912</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 X = Standard (X)
SR = "Sex-Ratio" (X)
ST = Standard (III)
AR = Arrowhead (III)
TL = Tree Line (III)
PP = Pikes Peak (III)
CH = Chiricahua (III)

2 Two-tailed test.
The selection differentials reported here are small compared with other modes of selection associated with Sex-Ratio, which can include strong viability, fertility, and sexual selection (Wallace 1948, Policansky 1979, Curtsinger and Feldman 1979). Thus these data confirm the assertion of Anderson et al. that third chromosome heterozygosity is unlikely to significantly influence the geographical distribution of Sex-Ratio inversions through increased embryonic mortality among progeny of multiple inversion heterozygotes.

captured, the require special conditions to rear in the laboratory. However, the Drosophila Species Resource Center at the University of Texas maintains several stocks, including K85P1, which is the "standard" line.

The ability to remain in water balance is probably a highly selected character (Eckstrand 1979), and physiological, morphological, and behavioral adaptations are all important to survival in field animals. It is likely, however, that the fitness components of water balance control differ between field and laboratory flies. To test differences between field and laboratory flies, transpiration and sorption rates for each group were determined by using tritiated water to measure net water uptake and loss. The techniques for this procedure are found in Eckstrand (1979).

Table 1 gives the net transpiration rates kT or % body water lost each hour) and the net sorption rates (mg or the mg of water taken up each hour) for laboratory-reared and field-caught flies tested at either 0.99 aV or at 0.70 aV (aV = relative humidity/100). Laboratory animals have lower transpiration and sorption rates than do field-caught flies, especially at the high aV. Culture conditions select for inactivity, and because laboratory flies expend little energy searching for food and mates, they probably have lower metabolic rates than do their wild counterparts. Field flies are noticeably more active than those reared in the laboratory. Their high activity level is probably supported by high metabolic rate which requires that the flies open their spiracles to obtain oxygen. This would result in increased transpiration. Sorption across the tracheal surfaces or the rectal pads might be enhanced to compensate for the increased water loss. At the low humidity, both field and laboratory D. mimica are less active, and their transpiration and sorption rates are similar. Field flies may additionally rely on behavioral adaptations and habitat selection to reduce water loss. Therefore, they may not require strict physiological regulation of water loss at low aV's. However, laboratory animals, which cannot reduce water loss by habitat selection, may depend relatively more on physiological control of water balance.

The great majority of D. melanogaster strains can be classified by sterility tests as either paternally-contributing (P) or maternally-contributing (M) in the PM system of hybrid dysgenesis (Kidwell et al. 1977). A few strains, however, appear to be neutral ("Q strains") by their lack of sterile offspring when crossed to either P males or M females (Kidwell 1979). One such strain, designated v6, is an inbred line derived from a Madison wild population in 1975. The neutrality of v6 was demonstrated as follows: Under conditions restrictive for sterility (Engels and Preston 1979) a large number of crosses between single v6 males and females from the M strain, bw;st, were performed. Sterility tests of the daughters by the tissue culture plate method of Engels and Preston (1979) yielded less than 1% sterility (4/427), which is indistinguishable from background effects. This lack of sterility cannot be attributed to a suppressor of sterility in the v6 genome, as shown by tests of each of the v6 major chromosomes in the absence of the others. The procedure was similar to that reported previously (Engels 1979a) for π2, a typical P strain. Sterility frequencies from the lone action of the X, second, and third chromosomes of v6 were respectively 1/103, 1/91, and 0/93. Therefore, v6 lacks the potential for sterility when crossed to M females. To determine the cytotype of v6 (see Engels 1979a), 133 v6 females were crossed individually to π2 males under restrictive conditions. None of these crosses produced an appreciable proportion of sterile daughters, with the overall sterility frequency being less than 1% (14/2071). We may therefore say that v6 has the P cytotype, which confers immunity to the sterilizing action of the π2 chromosomes (Engels 1979a).

There is a strong correlation among wild genomes between their ability to cause sterility and their ability to bring about male recombination when in the M cytotype (Engels and Preston 1980). One might therefore expect v6 to produce little or no male recombination in its dysgenic hybrids. This was not the case, however, as shown by experiments measuring male

![Diagram](image)

Fig. 1. Determination of cytotype for two reciprocal types of hybrids between v6 and bw;st. Each block represents sterility tests of 16 daughters of a single A1 or B1 female.
recombination between cn and bw, and also segregation distortion at chromosome 2 in the two reciprocal kinds of hybrids involving v6 and M strain (see Engels 1979b for stocks and procedures). Among approximately 200 progeny from each of 40 males (20 of each reciprocal type) the recombination frequency was 0.3% ± 0.1 for the dysgenic class, and 0 for the reciprocal class. The transmission frequencies of the v6 second chromosome were 50% and 54% (both ± 1%) respectively. (See Engels 1979c for the method of calculating standard deviations when clustering is present.) Treating the progeny of each male as an independent observation, the difference between the two reciprocal crosses was significant at p < 0.01 by the Rank Sum test for both comparisons. Thus v6 behaves like a typical P strain regarding male recombination and segregation distortion.

Finally, the following set of experiments shows that the cytotype of v6 as well as its chromosomal determinants are essentially identical to those of π2. Genetically-identical females from the two reciprocal crosses between v6 and bw/st were grown in permissive conditions, then mated to π2 males under restrictive conditions to determine their cytotype. The results are in Fig. 1. It is clear that the cytotype of v6 is transmitted matroclinously through two generations, and is therefore not determined by strictly Mendelian factors or simple maternal effects. A self-replicating property of the cytoplasm (or nucleoplasm) which was previously demonstrated (Engels 1979a) is again indicated. To continue substituting the v6 genome into bw/st cytoplasm, the A1 females were backcrossed to v6 males for several generations to produce A2, A3, etc., females. Each generation about 100 of these females were crossed to π2 to determine their cytotype as above. We see (Fig. 2) that with each successive generation, more of the females have switched their cytotype from M to P. By comparing these results to Fig. 2 in Engels (1979a) it is clear that the ability of the v6 genome to switch the cytotype is at least equal to that of π2.

We may conclude that v6 is neutral for gonadal dysgenic sterility, but it behaves like a typical P strain regarding its influence on cytotype and on the production of some other dysgenic traits. These observations imply that the determinants of cytotype and other traits,
are separable from those of sterility. One possibility is that \(V_6 \) carries a P factor (presumed to be a movable, multicopy genetic element [Engels 1980]) which lacks its usual sterility function but retains its other capabilities.

This work was done in the laboratory of J. F. Crow, University of Wisconsin, supported by grants 5T32 GM 07133-03, 22038, and 07131 from the National Institutes of Health.

Developmental analysis in Drosophila depends heavily on the ability to induce genetically labeled clones at predetermined times during embryonic and larval development. Such clones have been produced mainly through chromosome nondisjunction and loss and through induced mitotic recombination events. Here we report on still another method to obtain marked clones, namely by nondisjunction of free chromosome fragments with appropriate markers.

Novitski and Puro (1978) derived a small free ring chromosome from the second autosome, bearing the dominant bristle morphology mutant BI: Dp(2;f)B1. Flies with two wild type alleles on their chromosomes and with the mutant allele on the ring are BI in phenotype. The spontaneous loss of the ring during development can be observed by the appearance of non-BI bristles on the thorax and the head. We followed seven macrochetae on the dorsal side of the head, the two major humeral bristles and 13 macrochetae on the thorax (including two sternopleurals). 213 out of 1070 scored flies had non-BI spots (19.9%); of these 193 had one spot, 18 had two spots and 2 had three spots each. This is in good agreement with the expectation of random distribution of independently originating spots (\(X^2 (3) = 0.86 \)). The size of the spots ranged from those of single bristles to one comprising half the thorax and head:

<table>
<thead>
<tr>
<th>No. of bristles</th>
<th>No. of flies</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>131</td>
</tr>
<tr>
<td>2</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>2 (half head)</td>
</tr>
</tbody>
</table>

Only 6 single non-BI bristles were found in 715 flies of two different BI/+ laboratory stocks. The frequency of spots can be increased by taking flies with spots as parents for the next generation. Of 114 progeny of such mosaic flies 33 had one spot and 4 had two spots each (32.5%). Thus the non-BI spots in the free-ring stock appear to be due to genuine fragment losses rather than to variations in the expression or the penetrance of the mutant character.

The distribution of spots of all sizes indicates that fragment loss may occur at any time during development, being merely a function of the number of cells at each stage that undergo cell division, starting with few large clones induced at early stages of embryogenesis to many small ones shortly before puparium formation. However, the distribution of the spots may depend also on the presence of borderlines for developing clones and on the denseness of the bristle pattern at each site. Thus of the 10 large clones comprising most of the mesothorax only one included also the head disc, while 8 included also the humeral disc; two of these included both left and right humeral discs. These clones were obviously established even before the imaginal disc borders were determined, some even before the midline was laid down (note that the humeral focus is nearer to the midline on the blastoderm fate map than are the mesothoracic foci). In two flies an anterior dorso-central bristle was included in half-thorax clones of the "other side". It could be that these clones too were established before midline determination. Only three of the small clones crossed disc border lines (one 3-bristle spot crossed from head, through humerals to mesothorax). It is possible that these were also large early clones that extended mainly to the inside of the animal.
The scutum-scutellum separation occurs quite late in larval development (Garcia-Bellido 1975) and indeed, of 43 scutellar clones, 15 included only one bristle, 14 included both bristles and another 14 extended into the scutum.

There is no distinct pattern of spot distribution within the head and thorax (besides contingency); spots partially overlap in all possible directions, thus confirming the absence of cellular determination within the disc until late in development (Sturtevant 1929). However, a nonrandom rate of cell division at the late larval development is indicated by the distribution of single bristle spots: Of the 131 single bristle spots, 37 affected the anterior and posterior verticals on the head, 11 the posterior humerals, 13 the anterior notopleurals and 15 the posterior dorso-centrals. The same bristles were also frequently involved in larger spots (though they were not the most frequently involved ones in these spots). The remaining 17 bristles were affected 55 times in single bristle spots. This would indicate a higher rate of cell division at the posterior zones of all three imaginal discs as well as at the antero-lateral zone of the mesothorax at late larval development.

In summary, the loss of a small free chromosome fragment, carrying genes of interest, could become a useful tool in developmental genetics of Drosophila. The random loss of such a fragment throughout development may prove useful for the study of the kinetics of determination and of cell multiplication.

Work supported by NIH grants GM 18678 to E. Novitski and GM 24182 to J.H. Postlethwait.

Table 1. Comparison of Larval Substrates

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cactus Soaked Rots</th>
<th>Soils</th>
<th>Significant Difference?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Average Concentration*</td>
<td>7.860</td>
<td>7.920</td>
<td>no</td>
</tr>
<tr>
<td>(var. thermotolerans)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pichia cactophila</td>
<td>7.282</td>
<td>7.669</td>
<td>no</td>
</tr>
<tr>
<td>Pichia heedii</td>
<td>7.099</td>
<td>7.528</td>
<td>no</td>
</tr>
<tr>
<td>Pichia amethionina</td>
<td>6.797</td>
<td>6.744</td>
<td>no</td>
</tr>
<tr>
<td>(var. pachycereana)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Candida sonorensis</td>
<td>3.163</td>
<td>7.406</td>
<td>P<0.1</td>
</tr>
<tr>
<td>Cryptococcus cereanus</td>
<td>2.219</td>
<td>6.033</td>
<td>--</td>
</tr>
<tr>
<td>Candida ingens</td>
<td>4.902</td>
<td>5.423</td>
<td>--</td>
</tr>
<tr>
<td>Candida species "K"</td>
<td>--</td>
<td>6.125</td>
<td>--</td>
</tr>
<tr>
<td>Pichia species "M"</td>
<td>--</td>
<td>5.247</td>
<td>--</td>
</tr>
<tr>
<td>Avg. Freq. of Isolation</td>
<td>0.65</td>
<td>0.60</td>
<td>no</td>
</tr>
<tr>
<td>Log Avg. Concentration (All Yeasts)</td>
<td>7.198</td>
<td>7.341</td>
<td>no</td>
</tr>
<tr>
<td>Shannon-Weaver Diversity Index (H')</td>
<td>0.433</td>
<td>0.630</td>
<td>--</td>
</tr>
<tr>
<td>(previous estimate)</td>
<td>(0.590)</td>
<td>(0.568)</td>
<td>--</td>
</tr>
<tr>
<td>Evenness (J')</td>
<td>0.512</td>
<td>0.660</td>
<td>--</td>
</tr>
<tr>
<td>Avg. Number of Yeast Species Per Sample ± SE</td>
<td>4.57±0.48</td>
<td>5.43±0.57</td>
<td>no</td>
</tr>
<tr>
<td>(previous measurement)</td>
<td>(1.88±0.33)(2.00±0.38)</td>
<td>(2.00±0.38) &</td>
<td>--</td>
</tr>
<tr>
<td>Average % (Wt./Wt.) Moisture ± SE</td>
<td>82.3±1.3</td>
<td>13.5±1.0</td>
<td>P<0.001</td>
</tr>
</tbody>
</table>

*Average of seven samples collected over a 10-month period.
P. membranaefaciens (Starmer et al. 1980). In addition, new techniques have been developed which provide for the quantification of the yeast flora through the use of selective media (Starmer et al. 1980). This report is a reinvestigation of the larval substrates in the light of this new information.

Seven samples of each substrate, saguaro rots and soaked soils, were collected over a 10-month period starting in January 1979. The results are shown in Table 1. Yeast concentrations are expressed as the log of the average number of cells per milliliter of available water. That is, an adjustment was made to compensate for the differences between substrates in percent moisture content. Statistical comparisons between substrates represent t-tests of arcsin of relative percent transformed data.

The bottom four species in Table 1 were not used in the comparison of substrates since they represent less than 1% of the total yeasts and were infrequently encountered. The concentration of only one, C. sonorensis, of the remaining five species was significantly different between substrates. The high concentration of this species in soils, however, is due to one collection in which it occurred with abnormally high frequency. There are noticeable increases in the diversity index for soils and in the average number of yeasts per sample for both substrates over previous reports of these parameters. These increases are most likely due to the split of P. membranaefaciens into the four new species: P. opuntiae, P. cactophila, P. heedii, and P. amethionina. It is evident from the data that no major differences exist between the substrates with respect to yeast species. Seasonal variation in yeast flora may, however, have masked significant differences between substrates. Seasonal variation in yeast flora has been shown to exist in Opuntia rots of the Australian desert (H. J. Phaff, pers. communication).

The techniques employed in this study provide a more accurate characterization of the yeast flora than previously possible. This is especially true with respect to yeasts that occur in low concentrations. The conclusions remain essentially unchanged: there are several predominant yeasts which could be considered common resources and the basis of competition if the larvae of the two species were to live together and feed exploitatively. The only physical parameter measured for which major and consistent differences exist between substrates is percent moisture content (Table 1). It is possible that females of the two Drosophila species use this as a cue for oviposition site separation.

This work was supported by an NIH postdoctoral fellowship (GM06807) awarded to J.F.

Fujikawa, K. Hiroshima University, Hiroshima, Japan. Pilot experiments involving visible mutations induced in immature Drosophila oocytes by γ-rays at low dose rate.
Table 1. Frequencies of yellow, Minute and dumpy mutations observed after irradiation of immature oocytes with 3000 rad of \(\gamma \)-rays at 3000 rad/min and at 30 rad/min.

<table>
<thead>
<tr>
<th>Dose rate (rad/min)</th>
<th>Mutation frequency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yellow</td>
</tr>
<tr>
<td>Control 0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>3000</td>
<td>0.2254</td>
</tr>
<tr>
<td>30</td>
<td>0.0781</td>
</tr>
</tbody>
</table>

Involves minute deficiencies (see Frye 1961, and Lindsley and Grell 1968). An association of yellow mutations with minute deletions was confirmed in the present study. Almost all of the yellow mutants recovered after irradiation either at 3000 rad/min or at 30 rad/min were male lethals in the progeny test. On the other hand, it was found that 9 out of 18 dumpy mutations isolated in the low dose-rate series and 5 out of 12 in the high dose-rate series were the ol, lv, o, v types, a class of dumpy mutations which are usually free from aberration phenomena (Carlson and Southin 1962; Fujikawa and Inagaki 1979). The remainder were the olv types, which often originate from deficiencies or rearrangements. However, no Minute bristles were observed in the olv mutants, although a locus whose deficiency results in a Minute phenotype lies close to the dumpy locus (see Carlson and Southin 1962).

Acknowledgements: I express my sincere thanks to Dr. E. Inagaki for stimulating interest and to Dr. K. Takeshita for providing the facility of \(\gamma \)-ray irradiation.

Futch, D.G. San Diego State University, San Diego, California. Crossing over in a hybrid D. ananassae-D. pallidosa X-chromosome.

In the course of my studies on the comparative genetics of the two interfertile sibling species, D. ananassae and D. pallidosa, I have found a certain synthesized X-chromosome to be very useful, especially as a marker chromosome in the analysis of parthenogenic strains of the two species. The chromosome is marked with the three mutations yellow, forked, and white and has been integrated by repeated (13 generations) backcrossing into otherwise normal strains of ananassae and pallidosa.

This particular chromosome was obtained from F1 interspecific hybrid females heterozygous for an ananassae X-chromosome marked with yellow and a pallidosa X-chromosome marked with forked and white and resulted from a single crossover between y and f. Several genetic maps have been constructed for the ananassae X-chromosome with these three mutations arranged in the sequence y f w (see Moriwaki and Tobari 1975). The three alleles in this hybrid chromosome, yd (ananassae) and f and w (pallidosa), were reported by me in DIS 50 (1973). The forked mutant which has a very strong bristle effect was mistakenly identified as a singed mutant in that report because of its phenotypic resemblance to singed and because it seemed to complement another allele of forked (probably f49) carried in one of my ananassae stocks. However, mapping results have subsequently placed this mutant at the forked locus and closer inspection of hybrid females heterozygous for the two alleles in trans-position has revealed a very mild forked phenotype expressed by one or two bristles in most of them. Claude Hinton (pers. communication) has noticed a similar relationship between a pair of ananassae forked alleles in his possession, one of them being f49.

The hybrid composition of this synthesized X-chromosome and estimates of the approximate physical locations of the three mutant genes have been determined by observing how the chromo-
some crosses over in a variety of genetic backgrounds. The chromosome which is identically submetacentric in both species has a left arm which is largely ananassae containing the mutant allele yd and the standard ananassae gene sequence rather than the standard sequence of pallidosa with the fixed inversion In (1) LA. The right arm is mainly pallidosa containing the two mutant alleles f and w from pallidosa.

Table 1. X-Chromosome Inversions

<table>
<thead>
<tr>
<th>Inversion</th>
<th>Approximate proportion of chromosome arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln (1) LA</td>
<td>4A; 8C</td>
</tr>
<tr>
<td>ln (1) LB</td>
<td>9A; 11B</td>
</tr>
<tr>
<td>ln (1) RA</td>
<td>14B; 17A</td>
</tr>
</tbody>
</table>

Table 1 provides a description of three naturally occurring inversions in pallidosa and ananassae X-chromosomes. ln (1) A is a fixed sequence in pallidosa and two strains of ananassae from Papua, New Guinea (Futch 1966). Fig. 1 represents a photomicrograph of synapsed polytene salivary gland X-chromosomes from a female larva heterozygous for ln (1) LA and ln (1) RA and the standard ananassae gene sequence. Break points of each of the 3 X-chromosome inversions are given relative to two different cytological maps (Hinton from Hinton and Downs 1975, and Seecof from Stone et al. 1957). Approximate percentages of euchromatic portions of each arm occupied by each inversion as determined from polytene chromosomes are also given.

Table 2 presents recombination data for crossovers between y and f and between f and w involving the hybrid X-chromosome in combination with various hybrid karyotypic conditions. The two major autosomes of both species are metacentric. The letter designations of autosomal inversions are from my earlier study (Futch 1966) as are the X-chromosome inversions; +'s indicate standard ananassae arrangements. Centromere positions are indicated by dots. Parentheses surrounding two letters, e.g., (C/D) in chromosome 2L, identify instances of overlapping inversions; in this instance ln (2) LC and ln (2) LD occur together and overlap one another in this particular pallidosa chromosome.

The data in Table 2 clearly show the relationship of y with ln (1) LA. This agrees with Hinton's observation (pers. communication) that the locus of y is between the left and right break points of ln (1) LA. Crossing-over between y and f is even further reduced by the presence of ln (1) LB which has its right-hand break point very near to the right end (proximal end) of the euchromatic portion of XL. The effect of ln (1) RA on crossing over between f and w is also very clear showing that w is located in the medial to distal part of XR, very likely within the break points of ln (1) RA. The location of f is certainly very close to the centromere end and, based on these data, probably in the proximal part of XR.

Reductions in crossing over between genes located in an X-chromosome heterozygous for structural rearrangements are very obvious here. Also of significance are increases in crossing over associated with structural heterozygosity in other chromosomes. This interchromosomal, Schultz-Redfield effect (Schultz and Redfield 1951) is particularly apparent in Experiment No.
4 where the crossover frequency between f and w is 34.6% compared to 22.3% in Experiment No. 3, a highly significant difference ($\chi^2 = 73.12, p << .001$). A similar interchromosomal effect resulting in the enhancement of crossing over between f and w was found when Experiments 1 and 2 were compared ($\chi^2 = 30.18, p << .001$). The possibility of an interbrachial effect in the X-chromosome was also investigated but with no clear-cut results. The difference in crossing over between y and f in Experiments 4 and 5 ($\chi^2 = 4.30, p < .05$) is quite possibly due only to additional autosomal inversions while that between f and w in Experiments 5 and 6 ($\chi^2 = 3.92, p < .05$) could be interbrachial caused by the addition of ln (1) LB.

Fig. 2 presents a schematic representation of the X-chromosomes of ananassae and pallidosa showing the suggested locations of the three genes, y, f and w, and the three inversions, ln (1) LA, ln (1) LB, and ln (1) RA. The hybrid X-chromosome that it represents has been of considerable value to me since it has allowed me to examine aspects of chromosome behavior in two very closely related species using essentially the same chromosome in each species.

Research done by Curtsinger (1976a,b) indicates that egg length in the Oregon-R D. melanogaster strain is influenced by stabilizing selection. This is a type of natural selection in which intermediate phenotypes are favored. Curtsinger employed hatchability as the criterion of fitness and found that hatchability was higher from intermediate-sized eggs. Studies of artificial selection for egg length have also been undertaken utilizing this same species (Bell, Moore and Warren 1955; Parsons 1964). In these instances artificial selection for egg length resulted in the culling of both large- and small-sized lines diverging from unselected control lines. Maximum divergence occurred by the tenth generation of selection after which regression toward the unselected mean appeared to take place.

Research published by Perelle, Daniels and Ehrman (1980) indicates that egg length heritability is low in the Mesitas strain of D. paulistorum. A bimodal distribution resulted when
A graph was constructed of measured egg lengths versus frequency or number of eggs deposited. The midpoint of depressed frequency of eggs was found at approximately the mean length of the eggs. Hatchability of all measured eggs was then derived. Upon comparison among egg lengths, frequencies and hatchability, it was discovered that eggs of the mean length—that of depressed frequency—had a higher hatchability than any other egg length measured. From these results it was concluded that heritability of egg length must be low in this strain. If egg length was indeed substantially heritable then the point of highest hatchability—in this case the mean—would represent the model egg length. Initially one would suspect a larger number of assorted lengths would be produced, but a significantly higher percentage of mean-lengthed eggs would hatch. The resulting adults would then be likely to produce more eggs of approximately the same mean lengths, and this mean would have eventually become the most common, modal egg length. Therefore when the graph of eggs deposited versus egg lengths was constructed, a unimodal distribution would have resulted with its point of highest frequency at the modal length, rather than the bimodal distribution which was actually found.

A more direct approach to heritability estimates was taken in our present study. This was done by measuring and comparing eggs from which larvae eclosed to produce P₁ and F₁ generations, i.e., over a three generation level. Once more the D. paulistorum strain used originated in Mesitas, Colombia and belonged to the Andean-Brazilian semi-species.

Eggs were chosen at random from cultures of this strain, measured, and then "bottled" according to their individual egg lengths. Measurements were taken on microscope slides aided by a 12 x 10 cm microscope screen (Hudson Photographic Ind. Inc., Irvington-on-Hudson, NY 10533, model #325), which was attached to a compound microscope. A 20X objective lens was used and magnification contributed by the screen was adjusted to give a total magnification of 100X. The image of eggs were then measured with a metric ruler on this screen; once measured, they were divided into groups of 0.005 mm egg length intervals. Then, each group was gently placed into half-pint culture bottles which held cardboard spoons containing fresh medium (Carolina Biological Supply, Burlington, NC 27215, Formula 4-24) seeded with yeast. To this substrate a 0.01 percent solution of crystal violet was added to impede bacterial growth and provide background pigment.

In approximately 10-12 days, with the appearance of imagoes, crosses between parental flies were made. Such crosses were initiated both between imagoes hatched from eggs of the same lengths, and between imagoes hatched from eggs of different lengths. These parents were then placed in fresh half-pint culture bottles outfitted as described earlier, and allowed to breed. After approximately 2-3 days, eggs from these bottles were removed from the spoons and measured, using the same technique described above. The results from these crosses are listed in Table 1. Statistical analyses are provided in Tables 2 through 4.

t-tests were performed for each "within cross" to determine the relationship between the F₁ means (X₂) and the P₁ means (X₁). For crosses numbered 1, 3, 4, 6 and 9, X₁ was found to be significantly different from X₂ at p < 0.01. For crosses numbered 2 and 5, X₁ was significantly different from X₂ at p < 0.05. Only cross number 6 provided a nonsignificant t-value. t-values obtained for F₁ means with mothers' egg lengths and fathers' egg lengths showed essentially the same results (see Table 1). Comprehensively, these tests indicate that the F₁ and F₁ eggs within each cross do have significantly different egg length means.

The critical statistic for heritability is the regression line of F₁ values on parent values (Curtsinger 1980). Using standard regression techniques it was determined that the

Table 1. Results of crosses made between P₁ eggs of Mesitas D. paulistorum.

<table>
<thead>
<tr>
<th>Cross no.</th>
<th>Mother's egg length (mm)</th>
<th>Father's egg length (mm)</th>
<th>Parents' mean egg length (mm)</th>
<th>Number F₁ eggs</th>
<th>F₁'s egg length means (mm)</th>
<th>Standard error</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>.445</td>
<td>.450</td>
<td>.447</td>
<td>19</td>
<td>.480</td>
<td>0.003</td>
</tr>
<tr>
<td>2</td>
<td>.470</td>
<td>.470</td>
<td>.470</td>
<td>14</td>
<td>.484</td>
<td>0.006</td>
</tr>
<tr>
<td>3</td>
<td>.480</td>
<td>.480</td>
<td>.480</td>
<td>23</td>
<td>.467</td>
<td>0.004</td>
</tr>
<tr>
<td>4</td>
<td>.485</td>
<td>.485</td>
<td>.485</td>
<td>12</td>
<td>.454</td>
<td>0.008</td>
</tr>
<tr>
<td>5</td>
<td>.435</td>
<td>.435</td>
<td>.455</td>
<td>12</td>
<td>.442</td>
<td>0.005</td>
</tr>
<tr>
<td>6</td>
<td>.500</td>
<td>.505</td>
<td>.502</td>
<td>17</td>
<td>.466</td>
<td>0.004</td>
</tr>
<tr>
<td>7</td>
<td>.460</td>
<td>.450</td>
<td>.455</td>
<td>7</td>
<td>.441</td>
<td>0.006</td>
</tr>
<tr>
<td>8</td>
<td>.435</td>
<td>.390</td>
<td>.412</td>
<td>22</td>
<td>.456</td>
<td>0.005</td>
</tr>
<tr>
<td>9</td>
<td>.505</td>
<td>.505</td>
<td>.505</td>
<td>9</td>
<td>.471</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Table 2. t-tests: Mesitas D. paulistorum egg lengths.

<table>
<thead>
<tr>
<th>cross no.</th>
<th>df</th>
<th>t values of F1's mean egg length with mother's egg length</th>
<th>t values of F1's mean egg length with father's egg length</th>
<th>t values of F1's mean egg length with parents' mean egg length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>12.73</td>
<td>10.93</td>
<td>11.83</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>2.27</td>
<td>2.27</td>
<td>2.27</td>
</tr>
<tr>
<td>3</td>
<td>22</td>
<td>-3.35</td>
<td>-3.35</td>
<td>-3.35</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
<td>-4.11</td>
<td>-4.11</td>
<td>-4.11</td>
</tr>
<tr>
<td>5</td>
<td>11</td>
<td>-2.61</td>
<td>-2.61</td>
<td>-2.61</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>-9.11</td>
<td>-10.46</td>
<td>-9.78</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>-3.23</td>
<td>-1.49</td>
<td>-2.36</td>
</tr>
<tr>
<td>8</td>
<td>21</td>
<td>3.96</td>
<td>12.30</td>
<td>8.13</td>
</tr>
</tbody>
</table>

Table 3. One-way analysis of variance: Mesitas D. paulistorum egg lengths.

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of squares</th>
<th>Mean squares</th>
<th>F ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>between groups</td>
<td>23.064</td>
<td>2.883</td>
<td>7.74</td>
</tr>
<tr>
<td>within groups</td>
<td>46.949</td>
<td>.372</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>70.013</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F0.01(8,126 df) = 2.65</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. Multiple range test--Scheffé procedure: Mesitas D. paulistorum egg lengths.

<table>
<thead>
<tr>
<th>Subset 1 Cross F1 mean (mm)</th>
<th>Subset 2 Cross F1 mean (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 .441</td>
<td>4 .454</td>
</tr>
<tr>
<td>5 .442</td>
<td>8 .456</td>
</tr>
<tr>
<td>4 .454</td>
<td>6 .466</td>
</tr>
<tr>
<td>8 .456</td>
<td>3 .467</td>
</tr>
<tr>
<td>6 .466</td>
<td>9 .471</td>
</tr>
<tr>
<td>3 .467</td>
<td>1 .480</td>
</tr>
<tr>
<td>9 .471</td>
<td>2 .484</td>
</tr>
<tr>
<td>1 .480</td>
<td></td>
</tr>
</tbody>
</table>

regression of F1 egg lengths on mothers' egg lengths is .425 ± 0.084m; the regression of F1 egg lengths on fathers' egg lengths is .420 ± 0.096f. It is apparent that heritability is extremely low, 0.084 and 0.096 of mothers' and fathers' egg lengths, respectively. It must be noted that even though heritability was extremely low the apparent similarity of maternal and paternal effect is almost certainly due to the mating of flies artificially selected from identical or very similar length eggs (r = 0.93, p < 0.001).

A one-way analysis of variance was conducted on this data (Table 3). An F ratio of 7.74 was obtained, which is much higher than F0.01(8, 126 df) = 2.65. This shows that a significant difference does exist between the mean F1 egg lengths of the crosses. A multiple range test (Scheffé procedure) was calculated with these means and homogeneous subsets were derived (Table 4).

In conclusion, this study found low heritability existing in the Mesitas strain of D. paulistorum for egg length. This was shown most dramatically by the regression lines of F1 egg lengths on mothers' and fathers' egg lengths and by the t-tests, which show significant differences existing between F1 and F1 egg lengths both within crosses and over all of the crosses.

The genus Drosophila has a wide range of distribution covering entire India. The available data on field collection cover most parts of the country, but there still remain large regions lacking dependable data on the Drosophila fauna. In this short communication we wish to report the Drosophila fauna from the Khallikote Ghats, Orissa, India, which are about 60 km to the north-east of Berhampur at 19°15' and 19°5' N latitude and 84°20' and 85°15' E longitude. This mountain range has woody plants at its foot while teak plantation and thick bushy vegetation occur in its upper ranges. The table gives the different species of Drosophila collected on banana bait during several collection trips conducted between the months of January and March, 1980. The average temperature during this period was 27°C. A total of 745 flies were collected which included eight different species belonging to two subgenera.

The dominant species in the collection belonged to melanogaster species group (especially D. malerkotliana and D. kikkawai) with males outnumbering the females; the sex ratio, however, was reversed in the case of D. takahashii, D. rajasekari, D. bipectinata and D. melanogaster.

Various effects of two anesthetics, carbon dioxide and ethyl ether, on Drosophila have been reviewed by Ashburner and Thompson (1978). These authors indicate that carbon dioxide treatment can markedly reduce survival and fertility of adults if administered up to 3 hours post-eclosion, but shows no toxic effect if used 5 or more hours after eclosion. Light ether treatment does not produce similar toxic effects. Bingo (1971) found ether to have slighter effects on behavior of D. grimshawi than cold or carbon dioxide when flies were tested a few hours after anesthetization. To determine whether the type of anesthesia used in virgin collection had any long-term effects on reproductive behavior in D. melanogaster, virgin males and females were collected with carbon dioxide or ether and were paired 3 days later in a 2 x 2 factorial experiment. Latency to mounting and copula durations were measured.

Table 1. Analysis of variance in mating behavior components due to female and male anesthetic treatment 3 days previously.

<table>
<thead>
<tr>
<th>Term</th>
<th>Mounting latency</th>
<th>Copula duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Df</td>
<td>Ms</td>
</tr>
<tr>
<td>Female treatment</td>
<td>1</td>
<td>0.6022</td>
</tr>
<tr>
<td>Male treatment</td>
<td>1</td>
<td>0.3554</td>
</tr>
<tr>
<td>Interaction</td>
<td>1</td>
<td>0.0906</td>
</tr>
<tr>
<td>Error</td>
<td>56</td>
<td>0.1294</td>
</tr>
</tbody>
</table>

* p < 0.05

The D. melanogaster stock tested was a strain homozygous for esterase 6 Slow derived from flies trapped in Bloomington, Indiana, and free of extreme CO2 sensitivity associated with viruses. The stock was maintained in half-pint bottles of well yeasted cornmeal-molasses-agar media at 25±1°C, 60±10% humidity, on a 12:12 hour light/dark cycle. Eight hours after clearing the stock bottles of adults, newly eclosed flies were sexed and separated by first shaking flies into a transfer bottle. They were then either anesthetized on a CO2 diffusion pad for the duration of sexing, up to 5 minutes, or anesthetized with ether until their surface clinging response was lost, about 30 seconds. Twenty males or females were housed per vial for 64 to 76 hours at 25°C.
All collected flies were alive and appeared vigorous at this time, 3 days after the ether or CO₂ anesthetization. Male and female pairs were aspirated from their holding vials into observation vials containing media seeded with liquid yeast two days previously. A block of pairings consisted of an ether-treated male with an ether-treated female, an ether male with a CO₂ female, a CO₂ male with an ether female, and a CO₂ male with a CO₂ female. Two blocks were started at each observation period by adding all males, then all females within 5 min of each other, or the reverse order. The time of initial pairing, time of male mounting female and time of dismounting were recorded for each pair to the nearest half-minute.

The factorial analysis of variance for latency to mounting and copula duration are presented in Table 1. These two measures were transformed to their common logarithms for analysis to reduce the correlation of group means with variances. Within group variances are homogeneous, as determined by an Fmax test (Fmax = 1.45, Df = 4,14 and Fmax = 2.26, Df = 4,13 for mounting latency and copula duration, respectively). Female anesthetic treatment significantly affected latency to mounting, and had the largest, but nonsignificant effect on copula duration. Male treatment and the interaction of treatments are nonsignificant components of variance.

Table 2. Mean effects of female anesthetic treatment on mating components.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Mounting latency</th>
<th>Copula duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ether</td>
<td>11.5 min</td>
<td>22.21 min</td>
</tr>
<tr>
<td>CO₂</td>
<td>18.2 min</td>
<td>20.93 min</td>
</tr>
</tbody>
</table>

The effect of carbon dioxide treatment on females is to increase latency to mounting and decrease copula duration relative to ether treatment, as indicated in Table 2. These effects suggest that carbon dioxide use in virgin collecting may have a long-term effect on reproductive responses of females. Supported by NIH AG02035.

Gilbert, D.G. Indiana University, Bloomington, Indiana. Sperm counts and initial sperm storage in D. melanogaster.

In the course of investigating reproductive functions of the male anterior ejaculatory duct enzyme esterase 6 (Richmond et al. 1980), I have examined the number of sperm initially stored by D. melanogaster females from ejaculates of males differing in their esterase 6 genotype. This note describes the methods used for counting sperm and the major results for 47 matings of 3 to 5 day virgins of the Oregon-R strain.

The dissection methods reported here are modified from those described by Fowler (1973) in two important respects. Female reproductive tracts are dissected directly in aceto-orcein stain rather than in Ringer's saline, avoiding a saline-stain reaction which destroys the specimen within a week. Specimens dissected in the stain and sealed under coverslips preserve for several months. Secondly, the spermathecae are dissected from the uterus, pared of their surrounding fat which inhibits staining, and squashed under a separate coverslip. With this method, sperm heads in the densely packed mass of spermathecal sperm stain deeply enough to count the preparations accurately.

Materials used in dissections are two fine forceps, two tungsten dissecting needles, a dissecting microscope, slides and coverslips, and nail polish for sealing slides. The orcein stain used is the salivary chromosome "dissecting" solution described by Strickberger (1962). Viewing specimens with phase optics at 1000X, the stained 10 micron long sperm heads of D. melanogaster can be readily counted with a hand held counter.

The uterus, with attached ventral receptacle, dorsal spermathecae and parovaria, along with the lower portion of the common oviduct, are simply dissected from the female. A mated, etherized female is placed in a drop of orcein stain on a slide. Squeezing the abdomen with the left forceps, the extruded ovipositor is grasped with the right forceps and pulled posteriorly until the reproductive tract is out of the abdomen. Any exterior chitin and digestive tract are dissected away. To obtain clear counts of spermathecal sperm, these paired organs are dissected from the uterus by severing the spermathecal ducts. The fat is dissected away, and the spermathecae are transferred to a second drop of orcein stain on the slide. After applying coverslips to both spermathecal and uteral preparations, the spermathecae are squashed with a hard pressure that expels the sperm mass entirely from its opaque capsule. The uterus-receptacle is squashed gently to flatten it for phase optics without disrupting receptacle integrity.
Females were dissected at intervals ranging from 10 minutes to 50 hours after mounting of the female by the male, which included interrupted copulations. Details of these results will be reported elsewhere. There is a high degree of individual variation in the sperm storage process; the results reported here are in terms of least squares regression estimates of the population values and individual values. Uteral sperm numbers, when greater than 300, were estimated by measuring the area covered by the uteral sperm mass with an ocular micrometer and counting sperm density at random points in the mass. Receptacle and spermathecal sperm were counted directly. The entire counting time for a specimen ranged from 15 to 45 minutes. Only specimens for which two complete replicate counts could be obtained (N = 47) were analyzed. Counting error (mean coefficient of variation ± SEM) for the combined classes of receptacle, spermathecal and uteral sperm was 2.7 ± 0.91% per individual, after logarithmic transformation of counts. Table 1 lists the maximums and times of maximum sperm numbers for these sperm classes.

Table 1. Initial sperm storage parameters for Oregon-R matings, in terms of regression estimates of population values and individual observed values.

<table>
<thead>
<tr>
<th>Sperm class</th>
<th>Maximum number</th>
<th>Hour* of maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimated</td>
<td>Observed</td>
</tr>
<tr>
<td>Transferred sperm:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uteral sperm</td>
<td>5800</td>
<td>4690</td>
</tr>
<tr>
<td>Stored sperm:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All organs</td>
<td>1120</td>
<td>1032</td>
</tr>
<tr>
<td>Receptacle</td>
<td>670</td>
<td>767</td>
</tr>
<tr>
<td>Spermathecae</td>
<td>390</td>
<td>449</td>
</tr>
</tbody>
</table>

*Hour post mounting of female by male.

of stored sperm, as well as transferred sperm (approximately 10% of transferred may ultimately fertilize eggs), suggests that sperm selection may be an important component of natural selection in D. melanogaster, particularly if sperm genotypes within or between ejaculates differ in their functional abilities.

Supported by NIH AG02035.

Polymorphism at the locus phosphoglucomutase (Pgm) has been extensively studied in may Drosophila species. The genetic localization of this structural locus was determined for some species (Hjorth 1970, Trippa et al. 1970, Lako-vaara and Saura 1972, Charlesworth et al. 1977).

The total of 20 lines from seven members of the virilis group of Drosophila (D. virilis, D. americana texana, D. littoralis, D. ezoana, D. novomexicana, D. lummei) was included in this study. The genetic variability of phosphoglucomutase has been studied using starch gel electrophoresis. Each fly was homogenized in 0.025 ml double distilled water on the rough surface of a slide. The starch gel electrophoresis was performed vertically using 12-13% starch and 10% sucrose in medium containing 0.045M TRIS, 0.025M boric acid and 0.001M EDTA. The electrode buffer had 0.18M TRIS, 0.1M boric acid, 0.004 EDTA (anodal) and 0.13M TRIS, 0.07M boric acid, 0.003M EDTA, 10^-5 NADP (catalod) (Porter et al. 1964). The electrophoresis took 4-5 hours at 5-10°C with a voltage of 320-360v and current intensity of 60-80 ma. Staining mixture as in Ayala et al. (1972).

The electrophoresis of Pgm revealed the presence of three variants, called Pgm0.80, Pgm1.00 and Pgm1.20 on the basis of their mobilities (see Fig. 1). The data from different crosses indicate that these three variants are coded by three codominant alleles at one locus.
Fig. 1. Starch gel electrophoretic pattern of one fly homogenates of D. virilis. The following genotypes are shown:

\[
\begin{array}{cccc}
1 & 1.20 & 1.20 & 1.00 \\
2, 3, 4 & 1.20 & 1.00 & 0.80 \\
5 & Pgm^{1.00} & 0.80 & \\
6, 7, 8 & 1.00 & 0.80 & \\
\end{array}
\]

It is necessary to note that under the electrophoresis method used the homozygous variants were always revealed by two bends. The discussion of the causes of this phenomenon is beyond the scope of this report; further details will be published elsewhere.

The examination of the offspring from the backcross

\[
\begin{array}{cccc}
\frac{Pgm^{1.00}}{Pgm^{1.20}} & b'g'p'd'p'e'g'l \\
& b'g'p'd'p'e'g'l \\
\end{array}
\]

demonstrated that the Pgm gene is linked to the gp (gapped, 3-118.5) locus and therefore located in the third chromosome. For a more definite localization of the locus Pgm the following crosses were carried out:

\[
\begin{array}{cccc}
\frac{Pgm^{1.00}}{Pgm^{1.20}} & sv't'gb'gp & \times & \frac{Pgm^{1.00}}{Pgm^{1.20}} \\
& sv't'gb'gp & + & + + + \\
\end{array}
\]

According to the result of such crosses the recombination frequency between sv and t genes was 27.8%; between t and tb, 33.0%; and between tb and gp, 13.6%. This is in agreement with the position of the loci on the standard genetic map of D. virilis (Alexander 1976). In the D. virilis map four visible markers have the following localization: sv (shot veins, 3-24.5); t (telescoped, 3-57.5); tb (tiny bristles, 3-104.0); and gp (gapped, 3-118.5) m.u.

Table 1. Localization of Pgm locus.

<table>
<thead>
<tr>
<th>Parent</th>
<th>Offspring</th>
<th>Pgm 1.20</th>
<th>Pgm 1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi) (Pgm(^{1.20})) (\times) (\Phi) (Pgm(^{1.00})) sv't'gb</td>
<td>+ + + + sv t gb</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>+ t gb</td>
<td>+ + gb</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>sv t gb</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>(\sigma) (Pgm(^{1.00})) (\times) (\sigma) (Pgm(^{1.00})) sv't'gb</td>
<td>sv t gb +</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>sv t gb +</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>+ gb</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>sv +</td>
<td>4</td>
<td>65</td>
<td></td>
</tr>
</tbody>
</table>

From Table 1 it is evident that 6/112 of crossovers occurred in the course of recombination between sv and Pgm genes and 106/112 between Pgm and t genes. Therefore, Pgm is placed at 26.3± on the genetic map of the third chromosome of D. virilis.

In Ubx/bx flies, the phenotype is enhanced when one of the chromosomes is involved in a rearrangement which has a break in 3R between the locus of bx and the centromere (the transvection effect, Lewis 1954). In the entire compound now available, the 3L arm is placed between the locus of bx and the centromere (composition: 3R3L, 2L2R), and it is of interest to know whether breaks in 3R under these conditions can also exaggerate the Ubx/bx phenotype.

Flies carrying C(2;3)EN, carrying bx³⁴e. Following the numerical scale of 0-4, most of the progeny had a transvection score of 3; the exceptions fall into two distinct categories, those with a score of 0 or a weak 1 and those with a score greater than 3.

The table is a summary of the data. Over 90% have a score of 0. Since they occurred singly, in most cases, and in subsequent crosses appear to be the result of changes on the third chromosome, it seems likely that these represent induced changes of some sort. Some other exceptions also enhance or reduce the haltere effect. Mosaic and complete somatic and gonadal mutants were observed. Cytological analysis of these exceptions will be undertaken.

Only one attempt to manipulate a local population of Drosophila through extensive trapping is reported in the literature (Dobzhansky and Wright 1943). One possible reason for the failure of extensive trapping to reduce population size in that experiment is that adults may have been immigrating to the study area from the large continuously wooded surrounding area. Drosophila have been demonstrated to show bait-directed movement (Johnston and Heed 1975) and to be capable of long distance migration. Here I report an attempt to reduce population size of D. affinis in an isolated woodlot. Although migration from other woodlots is not impossible, the frequency of such events is limited by the woodlot’s island nature.

The study area, Carter Woods (Wood County, Ohio), is a small (6.3 acre) woodlot dominated by oak and hickory. It is surrounded by fields usually planted in corn. The nearest neighboring woodlot is 1.5 km distant, with no fence rows or migratory corridors of any kind between.

Sixty-four baits (old banana and yeast) were placed in the woodlot at 15.2 m (50 ft) intervals in a rectangular grid. The bait-grid was situated centrally, and occupied approximately 60% of the total wooded area. Collections were made in all activity periods in which it was not raining, and were carried out over a period of 18 consecutive days in August, 1979. Temperature, humidity, approximate wind speed and degree of cloud cover were recorded at the beginning of every collection period. Baits were removed and replaced with previously unused baits so that no bait was left in the woodlot for more than nine days.

8,157 individuals of 19 species of Drosophila were removed from the woodlot over the 18-day trapping period. The most abundant species and their approximate relative frequencies in the collections were D. putrida (0.35), affinis (0.25), tripunctata (0.11), falleni (0.09), robusta (0.06), and algonquin (0.05). The daily relative abundance data were analyzed using factor analysis and multiple regression (SPSS). Of the large number of data manipulations tried, the outcome that explained the largest amount of variability gave the following results. For the fungus-feeding species (predominantly D. putrida, tripunctata, and falleni), the regression of abundance on time was positive, large and highly significant. The increase in population size was not unexpected for these species as the experiment was carried out in late...
summer when large numbers of mushrooms were evident throughout the woods. For D. affinis—which has a population flush much earlier in the year—the regression of abundance on time was in fact negative in sign, but not significantly different from zero.

Thus, extensive trapping has failed to reduce population size of D. affinis significantly despite the fact that flies were probably not immigrating in numbers large enough to replace the trapped individuals. Apparently, replacements are abundantly available from within the small isolated woodlot.

This work was supported by the Faculty Research Committee at Bowling Green State University.

Gupta, J.P. Banaras Hindu University, Varanasi, India. A list of drosophilid species so far known from India.

There has always been a conspicuous gap in our knowledge of world distribution of Drosophila where India is concerned. Although a beginning of such study in the subcontinent of India was made as early as 1920, only about a decade ago have workers shown renewed interest in such study. During these years several collections undertaken by various workers in different parts of the country have yielded considerable data on Indian species. Recently our extensive surveys in different localities of northeast India have uncovered several interesting new species inhabiting this region. A few of them have already been published; manuscripts for those remaining are in preparation and have also been included in this list. In this report an attempt is made to include all species so far described and recorded from India. However, the final picture of the Indian drosophilid species seems to be far from complete. There are undoubtedly more species awaiting discovery.

Genus Amiota Loew
1. shillongensis
Genus Cacoxenus Loew
2. punctatus
Genus Chyinozyza Czerny
3. vaidyai
Genus Curtonotus Macquart
4. neoangustipennis
Genus Gitonides Knab
5. perspicax
Genus Hypselothyrea de Meijere
6. guttata
7. varanasiensis
Genus Leucophenga Mik
8. albigicina
9. flavicosta
10. guttiventeris
11. interrupta
12. neoangusta
13. shillongensis
14. subpallinalosa
15. angulata
16. okadai
17. penicilinosa
18. rufa
Genus Liodrosophila Duda
19. metallescens
20. sabroskyi
Genus Lissocephala Malloch
21. purpurata
Genus Microdrosophila Malloch
22. graciosia
Genus Mycodrosophila Oldenberg
23. invicta
Genus Paraleucophenga Hendel
24. cristata
Genus Scaptomyza Hardy
25. graminum
26. pallida
27. plumata

Singh & Gupta (in press)
Duda 1924, Syn. of Gitonides perspicax Knab 1914.
Dwivedi & Gupta (in press)
Knab 1914
Duda 1926
Gupta 1974
(de Meijere 1908)
Duda 1926
(de Meijere 1911)
Duda 1924
Vaidya & Godbole 1976
Dwivedi & Gupta (in press)
(de Meijere 1914)
Dwivedi & Gupta (in press)
Dwivedi & Gupta (in press)
Okada 1974
(de Meijere 1914)
Wheeler & Takada 1964
Okada 1956
(de Meijere 1911)
(Walker 1857)
Singh 1976
(Fallén 1823)
(Zetterstedt 1847)
Singh 1976
Genus Sinophthalmus Coquillett
28. creberii Singh 1976
29. pictus Coquillett 1904

Genus Stegana Meigen
30. subexcavata Vaidya & Godbole 1976
31. indiana Gupta 1970
32. multistriata Sturtevant 1927
33. paravittiger Godbole & Vaidya 1972
34. striata Nirmala Sajjan & Krishnamurthy 1975
35. albomaculata Duda 1924
36. ananassae Malloch 1858
37. andamanensis Gupta & Ray-Chaudhuri 1970

Genus Drosophila Fallén
39. annulipes Duda 1924
40. anomalini Reddy & Krishnamurthy 1973
41. bambuphila Gupta 1971
42. birarmipes Malloch 1924
43. bicolovittata Singh 1974
44. bifasciata Pominii 1940
45. bicipitina Duda 1923
46. brachycephala Okada 1956
47. brevis Parshad & Singh 1971; Homonym
48. brindawani Ray-Chaudhuri & Mukherjee 1941
49. brunettii Malloch 1934
50. bryani Coquillett 1901
51. busckii Nirmala Sajjan & Krishnamurthy 1975
52. chamundiensis Gupta & Ray-Chaudhuri 1970
53. chandraprabhiana Parshad & Duggal 1956

55. coei Okada 1966
56. confusa Staeger 1844
57. coonorensis Reddy & Krishnamurthy 1973
58. coracinus Kikkawa & Peng 1938
59. curviceps Okada & Kurokawa 1957
60. daruma Okada 1956
61. ebonata Parshad & Duggal 1966

63. epiobscura Parshad & Duggal 1966
64. eugracilis Bock & Wheeler 1972. Nom. nov. for D. (Tanygastrella) gracilis Duda 1926, not gracilis Walker 1853.
65. ficusphila Kikkawa & Peng 1938
66. fusiostata Okada 1966
67. giriensis Prakash & Reddy 1977
68. gundensis Prakash & Reddy 1977
69. gutai Dwivedi (in press)
70. helvetica Burla 1948
71. hoozani Duda 1923
72. hypochaeta Osten Sacken 1882
73. immaculata Okada 1966
74. immigrans Sturtevant 1921
75. jambulina Parshad & Paika 1964 (identified in error as seguyi Smart in Gupta & Ray-Chaudhuri 1970c:59).
76. kikkawai Burla 1954
77. krishnamurthyi Nirmala Sajjan & Reddy 1975
Genus Drosophila Fallén
(continued)

78. kurseongensis Gupta & Singh 1977
79. lacticosa Okada 1956
80. latifshahi Gupta & Ray-Chaudhuri 1970
81. lucipennis Lin 1972
82. malerkotliana Parshad & Paika 1964
83. maryensis sp. nov.
84. mediobandes sp. nov.
85. meijerei Wheeler 1959
*86. meijerei indicus Meigen 1830
87. melanogaster Dobzhansky & Pavan 1943
88. mercatorum parareplata Okada 1966
89. minima de Meijere 1916
90. montium Okada 1956
91. multispina Nirmala Sajjan & Reddy 1975
92. mundagensis Reddy & Krishnamurthy 1970
93. nasuta Lamb 1914
94. neoelegans Gupta & Singh 1977
95. neokuntzei Singh & Gupta (in press)
96. neonasusata Nirmala Sajjan & Krishnamurthy 1973
*98 neotruncata Okada 1955
99. nepalensis Okada 1966
100. notostriatata Gupta & Singh (in press)
101. novaspinofera sp. nov.
102. novazonata (de Meijere 1915)
103. obscuricornis Gupta 1972
104. orissaensis sp. nov.
105. parabipectinata Gupta & Ray-Chaudhuri 1970
106. parazonata sp. nov.
107. penidentata Singh & Gupta (in press)
108. penispina Gupta & Singh (in press)
109. pentaspina Parshad & Duggal 1966
110. pentavittata Gupta & Ray-Chaudhuri 1970
111. prashadi Brunetti 1923
112. prolongata Singh & Gupta (in press)
113. prostipennis Lin 1972
114. pulchrella Tan, Hsu & Sheng 1949
115. punjabiensis Parshad & Paika 1964
116. pseudoananassae Bock 1971
117. quadrilineata (de Meijere 1911)
118. rajasekari Reddy & Krishnamurthy 1968
119. ramaensis Dwivedi (in press)
121. repleta Wollaston 1858
122. rhopaloa Bock & Wheeler 1972
123. riverata Singh & Gupta 1977
124. rufa Kikkawa & Peng 1938
125. setaria Parshad & Singh 1971
126. setitarsa sp. nov.
127. silvalineata Gupta & Ray-Chaudhuri 1970
128. subtilis Kikkawa & Peng 1938
129. suzukii indicus Parshad & Paika 1964
130. takashii Sturtevant 1927
131. testacea van Roser 1840
132. tricombata Singh & Gupta (in press)
133. trilutea Bock & Wheeler 1972
134. trisetosa Okada 1966
Genus Drosophila Fallén
(continued)

136. tristipennis Duda 1924
137. trizonata Okada 1966
138. truncata Okada 1964
139. varietas Singh 1972

*Indicates names were reported for new species, but no description of these supposedly new species has been published so far.

We have obtained 39 mutations in the Zw locus (1-63) (Lindsley and Grell 1968) of D. melanogaster. 32 mutations were induced with ethyl-methane sulfonate (EMS), one with γ-irradiation as described earlier (Gvozdev et al. 1977), and six were selected as spontaneous mutations. All the mutations were selected as recessive X-linked suppressors which corrected the lethal effect of mutations inactivating 6-phosphogluconate dehydrogenase. The amount of protein product of the gene as assessed by immunochemical techniques remained unchanged in all cases. Meanwhile if mutant individuals kept an active enzyme its properties usually differed from the wild type enzyme. These results suggest that all the mutations affect the structural part of the locus. The frequency of mutations affecting G6PD was evaluated by comparing the number of sisters and revertant brothers in the progeny of the cross between C(I)RM, ywf females and mutagen-treated Pgd pn/w+Y males (no treatment in the case of spontaneous mutagenesis). The frequency came to 6.6 × 10⁻⁵ for EMS-induced mutations and about 0.6 × 10⁻⁶ for spontaneous mutations. Both figures accord with other people's data (Green 1977; Mukai and Cockevham 1977; Schalet 1957, 1978; Simmons and Crow 1977). The mutants showed a broad range of G6PD activities as assessed under optimum conditions for the wild type: from complete inactivity (17 mutations) to the normal level.

A study of mutant G6PD activity in Drosophila extracts revealed considerable activity oscillations probably due to the high and uncontrollable lability of the mutant enzyme. In some cases the G6PD activity in mutant extracts exceeded the G6PD activity in wild type Drosophila extracts, which shows that mutations may increase the maximum rate of the reaction catalyzed by G6PD.

In accordance with the proposed biological mechanism of suppression (Gvozdev et al. 1977) all null-mutations proved to be good suppressors, i.e., the number of males in the progeny which carried a lethal mutation and a suppressor did not differ from the number of normal sisters carrying linked X chromosomes. Most of the mutants keeping some level of G6PD activity also showed a good suppression of the lethal mutations, although this group included some weak suppressors (5, 12, 15, 23, 26, 28, 47).

The table shows that in most of the mutants that keep G6PD activity the enzyme is different from normal G6PD. It is not always possible, however, to establish a correlation between the degree to which the enzyme is changed and the level to which viability is restored. This is not surprising since the data on G6PD activity in vitro do not necessarily reflect its activity in the cell (Olaniyi et al. 1976). A similar situation has been described for mutant forms of human G6PD when the emergence of a chronic haemolysis of erythrocytes could not be related to specific changes in the enzyme's functional properties (Johnson et al. 1977).

A comparison of the viability of heterozygotes for various mutant alleles of the Zw gene with the viability of the corresponding homozygous stocks revealed the possibility of interallelic complementation, but only for combinations of (su)14 with three other suppressors (2, 9 and 12). The number of su2/su14 and su9/su14 heterozygotes was decreased 5 to 50 times as compared with the corresponding males and their development was considerably delayed. The number of su12/su14 females was halved.

Characterization of mutations affecting G6PD

<table>
<thead>
<tr>
<th>No. of mutagenized X chromosome</th>
<th>Mutagen</th>
<th>G6PD activity in % of norm*</th>
<th>KₐNADP x 10⁻⁵ M⁻¹</th>
<th>KₐG6PD x 10⁻⁵ M⁻¹</th>
<th>G6P mobility (in respect to ZwA and ZwB)</th>
<th>Maximum rate (V)*</th>
<th>Thermo-sensitivity of G6PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(ZwA)</td>
<td></td>
<td>0.6-1.5</td>
<td>4.7-11.8</td>
<td>37-51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6**</td>
<td>139pnZwA</td>
<td>EMS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7**</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8**</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.5-1</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>135pnZwA</td>
<td>"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td></td>
<td>C₅₀₀ (γ-irrad.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>139pnZwA</td>
<td>spontaneously</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>EMS</td>
<td>2-5</td>
<td></td>
<td></td>
<td></td>
<td>normal</td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>"</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>adjacent to B</td>
</tr>
<tr>
<td>27</td>
<td></td>
<td>"</td>
<td>4-10</td>
<td>46</td>
<td>40</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td>spontaneously</td>
<td>1-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td>"</td>
<td>2-6</td>
<td></td>
<td></td>
<td></td>
<td>A*</td>
</tr>
<tr>
<td>44</td>
<td>171pnZwB</td>
<td>EMS</td>
<td>2-10</td>
<td></td>
<td></td>
<td></td>
<td>A*</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td>"</td>
<td>4-10</td>
<td>10</td>
<td>430</td>
<td></td>
<td>intermediate</td>
</tr>
<tr>
<td>1**</td>
<td></td>
<td>"</td>
<td>10-20</td>
<td>14.9†</td>
<td>260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2**</td>
<td></td>
<td>"</td>
<td>4-20</td>
<td>23.7†</td>
<td>360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5**</td>
<td></td>
<td>"</td>
<td>3-20</td>
<td>33.0†</td>
<td>590</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>135pnZwA</td>
<td>"</td>
<td>90-130</td>
<td>11</td>
<td></td>
<td></td>
<td>increased</td>
</tr>
<tr>
<td>12</td>
<td>139pnZwA</td>
<td>"</td>
<td>90-140</td>
<td>1.2</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>"</td>
<td>30-60</td>
<td>2.9</td>
<td>280</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continued)
(continued)

<table>
<thead>
<tr>
<th>No. of mutation</th>
<th>Mutagenized X chromosome</th>
<th>Mutagen</th>
<th>G6PD activity in % of norm*</th>
<th>K_m NADP x 10^5 M*</th>
<th>K_m G6P x 10^5 M*</th>
<th>Maximum mobility of G6PD (in respect to ZwA and ZwB)</th>
<th>Electrophoretic mobility of G6PD</th>
<th>Thermo-sensitivity of G6PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 139pnZwA</td>
<td>EMS</td>
<td></td>
<td>30-70</td>
<td>11</td>
<td></td>
<td>A increased</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>"</td>
<td></td>
<td>40-70</td>
<td>increased</td>
<td>increased</td>
<td>A+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>"</td>
<td></td>
<td>20-40</td>
<td>"</td>
<td></td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>"</td>
<td></td>
<td>70-130</td>
<td>1.8</td>
<td>86</td>
<td>A increased</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>"</td>
<td></td>
<td>30-70</td>
<td>18</td>
<td>47</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35 spontaneous</td>
<td>EMS</td>
<td></td>
<td>20-180</td>
<td>9.0</td>
<td>130</td>
<td>increased</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40 135pnZwA</td>
<td>EMS</td>
<td></td>
<td>20-130</td>
<td>2.0</td>
<td>2300</td>
<td>A decreased</td>
<td></td>
<td></td>
</tr>
<tr>
<td>43 171pnZwB</td>
<td>"</td>
<td></td>
<td>7-20</td>
<td></td>
<td></td>
<td>intermediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47 139pnZwA</td>
<td>spontaneously</td>
<td></td>
<td>30-110</td>
<td>1.7</td>
<td>1300</td>
<td>120</td>
<td>A decreased</td>
<td></td>
</tr>
</tbody>
</table>

* The norm is the stock with the ZwA isozyme. K_m ZwA and ZwB coincide with regard to coenzyme and substrate. The mean activity of the normal stock is 60 μmol of reduced NADP/min/mg of protein. V is expressed in the same units.

** G6PD mutations described earlier.

† The staining intensity of the G6PD band is very low.

† To determine these values of K_m NADP, the extracts were obtained in a homogenization buffer without NADP. In this case the value of K_m NADP for normal G6PD was 7.4 x 10^-5 M.
Hägele, K. and W.-E. Kalisch. Ruhr-Universität Bochum, Germany. 3H-thymidine labeling intensity over a prominent band group prior to and during puffing.

3H-thymidine labeling experiments on polytene chromosomes of D. melanogaster have been made in order to check whether or not an alteration in the morphology of a chromosome section is correlated with a change in the amount of silver grains over it. In late third instar larvae (115 h after egg deposition) and white prepupae (0-2 h after puparium formation) region 61A-64C of chromosome arm 3L was analyzed autoradiographically at the discontinuously labeled end phases of the replication cycle. Especially section 63E1-5 was studied because the prominent band group of this region forms a large puff in prepupae.

Table 1. Silver grain labeling intensities over puffed and non-puffed 63E1-5 sections compared to reference sections.

<table>
<thead>
<tr>
<th>Ratios of silver grain numbers over sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Puff 63E1-5 present</td>
</tr>
<tr>
<td>Puff 63E1-5 absent</td>
</tr>
</tbody>
</table>

Fig. 1 a and b. Autoradiographs at the late replication phase of region 62C-63E in a late third instar larva (a) and a prepupa (b). Labeling intensities over 62C1-2 and 63A1-3 correspond with each other in (a) and (b). The puffed 63E1-5 section shows approximately twice as much silver grains as the 63E1-5 bands in (a). 3H-thymidine incubation of the excised salivary glands 10 min (50 μCi/ml; spec. activity 24.0 Ci/m mol), exposure time 11 days, Giemsa stained. Autoradiographic methods and background determination have already been published (Hägele and Kalisch 1974; Kalisch and Hägele 1973, 1977).

The ratios of silver grain numbers over the puffed and non-puffed 63E1-5 sections and the reference sections 62A1-2 and 63A1-3 to those over section 62C1-2 were determined (Table 1). In 53 chromosomes, silver grain ratios between the reference sections correspond with each other during late third instar larvae and prepupae. However, the ratios of the 63E sections show that the labeling intensity over the puffed 63E1-5 section is twice as high as over the non-puffed 63E bands. Fig. 1 gives an example for labeling distributions over the 62B-64A region in a late third instar larva and a prepupa.

Our data do not agree with those of Zhimulev and Belyaeva (1975), which claim that the amount of silver grains over the 63E1-5 section does not depend on whether the puff is present or not. Experimental methods used in this study, however, are quite different from ours. After hatching, larvae were incubated up to the 0 h and 1 h prepupa stage in a medium containing the radioactive precursors. In our experiments, pulse labeling with 3H-thymidine was only allowed to take place before (late third instar larva) or during (prepupae) puff formation of 63E. Furthermore, Zhimulev and Belyaeva (1975) have used a "correction factor" for silver grain calculations which is thought to correct region geometry and self-absorption of β-particles (Holmquist 1972). We have omitted this correction because the factor does not deal with the increase of a region's volume in the special case of puffing of a condensed band.

With regard to our results it could be argued that the molecules, necessary for DNA synthesis, more easily reach the DNA in the puffed state than in the condensed situation because of the less dense packing of the DNA protein complex in the puff (Berendes 1966). This would imply that replication in the puffed 63E1-5 section could proceed faster and that, therefore, the labeling intensity after 3H-thymidine application is higher than in the condensed 63E section. However, replication duration of 63E remains unchanged whether this region is puffed or not (Hägele and Kalisch, in press). Thus, an increased labeling intensity of the puffed 63E section, based on a faster replication, can be excluded. It seems more likely that in a
labeled puff section the changed conditions in comparison to the non-puffed state have an increasing effect on the silver grain numbers. In the transcriptionally active, puffed situation there is a greater area of chromosome contact with autoradiographic emulsion, a decreased clustering of the precursors incorporated and, presumably, a lowered self-absorption of β-particles on the basis of the changed DNA histone (nucleosome) configuration.

The black mutation (2-48.5) of Drosophila is the result of a partial deficiency in beta-alanine synthesis (Hodgetts and Choi 1974); however, the specific enzymatic lesion is still unknown. Beta-alanine can be synthesized via a number of pathways including direct decarboxylation of aspartate, or by synthesis and degradation of uracil. In Musca, the major biosynthetic pathway proceeds through uracil (Ross and Monroe 1972), and in Drosophila, Jacobs (1974) found that, like beta-alanine, exogenous uracil, dihydrouracil and beta-ureidopropionate promoted normal coloration in black adults; and label from both orotate and uracil was incorporated more strongly into black than wild type cuticles. These data would suggest that black causes a partial metabolic lesion in the pathway via uracil, possibly prior to orotate. However, studies of several gene-

![Figure 1. Hydropyrimidine Hydrazase Activity in Canton-S and black Drosophila. Assays were performed using crude Drosophila supernatant of 100 flies/ml. Protein determinations were performed for assay no. 3 and no significant difference was found between black and Canton-S supernatants. Flies were usually no older than 9 hours.](image-url)
enzyme systems are in complete contradiction to this interpretation. The first three enzymes in orotate synthesis are reduced by various of the alleles of rudimentary (Rawls and Fristrom 1975) and the last two by rudimental (Lastowski, pers. comm.). None of these mutations show a black phenotype, nor does suppressor of rudimentary which blocks the first step in uracil catabolism (Stroman et al. 1973). Therefore, if the black lesion does occur in the pathway via uracil, it must affect either of the final enzymes; hydropyrimidine hydrase or beta-ureidopropionase.

We have assayed hydropyrimidine hydrase EC 3.5.2.2. which catalyzes the conversion of dihydrouracil to beta-ureidopropionate. The spectrophotometric method described by Dudley et al. (1974) was used except that buffer was substituted for ethanol to attain better solubility of the substrate. Protein was determined by the method of Lowry et al. (1951). Canton-S was used as the wild type control and the black strain was back bred to Canton 11 times prior to the assays.

The results given in Fig. I fail to show any difference in activity between black and wild type for this enzyme. While beta-ureidopropionase remains to be tested, it appears more likely that black is a lesion in aspartate decarboxylase. Jacobs (1974) found a slight but significant decrease in 14CO2 excretion from black flies injected with labeled aspartate. Since a heterozygous deficiency of the wild allele also produces a black phenotype (Lindsley et al. 1972) suggesting that black homozygotes could have enzyme levels as high as 50% or more than wild type; and the available black alleles are leaky, homozygotes producing as much as 50% of normal levels of beta-alanine (Hodgetts 1972); more definitive results might be obtained with a direct in vitro assay for aspartate decarboxylase using either stronger black alleles or flies that are heterozygous for black and a deficiency of the wild allele. While the pathway through uracil is capable of compensating for black when supplied with exogenous substrates, it appears that the increased amounts of beta-alanine needed during puparium formation and eclosion are normally supplied by aspartate decarboxylase.

This research was supported in part by George Mason University Research Grant to A.F.S. The authors wish to thank Dr. George Andrykovitch, Ms. Martha Corjay, Mr. Thomas Hundley and Ms. Nancy Meinecke for their expert advice and assistance.

Hartmann-Goldstein, I.J. Sheffield University, England. DNA-content of Malpighian tubule nuclei from white-variegated larvae.

In D. melanogaster the main segment of larval Malpighian tubules consists of two readily distinguishable cell types (Wessing and Eichelberg 1978): the numerous type I cells are relatively large, yellow in w+ tubules and in white-variegated strains may be colorless; the small and flattened type II cells are colorless, generally occur singly, and tend to decrease in number towards the proximal end of the segment. To establish whether there are consistent differences in the degree of polyteny in these cell types, I used a Barr and Stroud GN2 integrating microdensitometer to measure the Feulgen-DNA content of formalin-fixed cells in one anterior tubule from each of four female T(1;4)w1wm258-21 prepupae reared at 14°C. In the squash preparations used, the relative positions of the cells in the tubule were largely preserved. Of 384 nuclei measured (Fig. 1; Table 1) all but 12 fell into 3 discrete DNA classes, with mean values of approximately 9, 36 and 70 arbitrary units. Presumably the class with the smallest mean differed from the other two classes by two and three replication steps respectively. The remaining 12 nuclei (shown on the histogram as unshaded areas, and not included in the tables) were, with only one exception, grouped between the two smaller classes and had a mean value of 19.2; they may represent the "missing" replication step.

Nuclei falling into the lowest DNA class were usually distributed singly and were somewhat more numerous toward the distal end of the tubule. It seems probable, therefore, that they belong to type II cells. Nuclei in the highest class were most numerous in the proximal regions while those in the next lower class predominated near the distal end. In the intermediate regions these two classes were represented in approximately equal numbers, and nuclei...
Table 1. Mean Feulgen-DNA values, in arbitrary units, of Malpighian tubule nuclei in three DNA classes.

<table>
<thead>
<tr>
<th>Prepupa</th>
<th>N</th>
<th>M</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>17</td>
<td>11.40 ± 0.65</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>36.96 ± 0.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>71.03 ± 1.15</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>18</td>
<td>8.28 ± 1.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>37.31 ± 0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>75.92 ± 1.40</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>13</td>
<td>8.69 ± 0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>34.73 ± 0.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>63.0 ± 1.26</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>10</td>
<td>7.40 ± 0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>35.86 ± 0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>64.64 ± 1.57</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Comparison of mean Feulgen-DNA values in pigmented and unpigmented cells.

<table>
<thead>
<tr>
<th>Prepupa</th>
<th>N</th>
<th>M</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>13</td>
<td>8.69 ± 0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27</td>
<td>32.93 ± 0.72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>64.0 ± 3.0</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>18</td>
<td>8.28 ± 1.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>58</td>
<td>37.31 ± 0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>75.92 ± 1.40</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>13</td>
<td>8.69 ± 0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>49</td>
<td>34.73 ± 0.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>63.0 ± 1.26</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td>10</td>
<td>7.40 ± 0.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>59</td>
<td>35.86 ± 0.45</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>64.64 ± 1.57</td>
<td></td>
</tr>
</tbody>
</table>

Diagram showing the distribution of DNA values for each Prepupa group.
of a given class occurred either singly or in groups of two or three. This distribution pattern is reminiscent of white-variegation, since those type I cells which are colorless usually occur singly or in small groups, and are frequently more common towards the distal than the proximal end of the tubule.

Two of the tubules (c and d in the illustrations) had been pre-fixed in 2% mercuric chloride (which preserves the pigmentation and improves the contrast between pigmented and unpigmented cells), and photographed before being fixed and stained. The DNA-content of individual cells could therefore be correlated with presence or absence of pigment. To investigate the possibility that degree of polyteny and variegated position effect are related, the DNA-content of pigmented and unpigmented cells was compared (Table 2). Cells with the lowest DNA content were always unpigmented, confirming the conclusion that they are of type II; the absence of pigment in this cell type is not related to variegation, since type II cells are colorless even in wild-type strains. All 12 unclassified nuclei belonged also to unpigmented cells, which suggests that they too may be of type II. The nuclei in the two highest DNA classes were found in similar proportions in pigmented and unpigmented cells; in neither tubule was the difference statistically significant ($\chi^2 = 0.421$ and 0.086 respectively in c and d). Thus in larval Malpighian tubules the absence of pigment associated with variegated position effect does not appear to be related to degree of polyteny.

Heed, W.B. University of Arizona, Tucson, Arizona. Central and marginal populations revisited.

D. mojavensis appears to be an exemplary species with which to study the ecology and life history strategies of populations containing substantial amounts of inversion heterozygosity ("central populations") and those with little or none ("marginal populations") chiefly because the geographic areas containing each kind of population are approximately equal in size and the host plants are well known in each case. Furthermore, detailed field studies may be accomplished on a year-round basis.

Central populations are considered by many investigators to be (1) geologically older and to live under conditions considered to be (2) spatially more heterogeneous and (3) temporally more predictable. The question arises whether all three conditions are necessary for the origin and maintenance of inversion heterozygosity. Our preliminary studies are demonstrating that increased trophic resource predictability is a characteristic feature of areas in which D. mojavensis maintains inversion heterozygosity while increased niche diversity or breadth is not immediately evident. The question of geologic age is at least not disputed.

D. mojavensis spends its entire life cycle on chiefly two host plants. In Baja California, the islands in the Gulf and in the Desemboque Region of Sonora, mojavensis utilizes agria cactus, while in the remainder of Sonora and in northern Sinaloa and southern Arizona, the species switches to the organ pipe cactus. Of special interest is the fact that all inversion heterozygosity on chromosome 2 (4 common gene arrangements and 3 rare gene arrangements) and the major portion of the heterozygosity on chromosome 3 (2 gene arrangements) are restricted to populations living in agria cactus. Furthermore, while there are areas in Baja California which have lower heterozygosities than other areas, none of the more than 30 localities sampled were completely monomorphic for gene arrangements. By contrast populations living in organ pipe are invariably monomorphic in the northern half of their distribution and three localities where heterozygous in chromosome 3 in the south. In general then, and as a first approximation, populations living in agria cactus are considered to be central or subcentral while those living in organ pipe are called marginal or submarginal populations. The data on the inversions was kindly supplied by William R. Johnson.

Trophic resource predictability is being measured by three different methods: (1) surveys of the host plant density and density of the necrotic tissue, (2) correlations of the variation in biotic and abiotic factors in the necrotic tissue and (3) comparison of yeast species diversity in both host plants. A total of 13 plant censuses have been conducted throughout the Sonoran Desert to date. Nine of these were made in agria cactus and four were made on organ pipe cactus (data kindly supplied chiefly by Robert L. Mangan, Jean S. Russell and William T. Starmer). The areas surveyed varied in size from 3 to 62 acres. In one area of 54 acres both agria and organ pipe were scored. The mean number of organ pipe plants per
acre was 11.6 with a range of 2.4 to 21.7. The agria cacti averaged 46.9 plants per acre with a range of 4.3 to 167.1. The latter figure represents a survey of about 4 acres in southern Baja California. These occasional thickets are produced vegetatively and are probably nurtured by the decaying stems themselves as they bend down and take root. We can tentatively state that agria cactus is generally more abundant than organ pipe even though it is not as large. The mean frequency of rotting plants among all plants scored was 13.5% of 4,100 agria cacti compared to 6.1% of 286 organ pipes. The biological difference is even greater, however, since many organ pipe rots do not contain D. mojavensis larvae while the majority of agria rots do.

The second method for measuring resource predictability was attempted by correlating the variation in concentration of yeasts, low molecular weight volatiles, and abiotic factors such as pH and temperature, with each other, and with the presence or absence of adult D. mojavensis (information kindly supplied by Don C. Vacek). Four significant correlations were found in agria rots while only one was found in organ pipe rots. Therefore, a D. mojavensis female can better assess an agria rot for both feeding and egg laying. For instance, there is a positive correlation between the concentration of ethanol, 2-propanol and other volatiles with the presence of adult D. mojavensis and a negative correlation between the concentration of these volatiles and the concentration of yeasts in the substrate. As the necrotic tissue advances, the yeasts increase in density, at least in part, at the expense of the volatiles and subsequently for the benefit of the maturing larvae. In the case of organ pipe necrotic tissue, the only significant correlation found was a negative one between pH and volatile concentration. No correlations were detected for temperature in either host plant.

Yeast species comparisons among host plants showed agria rots to be more predictable because they are less variable (data kindly offered by William T. Starmer). There were 4 effective species out of 12 species recovered in this host compared to 5.4 effective species out of 9 species recovered in organ pipe. On a per-plant basis, agria averages 1.8 species of yeast while the organ pipe average is 2.2. Furthermore, on a per-isolate basis, the yeasts from agria utilize an average of 8.5 compounds for growth (N=183) while those from organ pipe utilize an average of 10.1 compounds (N=83). Since the variance of these means is twice as high in organ pipe (31.0 vs 16.5) it means this plant is a more variable environment. The most notable evidence we have for this lies in the presence or absence of Pichia cactophila, probably the most important yeast for D. mojavensis since it is a good indicator of the presence or absence of larvae. This yeast was recovered in 73% of 105 agria rots sampled compared to 59% of 41 organ pipe rots. The difference is marginally significant.

In summary, central populations live in a more predictable environment than marginal populations because of the greater abundance of rots which have higher resolving power for the flies and which are more suitable (chemically stable?) for the growth of the nutritionally favored yeast. The first and last points may be a reflection of the asexual reproduction periodically exhibited in agria cactus.

*Present address: CSIRO, Canberra City, ACT, Australia.

It is well documented that in D. melanogaster females bearing compound second or third autosomes (and no additional structural heterologues or supernumerary chromosomes) that the complementary compound autosomes regularly disjoin from each other at meiosis (Holm 1969; Grell 1970; Holm and Chovnick 1975). That this segregation was not dependent on heterochromatic homology between the two compound autosomes was clear as it could be easily perturbed by the introduction of a Y chromosome, by the substitution of an attached X chromosome for the two free X chromosomes or by structural heterozygosity for the other autosome.

The present of meiotic pairing sites active during spermatogenesis and responsible for the meiotic segregation of the X and Y chromosomes (reviewed in Peacock and Miklos 1973) led to the speculation that analogous sites may exist in the autosomal heterochromatin. Nevertheless, Holm (1969; Holm and Chovnick 1975) in the analysis of compound third autosomes...
found that they behaved as nonhomologous chromosomes during spermatogenesis. As recent work has demonstrated that compound autosomes arise by a translocation mechanism (reviewed in Holm 1976; Hilliker 1978), any pair of compound autosomes share heterochromatic homology and, hence, one would expect some pairs of compound third autosomes to exhibit non-random segregation during male meiosis given the existence of pairing sites in the autosomal heterochromatin.

Holm (1969) in examining the meiotic segregation during spermatogenesis of compound second autosomes in several Drosophila strains found that none of the compound second autosomes examined segregated randomly, that is, there was a smaller proportion of sperm recovered nonsegregational for the compound autosomes than would be predicted from a model of random segregation. However, such departures from random segregation are minor and may be the consequence of elimination of one compound autosome from a proportion of diplo-2 spermatid nuclei (see Hardy 1975).

Sandler et al. (1968) found a C(2R) chromosome which apparently segregated in males with relatively high efficiency from any C(2L) chromosome with which it was tested in combination. The segregational properties of this chromosome, C(2R)cn, were further analyzed by Evans (1971) and Gethmann (1976). C(2R)cn carries a 2L duplication extending from the centromere to 38 or 39 (E.B. Lewis, unpubl., cited in Gethmann 1976) and is, therefore, duplicated for the 2L heterochromatin as well as 2L proximal euchromatin. Gethmann (1976) suggests that the relatively efficient segregation of C(2R)cn from C(2L) is due to the 2L duplication and specifically to the duplication of pairing sites in the heterochromatin. Equally likely is that C(2R)cn is duplicated for a pairing site in the 2L proximal euchromatin. Yamamoto's (1979) cytological analysis of the meiotic segregation of C(2R)cn from a complement C(2L) during spermatogenesis led him to conclude that these chromosomes segregated randomly; however the data in support of this conclusion are not presented in sufficient detail to allow statistical evaluation.

In our laboratory a number of compound autosomes carrying heterochromatic duplications of a portion of the complementary arm have been constructed. For example, C(2L)SH1+ carries a duplication of 2R extending from the centromere to a point distal to the r1+ locus within the 2R heterochromatin. Our previous analysis of the second chromosome proximal heterochromatin (Hilliker and Holm 1975; Hilliker 1976) has enabled us to set limits on the extent of the duplications associated with compound second autosomes. C(2L)SH1+ and C(2L)VH1 1t, which bear r1+ duplications of 2R, are duplicated for at least half of the 2R heterochromatin and C(2R)VK2bw is duplicated for most of the 2L heterochromatin.

In order to examine the role, if any, of heterochromatin homology in meiotic pairing in males, the segregation of compound autosomes bearing duplications for heterochromatic material of the complementary compound autosomes was assayed. Segregation was assayed by crossing males of the selected compound-second autosome bearing strains to differentially marked compound-second autosome bearing females possessing a Y-chromosome. These BSY; C(2L)P,b; C(2R)P,px females give, as first demonstrated by E.H. Grell (1970) for BSY; C(2L); C(2R) bearing females in general, a high frequency of compound-second autosome nonsegregation. Female gametes nonsegregational for the compound second autosomes will result in a viable zygote only if fertilized by a sperm nonsegregational for the paternal compound-second autosome. Thus a strain in which compound-second autosomes partially segregate in males when crossed to BSY; C(2L)P,b; C(2R)P,px females will give a lowered frequency of progeny completely matroclinous or patroclinous for the two compound-second autosomes than will a strain in which C(2L) and C(2R) segregate at random in the male.

Therefore, males of the C(2L)SH3+C(2R)SH3+ strain, one in which nearly equal frequencies of C(2L); C(2R); diplo-2; and nullo-2 sperm are produced (Holm 1969), and of several other strains in which one or both compound autosomes bore heterochromatic duplications of the other arm were crossed singly in shell vials to BSY; C(2L)P,b; C(2R)P,px virgin females. The results are presented in Table 1 and in summary form in Table 2.

Since there is no significant reduction in the frequency of nonsegregation in those crosses involving males carrying C(2L) and C(2R) chromosomes with extensive heterochromatic homology (Table 2), it is probable that heterochromatic homology per se is not a major factor in the meiotic segregation of autosomes in male D. melanogaster. Further, in conjunction with the compound third chromosome studies, as well as studies involving autosomes (and autosomal derivatives) heterozygous for heterochromatic deletions (Yamamoto 1979; Hilliker 1980), these data provide evidence for the absence of male meiotic pairing sites in the bulk of the autosomal heterochromatin.

The foregoing data have been abstracted from Hilliker (1975).
Table 1. Progeny of BSY; C(2L)P,b; C(2R)P,px females and various compound second autosome bearing males.

<table>
<thead>
<tr>
<th>Male genotype</th>
<th>BSY C(2L)P,b; C(2R)P,px</th>
<th>Chromosome from mother BSY C(2L)P,b; C(2R)P,px</th>
<th>BSY C(2R)P,px</th>
<th>BSY C(2L)P,b</th>
<th>0</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2L)SH3,+, C(2R)SH3,+</td>
<td>1</td>
<td>462</td>
<td>300</td>
<td>273</td>
<td>204</td>
<td>279</td>
</tr>
<tr>
<td>C(2L)SH1,Dp(2R)rl+, C(2R)SH1,+, C(2R)SH3,+, C(2R)VK2,Dp(2L)lt+,bw</td>
<td>0</td>
<td>122</td>
<td>127</td>
<td>102</td>
<td>80</td>
<td>146</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>567</td>
<td>395</td>
<td>365</td>
<td>286</td>
<td>383</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>57</td>
<td>39</td>
<td>46</td>
<td>31</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>127</td>
<td>153</td>
<td>146</td>
<td>122</td>
<td>174</td>
</tr>
</tbody>
</table>

Table 2. Frequency of progeny nonsegregational for compound-second autosomes from BSY; C(2L)P,b; C(2R)P,px virgin females crossed to various strains of compound-second autosome bearing males.

<table>
<thead>
<tr>
<th>C(2L)</th>
<th>C(2R)</th>
<th>Percent nonsegregational progeny</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH3+</td>
<td>SH3+</td>
<td>40.4</td>
<td>1771</td>
</tr>
<tr>
<td>SH1+**</td>
<td>SH1+</td>
<td>41.6</td>
<td>2448</td>
</tr>
<tr>
<td>SH1*</td>
<td>SH3+</td>
<td>38.3</td>
<td>264</td>
</tr>
<tr>
<td>SH3+</td>
<td>VK2bw**</td>
<td>36.7</td>
<td>940</td>
</tr>
<tr>
<td>VH1lt*</td>
<td>VK2bw**</td>
<td>38.7</td>
<td>742</td>
</tr>
</tbody>
</table>

* Bears a rl+ duplication of 2R.
** Bears a lt+ duplication of 2L.
Supported by operating grant A5853 from the National Research Council of Canada to Dr. David G. Holm.

In recent years, several chromosomal regions of D. melanogaster have been subjected to intensive analysis. Most of these studies have focused primarily on the identification of genes capable of mutating to a lethal or semi-lethal state within a short, defined chromosome segment. However, the screens employed were generally competent to detect genes whose mutant alleles exhibit a recessive alteration in visible phenotype.

In recent years, several chromosomal regions of D. melanogaster have been subjected to intensive analysis. Most of these studies have focused primarily on the identification of genes capable of mutating to a lethal or semi-lethal state within a short, defined chromosome segment. However, the screens employed were generally competent to detect genes whose mutant alleles exhibit a recessive alteration in visible phenotype.

If all vital genes in a given region were equally mutable, then it would be possible to employ the Poisson distribution to determine the number of unmutated genes remaining after completion of a mutagenesis study. Cohen (1960) has discussed such methods for truncated Poisson distributions. It is, however, generally appreciated that vital genes within a given chromosomal interval are not of equal mutability, a point we herein substantiate and document for several regions of the Drosophila genome that have been extensively analyzed.

Since the Poisson distribution has only one parameter, the mean (m), which is equal to the variance, it is possible to determine if a given distribution of counts differs from a Poisson distribution by use of the variance ratio, s²/m, where the sample mean square, s², estimates the variance of the distribution, and where m has infinite degrees of freedom (see discussion in Gilbert 1973). The variance ratio test of significance for deviation from the Poisson distribution is preferable to the chi square test in that it is more readily applicable to smaller data samples. Moreover, even in situations where one can apply the chi square test, the variance ratio test is associated with a greater number of degrees of freedom. Where the variance ratio is not significantly different from one, indicating possible agreement with a Poisson distribution, it is possible that the count distribution does differ from a Poisson distribution. Such cases would be better revealed by the chi square test which examines the entire distribution. However, this issue is irrelevant with respect to the present analysis since (1) the sample counts are too small to employ the chi square test, and (2) none of the 11 data sets examined are in good agreement with a Poisson distribution by the variance ratio test.

Table 1 summarizes a series of mutagenesis experiments that are competent to determine if vital genes within a given region are equally mutable by a given mutagen. Each entry represents a mutagenesis screen in which lethal mutations for all genes within a region are detected following treatment of sperm with the indicated mutagen. The data for the regions defined by Df(3R)ry 61 4 (Df(3R)87D2-4; 87D11-14) and Df(3R)ry 69 (Df(3R)87D7-9; 87E12-F1) were obtained in this laboratory as part of a larger analysis of the chromosome interval adjacent to the rosy locus (Hilliker et al. 1980).

The six regions included in the analysis of Table 1 involve both euchromatic and heterochromatic segments of the Drosophila genome. In no instance are the vital genes within a segment of equal mutability. Of the 11 experiments examined in Table 1, only the analysis of fourth chromosome spontaneous mutations failed to show a significant deviation from the Poisson expectation. The P value for this count distribution is greater than 0.05 but less than 0.10. On the basis of these data, we are led to conclude that Drosophila vital genes within a defined chromosome segment are not of equal mutability. Hence, one cannot use the Poisson distribution to estimate the number of remaining unmutated vital genes within such an extensively analyzed segment.

*Present address: CSIRO, Canberra City, ACT, Australia.
Table 1. Variance ratio analyses for the 11 indicated mutagenesis experiments involving six chromosomal intervals in D. melanogaster.

<table>
<thead>
<tr>
<th>Region analyzed</th>
<th>No. of lethal complementation groups</th>
<th>Mutagen</th>
<th>Mean no. of lethal alleles per complementation group</th>
<th>Variance</th>
<th>Variance ratio</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome 4</td>
<td>36</td>
<td>Spontaneous</td>
<td>0.806</td>
<td>1.190</td>
<td>1.477†</td>
<td>Hochman 1973</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X-rays</td>
<td>0.833</td>
<td>2.486</td>
<td>2.983***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>EMS</td>
<td>3.111</td>
<td>18.273</td>
<td>5.873***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ICR-170</td>
<td>0.306</td>
<td>0.733</td>
<td>2.397***</td>
<td></td>
</tr>
<tr>
<td>2R Heterochromatin</td>
<td>6</td>
<td>EMS</td>
<td>14.000</td>
<td>202.800</td>
<td>14.486**</td>
<td>Hilliker 1976</td>
</tr>
<tr>
<td>2L Heterochromatin</td>
<td>7</td>
<td>EMS</td>
<td>4.000</td>
<td>20.000</td>
<td>5.000**</td>
<td>Hilliker 1976</td>
</tr>
<tr>
<td>Df(3R)ry614</td>
<td>9</td>
<td>EMS</td>
<td>3.778</td>
<td>23.444</td>
<td>6.206**</td>
<td>Hilliker et al. 1980</td>
</tr>
<tr>
<td>Df(3R)ry619</td>
<td>15</td>
<td>EMS</td>
<td>4.933</td>
<td>20.210</td>
<td>4.097**</td>
<td>Hilliker et al. 1980</td>
</tr>
<tr>
<td>Zeste-white</td>
<td>15</td>
<td>EMS</td>
<td>5.533</td>
<td>53.552</td>
<td>9.678***</td>
<td>Lim & Snyder 1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TEM</td>
<td>1.800</td>
<td>10.029</td>
<td>5.571***</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MMS</td>
<td>7.000</td>
<td>37.286</td>
<td>5.327***</td>
<td>Liu & Lim 1975</td>
</tr>
</tbody>
</table>

† 0.05 < P < 0.10
** P < 0.01
*** P < 0.001

Supported by a research grant, GM-09886, from the Public Health Service.

Figure 1 presents a summary of our cytogenetic analysis of the rosy micro-region. A total of 153 recessive lethals falling into this region were subdivided by inter se complementation, and complementation tests with rosy region deficiencies, into 20 lethal complementation groups. Adjacent complementation groups illustrated within parentheses in Fig. 1 have not been separated by deficiency from one another, hence their relative left-right order is unknown.

The recessive lethals employed in this study are listed in Table 1 according to complementation group (beginning with the most proximally located and continuing through to the most distal). Each listed recessive lethal mutation is accompanied by a description of its source, the mutagen used and, where possible, the isogenic third chromosome on which it was constructed (designated by the specific ry+ allele carried on that chromosome).

A majority of the 153 recessive lethals listed in Table 1 were synthesized by Hilliker and Clark (120) as lethal alleles of Df(3R)ry614 (34), Df(3R)ry619 (83) and Df(3R)ry75 (3) (see Table 2). These recessive lethals were recovered from the treatment of iso-3 males with either 0.025M EMS (Lewis and Bacher 1968) or gamma radiation (2000 to 4000 rads).

Since the majority of recessive lethals were synthesized as alleles of Df(3R)ry614 or Df(3R)ry619, the region encompassed by these deficiencies, 87D2-4; 87E12-F1, defines the rosy micro-region.

*,**Present addresses: *CSIRO, Canberra City, ACT, Australia; **Harvard University, Cambridge, Massachusetts.
The rosy region recessive lethals synthesized by Gelbart, by Schalet and by Deland (Table 1) were selected as lethal alleles of larger deficiencies which encompassed the entire 87D2-4; 87E12-F1 interval. Further details on the synthesis of the recessive lethals provided by Schalet and by Deland may be found in Schalet, Kernaghan and Chovnick (1964) and Deland (1971).

Each rosy region recessive lethal was subsequently tested for complementation with the rosy region deficiencies listed in Table 2.

On the basis of complementation tests with rosy region deficiencies, the recessive lethals fell into 14 clusters. Within each cluster, all inter se combinations of recessive lethals were examined for complementation. Further, when the recessive lethals within each cluster were resolved into complementation groups, each recessive lethal within each cluster was tested for complementation with a representative allele of each of the complementation groups defining the immediately adjacent clusters. Finally, most recessive lethals were tested for complementation with a representative allele of each complementation group within the rosy micro-region.

Let us now consider, briefly, each functional group in terms of phenotype and complementation pattern, beginning with the most proximally located.

The 1(3)S3 complementation group is associated with two additional, semi-lethal alleles, 1(3)A34-1 and 1(3)A46-1. The 1(3)A46-1 allele is associated with a mean viability of approximately 15% when heterozygous with 1(3)S3. Both alleles, when heterozygous with 1(3)S3, are associated with variation in dorsocentral bristle number and length. Further, among heterozygotes for the semi-lethal alleles and 1(3)S3, females greatly outnumber males. The 1(3)A34-1/1(3)A46-1 heterozygotes are associated with about 75% viability and normal bristle morphology and sex ratio.
<table>
<thead>
<tr>
<th>Lethal allele</th>
<th>Isogenic third allele chromosome</th>
<th>Mutagen</th>
<th>Source</th>
<th>Lethal allele</th>
<th>Isogenic third allele chromosome</th>
<th>Mutagen</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(3)S3</td>
<td>--</td>
<td>X-rays</td>
<td>Schalet</td>
<td>1(3)A39-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)A34-1</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B10-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)A46-1</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B13-2</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)5</td>
<td>--</td>
<td>X-rays</td>
<td>Schalet</td>
<td>1(3)B13-3</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)C8a</td>
<td>--</td>
<td>X-rays</td>
<td>Chovnick</td>
<td>1(3)B23-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)E4a</td>
<td>--</td>
<td>X-rays</td>
<td>Chovnick</td>
<td>1(3)B25-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)G12</td>
<td>ry+2</td>
<td>EMS</td>
<td>Gelbart</td>
<td>1(3)H37</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)9-13</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)H33</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B-103</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)H2</td>
<td>ry+11</td>
<td>Gamma</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)A6-1</td>
<td>ry+2</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)H23</td>
<td>ry+11</td>
<td>Gamma</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)m14</td>
<td>--</td>
<td>EMS</td>
<td>Deland</td>
<td>1(3)A15</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)10-194</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)mes-1A</td>
<td>--</td>
<td>X-rays</td>
<td>Schalet</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)G2</td>
<td>ry+2</td>
<td>EMS</td>
<td>Gelbart</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)G3</td>
<td>ry+2</td>
<td>EMS</td>
<td>Gelbart</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)G8</td>
<td>ry+2</td>
<td>EMS</td>
<td>Gelbart</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)G19</td>
<td>ry+2</td>
<td>EMS</td>
<td>Gelbart</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)A27-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)10-140</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)2-34</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)8-9</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)Al3-1</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)13-62</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)4-22</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B26-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)Al2-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)mes-4B</td>
<td>--</td>
<td>X-rays</td>
<td>Schalet</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)34-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B14-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)G9</td>
<td>ry+2</td>
<td>EMS</td>
<td>Gelbart</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)G15</td>
<td>ry+2</td>
<td>EMS</td>
<td>Gelbart</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)G21</td>
<td>ry+2</td>
<td>EMS</td>
<td>Gelbart</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)6-120</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)2-228</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)11-147</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)A19-2</td>
<td>ry+4</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>Lethal allele</td>
<td>Isogenic third chromosome</td>
<td>Mutagen</td>
<td>Source</td>
<td>Lethal allele</td>
<td>Isogenic third chromosome</td>
<td>Mutagen</td>
<td>Source</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
<td>---------------------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
<tr>
<td>1(3)H19</td>
<td>ry+11</td>
<td>Gamma</td>
<td>Hilliker, Clark</td>
<td>1(3)C7</td>
<td>ry+2</td>
<td>EMS</td>
<td>Gelbart</td>
</tr>
<tr>
<td>1(3)H22</td>
<td>ry+11</td>
<td>Gamma</td>
<td>Hilliker, Clark</td>
<td>1(3)B1-3</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)C-9-2</td>
<td>ry+11</td>
<td>Gamma</td>
<td>Hilliker, Clark</td>
<td>1(3)B9-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)C-17-3</td>
<td>ry+11</td>
<td>Gamma</td>
<td>Hilliker, Clark</td>
<td>1(3)B13-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)C-18-1</td>
<td>ry+11</td>
<td>Gamma</td>
<td>Hilliker, Clark</td>
<td>1(3)B30-2</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)H54</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)H34</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)S8</td>
<td>--</td>
<td>X-rays</td>
<td>Schalet</td>
<td>1(3)m32</td>
<td>--</td>
<td>EMS</td>
<td>Deland</td>
</tr>
<tr>
<td>1(3)B21-2</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)m17</td>
<td>--</td>
<td>EMS</td>
<td>Deland</td>
</tr>
<tr>
<td>1(3)B30-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B1-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)H79</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B1-3</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B13-4</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B6-3</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)H66</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)H45</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)H9</td>
<td>ry+11</td>
<td>Gamma</td>
<td>Hilliker, Clark</td>
<td>1(3)H77</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B16-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)m116</td>
<td>--</td>
<td>EMS</td>
<td>Deland</td>
</tr>
<tr>
<td>1(3)B16-4</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)m102</td>
<td>--</td>
<td>EMS</td>
<td>Deland</td>
</tr>
<tr>
<td>1(3)B27-2</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B8-2</td>
<td>--</td>
<td>EMS</td>
<td>Deland</td>
</tr>
<tr>
<td>1(3)H13</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B2-6</td>
<td>X-rays</td>
<td>Schaelet</td>
<td></td>
</tr>
<tr>
<td>1(3)H69</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)m15</td>
<td>--</td>
<td>EMS</td>
<td>Deland</td>
</tr>
<tr>
<td>1(3)B26-2</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B1-2</td>
<td>X-rays</td>
<td>Schaelet</td>
<td></td>
</tr>
<tr>
<td>1(3)1122</td>
<td>ry+11</td>
<td>Gamma</td>
<td>Hilliker, Clark</td>
<td>1(3)B1-5</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B13-2</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B1-3</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B22-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B8-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B22-2</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B8-4</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B27-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B12-2</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B29-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B15-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B29-2</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B21-3</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B36</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B2-4</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)H41</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)B28-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)H89</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)H9</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B21-5</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)H30</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)H15</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)H32</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)G7</td>
<td>ry+2</td>
<td>EMS</td>
<td>Gelbart</td>
<td>1(3)B4-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
</tbody>
</table>
Table 1. [continued]

<table>
<thead>
<tr>
<th>Lethal allele</th>
<th>Isogenic third chromosome</th>
<th>Mutagen</th>
<th>Source</th>
<th>Lethal allele</th>
<th>Isogenic third chromosome</th>
<th>Mutagen</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>1(3)m112</td>
<td></td>
<td>EMS</td>
<td>Deland</td>
<td>1(3)H11</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B9-2</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)H24</td>
<td>ry+11</td>
<td>Gamma</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B16-2</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td>1(3)H25</td>
<td>ry+11</td>
<td>Gamma</td>
<td>Hilliker, Clark</td>
</tr>
<tr>
<td>1(3)B17-1</td>
<td>ry+11</td>
<td>EMS</td>
<td>Hilliker, Clark</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Deficiencies employed in this analysis and their breakpoints.

<table>
<thead>
<tr>
<th>Deficiency</th>
<th>Breakpoints</th>
<th>Synthesis</th>
<th>Cytology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Df(3R)ry36</td>
<td>No visible deletion</td>
<td>Schaelet</td>
<td>Gelbart, Hilliker, Lefevre</td>
</tr>
<tr>
<td>Df(3R)ry75</td>
<td>Df(3R)87D1-2; 87D14-E1</td>
<td>Schaelet</td>
<td>Gelbart, Lefevre</td>
</tr>
<tr>
<td>Df(3R)ry81</td>
<td>Df(3R)87C1-3; 87D14-E2</td>
<td>Schaelet</td>
<td>Gelbart, Lefevre</td>
</tr>
<tr>
<td>Df(3R)ry614</td>
<td>Df(3R)87D2-4; 87D11-14</td>
<td>Gelbart</td>
<td>Gelbart, Hilliker</td>
</tr>
<tr>
<td>Df(3R)ry619</td>
<td>Df(3R)87D7-9; 87E12-F1</td>
<td>Gelbart</td>
<td>Gelbart, Hilliker</td>
</tr>
<tr>
<td>Df(3R)ry1168</td>
<td>Df(3R)87B15-C1; 87E9-12</td>
<td>Hilliker</td>
<td>Gelbart</td>
</tr>
<tr>
<td>Df(3R)ry1301</td>
<td>Df(3R)87D2-4; 87E1-2</td>
<td>Gelbart</td>
<td>Gelbart</td>
</tr>
<tr>
<td>Df(3R)ry1402</td>
<td>Df(3R)87D2-4; 87D14-E2</td>
<td>Gelbart</td>
<td>Gelbart</td>
</tr>
<tr>
<td>Df(3R)ry1607</td>
<td>Df(3R)87D3-4; 87E2-3</td>
<td>O'Donnell</td>
<td>Gelbart</td>
</tr>
<tr>
<td>Df(3R)ry1608</td>
<td>Df(3R)87D4-6; 87E1-2</td>
<td>O'Donnell</td>
<td>Gelbart</td>
</tr>
<tr>
<td>Df(3R)kAR1G27</td>
<td>Df(3R)87B3-5; 87D6-12; In(3R)87B-D, 99E1-F1</td>
<td>Gelbart</td>
<td>Gelbart, Hilliker</td>
</tr>
<tr>
<td>Df(3R)karSZ-11</td>
<td>Df(3R)87C7-8; 87E5-6</td>
<td>Gausz et al. (1980)</td>
<td></td>
</tr>
<tr>
<td>Df(3R)1C4a</td>
<td>Df(3R)87E5-7; 87E11-F1</td>
<td>Chovnick</td>
<td>Gelbart</td>
</tr>
<tr>
<td>Df(3R)126c</td>
<td>Df(3R)87E1-2; 87F11-12</td>
<td>Chovnick</td>
<td>Gelbart, Lefevre</td>
</tr>
<tr>
<td>Df(3R)126d</td>
<td>Df(3R)87D11-13; 87E3-5</td>
<td>Chovnick</td>
<td>Gelbart, Hilliker, Lefevre</td>
</tr>
</tbody>
</table>
The 1(3)S5 associated complementation group is represented by four other alleles (Table 1). All allele combinations are completely lethal.

The 1(3)B-103 complementation group is associated with two alleles (Table 1).

The foregoing three lethal complementation groups have not been separated from one another by deficiency or by recombination analysis, thus their relative left/right order is not defined.

The next complementation group, 1(3)ml4 (Fig. 1), has two alleles and is separable by deficiency from adjacent complementation groups. Df(3R)ry1608 separates 1(3)ml4 from the complementation groups to its left while Df(3R)ry36 separates it from mes-A.

The next complementation group is that associated with mes-1A. The deficiency, Df(3R)ry36 (Fig. 1, Table 1) separates mes-1A from 1(3)ml4, the proximally flanking complementation group. Further, 1(3)mes-1A was separated from the distally flanking complementation group associated with 1(3)mes-4B by Df(3R)ry74 (Schalet, Kernaghan and Chovnick 1964), a deletion which has been lost. All of the 14 mes-A alleles are semi-lethals associated with a visible mutant phenotype when hemizygous and in mutant allele heterozygous combinations. The visible phenotype is characterized by extra head and thoracic bristles; especially marked is duplication of the anterior scutellar bristles. Surviving mutant allele heterozygotes uniformly express the mes-A phenotype. Although mes-A alleles were tested for complementation with 1(3)ml4, all mes-B alleles and three alleles of the 1(3)G9 group [1(3)G9, 1(3)G15 and 1(3)G21]. All heterozygotes exhibited full complementation.

The next complementation group, mes-B (Fig. 1), has three alleles and is similar to the mes-A group in that alleles are semi-lethal and associated with a recessive visible phenotype; namely, outspread wings, held at about a 45° angle to the body, and a dark trident-1ike crown on the dorsal thorax. The penetrance of this phenotype is excellent. (Occasionally, thoracic bristle duplication reminiscent of that associated with mes-A alleles is observed.)

The adjacent lethal complementation group, the 1(3)G9 complex, is associated with 16 alleles (Fig. 1), one of which, 1(3)H23, is semi-lethal. Although the 1(3)G9 complementation group has not been separated by deficiency from the mes-B group, all combinations of mes-B alleles with 1(3)G9 alleles complement fully. Thus, we conclude that these two complementation groups represent separate gene loci. The order of 1(3)G9 and mes-1A is unclear. We infer that 1(3)G9 is to the right of mes-A from the following observations: Df(3R)ry619 appears to have its left breakpoint in the immediate vicinity of mes-A for although heterozygotes for Df(3R)ry619 and alleles of the mes-A complementation group exhibit a mes-A phenotype, they have much greater viability than is ordinarily the case for mes-A allele hemizygotes, suggesting that the mes-A locus on the Df(3R)ry619 chromosome is partially functional; whereas, Df(3R)ry619 is completely lethal in combination with 1(3)G9 alleles.

The next complementation group (Fig. 1), that associated with 1(3)S12, consists of three alleles and is separated from 1(3)G9 and mes-B by Df(3R)kar1G27. We observed that 1(3)S12 fully complemented with 1(3)G1. However, neither allele complemented with 1(3)B21-4. Since all three recessive lethals mapped by deficiency analysis immediately adjacent to the rosy locus we concluded that the complementation map observed was a function of allele complementation. Although 1(3)S12 and 1(3)B21-4 are completely lethal when hemizygous, 1(3)G1 is associated with low hemizygous viability. Surviving hemizygotes for 1(3)G1 uniformly express a phenotype of very thin and short thoracic bristles. Although 1(3)S12 has not been separated by deficiency from the rosy locus, recombination experiments have demonstrated that 1(3)S12 maps to the left of all rosy locus variants which have been assigned positions in the rosy locus genetic map (Chovnick et al. 1976; McCarron et al. 1979).

The next complementation group is that associated with the rosy locus (ry: 3-52.0), a genetic unit containing the xanthine dehydrogenase structural element and adjacent cis-acting regulatory sequences (Chovnick et al. 1976; McCarron et al. 1979).

The next complementation group is that associated with the previously described piccolo (pic) locus, which has been separated from the rosy locus by deficiencies and recombination (Schalet, Kernaghan and Chovnick 1964; Fig. 1). Df(3R)ry36 serves to place pic to the right of ry; Df(3R)ry614, to place pic to the left of 1(3)S8. A total of 32 recessive lethal and semi-lethal alleles of this locus were available for analysis. Unlike all other complementation groups, not all inter se allele combinations of pic variants were tested for complementation (185 of 496 possible allele combinations were tested). Of the pic alleles listed in Table 1, all allele combinations involving the 19 alleles from 1(3)pic21 to 1(3)A111 inclusive were tested for complementation. Of the 19 alleles extensively analyzed, 6 alleles exhibited, in combination, heterozygous surviving progeny—1(3)pic21, 1(3)m10, 1(3)A42-1,
1(3)A12-3, 1(3)A33-1 and 1(3)A3-3. The heterozygous surviving progeny were of reduced viability and uniformly exhibited a pic phenotype, namely, short, fine bristles and abnormal tergite morphology. Thus interallelic complementation extending to the visible phenotype was not observed among alleles of the pic locus.

The next complementation group, that associated with 1(3)S8, consists of 7 alleles (Fig. 1; Table 1), all combinations of which exhibit complete lethality. Df(3R)126c places 1(3)S8 to the left of 1(3)B16-1.

The next complementation group, associated with 1(3)B16-1, consists of 5 alleles (Table 1) and on the basis of its localization by complementation with rosy region deficiencies almost certainly corresponds to the previously described 1(3)S6 locus (Schalet, Kernaghan and Chovnick 1964), the sole representative allele of which was lost prior to the present analysis. All allele combinations were lethal save two. Heterozygotes for 1(3)H69/1(3)B16-1 and for 1(3)H69/1(3)B27-2 were of 4% and 15% viability, respectively. Surviving heterozygous progeny were of normal phenotype.

The 1(3)C9a complementation group consists of three hemizygous lethal alleles which exhibit limited allele complementation. The heterozygotes, 1(3)C9a/1(3)B2-6, 1(3)C9a/1(3)B26-2 and 1(3)B2-6/1(3)B26-2, were of 8%, 14% and 2% mean viability, respectively. Surviving heterozygous progeny are somewhat reduced in size relative to wild type. Df(3R)ry1402 and Df(3R)ry1608 place 1(3)C9a to the right of 1(3)B16-1.

The next complementation group, Ace, associated with 1(3)26 (Schalet, Kernaghan and Chovnick 1964), consists of 16 alleles (Table 1). All allele combinations are lethal save two, both involving 1(3)B15-2. The heterozygotes 1(3)B15-2/1(3)B2-6 and 1(3)B15-2/1(3)B22-1 are of 5% and 12% viability, respectively. This locus has been the focus of a recent analysis (Hall and Kankel 1976) which presents strong evidence that the locus associated with the 1(3)26 complementation group is the site of the structural gene for acetylcholinesterase. Hence, following the suggestion of Hall and Kankel (loc. cit.) it is renamed Ace, although 1(3)26 must remain a synonym. Df(3R)ry1607 places Ace to the left of 1(3)G7, the next complementation group.

The 1(3)G7 complementation group is represented by 9 alleles (Table 1); all allele combinations exhibit complete lethality.

The next complementation group is associated with only one allele, 1(3)m32. A second allele, 1(3)J38, has been generated by J. Hall. The two alleles are completely noncomplementary. Df(3R)karSZ11 places 1(3)m32 to the right of 1(3)G7 and Df(3R)126d separates 1(3)m32 from the cluster of lethal loci to the right (Fig. 1).

The next four complementation groups, associated with 1(3)m116, 1(3)m17, 1(3)m9 and 1(3)m5 have not been separated by deficiency.

The 1(3)m17 group includes 7 alleles and exhibits limited allele complementation as outlined in Fig. 2. One allele combination shown as noncomplementary in Fig. 2 does exhibit weak viability. This heterozygote, 1(3)H45/1(3)B77, is associated with a mean viability of 11%.

The 1(3)m16 complementation group is associated with only one allele.

The 1(3)m9 complementation group is associated with 16 alleles and exhibits limited allele complementation as indicated in Fig. 3. All complementing allele combinations involve 1(3)B8-4. Three allele combinations indicated as noncomplementary in Fig. 3 do, in fact, exhibit weak complementation, all involving 1(3)B8-4. The heterozygotes 1(3)B8-4/1(3)B2-3, 1(3)B8-4/1(3)B15-1 and 1(3)B8-4/1(3)B12-2 are of 14%, 13% and 22% mean viability, respectively.

The 1(3)m116 complementation group is associated with only one allele.
The fourth member of this cluster of complementation groups is that associated with 1(3)G5 which has two alleles (Table 1).

The most distal complementation group in the 87D2-4—87E12-F1 interval is that associated with 1(3)m112. The complementation map of the alleles of this group is presented in Fig. 4. Although 1(3)H24 and 1(3)H25 are indicated as noncomplementary to 1(3)m112, they do, in fact, weakly complement. The heterozygotes 1(3)H24/1(3)m112 and 1(3)H25/1(3)m112 are of 40% and 24% mean viability, respectively; however, unlike other complementing allele combinations of this locus, surviving heterozygotes are associated with a mutant visible phenotype of short, very thin bristles and irregularly arranged ommatidia. Df(3R)ry1168 separates 1(3)m112 from the complementation groups to the left.

Overall, we have observed 21 complementation groups within the 87D2-4 to 87E12-F1 interval, a polytene chromosome segment of 23 or 24 chromomeres.

Supported by a research grant, GM-09886, from the Public Health Service.

It has been suggested by a number of authors (reviewed in Yunis and Yasmineh 1971) that centromeric heterochromatin may promote the initiation of meiotic pairing of homologous chromosomes and, further, protect the centromere from the "rigors of meiosis"—presumably the terminalization of chiasmata and subsequent reductional segregation of homologous dyads. These hypotheses suggested the following experiments, as they predict that heterozygosity for second chromosome heterochromatic deficiencies may result in appreciable second chromosome nondisjunction and/or chromosome loss. The proximal deficiencies studied were Df(2R)M-S210, which is deficient for the 2R heterochromatic block and Df(2L)C', which is undoubtedly deficient for much of the 2L proximal heterochromatin (Hilliker 1976).

Df(2R)M-S210: Virgin females heterozygous for Df(2R)M-S210 and b pr cn were crossed, singly, in vials, to C(2L)WH1,1t; C(2R)P,px males and brooded for six days. As these compound—second autosome bearing males produce nearly equal frequencies of the four classes of C(2L); C(2R); nullo—2; and diplo—2 sperm (Gibson 1977); nullo—2 and diplo—2 female gametes, the consequence of second chromosome nondisjunction or chromosome loss, may be recovered as viable zygotes with 25% efficiency. Thus by the use of control (multiplier) crosses to estimate the total number of fertilized eggs one may assay second chromosome loss and nondisjunction in Drosophila females by mating them with compound second autosome bearing males.

From an estimated 4844 fertilized eggs, no nondisjunctional progeny were recovered. Thus neither chromosome loss or nondisjunction of chromosome two is associated with heterozygosity for Df(2R)M-S210. The absence of chromosome loss is in contradiction to the theory of the protection of centromeres by flanking heterochromatin. No newly induced isochromosome bearing exceptions (a possible consequence of chromosome "breakage") or patroclinous progeny were observed. Clearly the M(2)S10 chromosome is stable despite the absence of the 2R heterochro-

*Present address: CSIRO, Canberra City, ACT, Australia.
matic block. The upper 95% confidence limit of second chromosome loss, and therefore chromosome instability, is 0.25%.

Nor did M(2)S10/b pr cn heterozygotes prove particularly sensitive to radiation-induced nondisjunction. From mating Df(2R)M-S210/b pr cn females irradiated with 2000 rads of gamma radiation to C(2L)VM1, b;C(2R)P, px males only one matroclinous progeny was observed in an estimated 44,269 fertilized eggs, although 33 patroclinous progeny and 15 newly induced compound second autosome bearing exceptional progeny were recovered. Indeed, M(2)S10 heterozygotes appear to be resistant to radiation induced disjunction. Gibson (1977) found the frequencies of matroclinous progeny from +/It pk cn females irradiated with 2000 rads to be 0.053%, a frequency an order of magnitude greater than that observed for M(2)S10/b pr cn females.

Second chromosome nondisjunction, and loss, was also assayed in males heterozygous for Df(2R)M-S210 and In(2LR)SM1. Df(2R)M-S210/In(2LR)SM1 males were crossed to BSY;C(2L)P,b;C(2R)P, px virgin females, singly in vials and brooded for 9 days. BSY is a Y-chromosome carrying a small duplication of the X-chromosome including a dominant allele of the Bar (B) locus (see Lindsley and Grell 1968 for further details). BSY;C(2L)P,b;C(2R)P, px females produce 40% second chromosome nonsegregational progeny when crossed to compound second autosome bearing males. Thus 20% of the female gametes are diplo-2 and 20% are nullo-2. Consequently, nondisjunction for chromosome 2 may be assayed in males by mating them to BSY;C(2L)P,b;C(2R)P, px females.

In order to estimate the number of nondisjunctional female gametes produced per female per vial, a sample of BSY;C(2L)P,b;C(2R)P, px virgin females were crossed to C(2L)SH3,+;C(2R)SH3,+ males. As these males produce approximately 25% diplo-2 and 25% nullo-2 sperm (Holm 1969), the nondisjunctional progeny represent 1/4 of nondisjunctional female gametes. Thus, the number of nondisjunctional female gametes per experimental vial may be estimated as 4 times the number of nondisjunctional progeny per multiplier vial. However, in the cross to the Df(2R)M-S210/In(2LR)SM1 males a nondisjunctional (diplo-2 or nullo-2) sperm fertilizing a nondisjunctional female gamete has a 50% chance of resulting in a viable, diplo-2 zygote.

Thus chromosome-2 nondisjunction per experimental vial may be estimated as 2 times the number of exceptional (i.e., nondisjunctional) progeny per experimental vial divided by 4 times the number of nondisjunctional progeny per multiplier vial. In the experimental series, an estimated 8810 nondisjunctional female gametes resulted in no diploid nondisjunctional progeny. (The only exceptional progeny recovered were one triploid female and 2 intersexes.) Thus a 95% upper confidence limit on chromosome-2 nondisjunction in Df(2R)M-S210/In(2LR)SM1 heterozygotes of 0.068% is established. With chromosome-2 nondisjunction and chromosome loss less than 0.1% in males and 0.3% in females heterozygous for Df(2R)MS-10, the loss of the heterochromatic block to the right of the centromere of chromosome-2 clearly does not result in any meiotic instability of the second chromosome.

We do not consider these data to indicate the absence of sites important for meiotic pairing in the 2R heterochromatin. If one examines crossing-over in M(2)S10/b pr cn heterozygotes, where b and pr lie in the proximal euchromatin at 48.5 and 54.5 (Lindsley and Grell 1968) and cn lies in the proximal 2R euchromatin at 57.5, crossing-over is reduced in the pr cn interval nearly fivefold relative to the control. As most crossovers in the pr cn interval occur in proximal 2R euchromatin between stw and cn (T. Yeomans, pers. comm.) and as crossing-over in the b pr interval is not reduced, these data suggested that heterozygosity for M(2)S10 affected exchange in 2R euchromatin. Exchange in 2R was then examined in M(2)S10/cn bw heterozygotes, where bw at 104.5 near the tip of 2R and cn in the proximal euchromatin span most of 2R. Recombinant progeny were recovered at a frequency of 28%, well below that observed in the control (48%). Thus M(2)S10 appears to have a significant effect on meiotic recombination in the 2R euchromatin despite the fact that the region deleted, the 2R heterochromatin, is not a region in which appreciable crossing-over occurs. It should be noted that save for the deltion of 2R heterochromatin the M(2)S10 chromosome is associated with no visible chromosomal aberrations, thus the meiotic effect noted is probably the result of deleting the 2R heterochromatin.
Research Notes

March 1981

DF(2L)C'. Virgin females heterozygous for DF(2L)C' and b pr cn were mated to C(2L)VH1,lt; C(2R)P,px males and brooded for 6 days. In an estimated 31,200 fertilized eggs, 2 matroclinous and 1 patroclinous progeny were recovered. The frequency of spontaneous second chromosome non-disjunction in DF(2L)C' heterozygotes is 4 x 3/31,200 or 0.038% with 95% confidence limits of 0.008% and 0.112% (Stevens 1942), well within the range observed for Drosophila females homozygous for normal second chromosomes (Gibson 1977).

Although DF(2L)C' is deficient for much of the 2L heterochromatin (Hilliker and Holm 1975; Hilliker 1976), cytological analysis of DF(2L)C' found a substantial block of heterochromatin to the left of the centromere, approximately equal in size to that normally associated with the 2L heterochromatin. This can be explained by the following hypothesis. In the construction of DF(2L)C' from the detachment of C(2L)SH3,+;C(2R)SH3,+ the acentric 2L fragment was generated by a break in the distal 2L heterochromatin (that this break was proximal to the secondary constriction at the 2L heterochromatin-euchromatic junction was clear, as DF(2L)C' was not deficient for this constriction) with the centric 2R fragment being generated by a break in the distal heterochromatin of 2R resulting in a centric 2R fragment duplicated for much of the 2R heterochromatin including the rl+ locus. DF(2L)C' therefore would be a 2L proximal deficiency but a 2R proximal duplication with a rl+ locus on each side of the centromere.

In order to test the hypothesis I constructed with radiation nonsister 2L compound autosomes (compound autosomes with one 2L chromatid from one second chromosome and the other 2L chromatid from its homolog) from females heterozygous for DF(2L)C' and b pr cn. If DF(2L)C' carries a rl+ duplication in the left arm then compound left autosomes deriving one arm from the DF(2L)C' chromosome should more frequently carry rl+ duplications of 2R than do compound lefts derived from normal second chromosomes. Of 21 nonsister compound left autosomes derived from DF(2L)C'/b pr cn heterozygotes, 17 were rl+ whereas Yeomans (1972) found only 10 of 21 compound left second chromosomes derived from it stw 3/b pr cn heterozygous females were rl+. Thus DF(2L)C' would appear to be duplicated for rl+ and, therefore, much of the 2R heterochromatin. Additional genetic evidence is presented in Sandler (1977).

Interestingly heterozygotes for DF(2L)C' and b pr cn show normal levels of recombination in both the b pr and pr cn intervals. Thus unlike DF(2R)M-S210, DF(2L)C' has no marked effect on recombination in adjacent euchromatin. However, in this regard the duplicated 2R heterochromatin may substitute for the deleted 2L heterochromatin.

Further, again unlike DF(2R)M-S210 heterozygotes, DF(2L)C' heterozygous females showed no apparent resistance to radiation induced second chromosome nondisjunction. DF(2L)C'/b pr cn females were irradiated with 2000 rads of gamma radiation and crossed to C(2L)VH1H; C(2R)P, px. Among 56,890 estimated zygotes 27 matroclinous and 71 patroclinous progeny were recovered as well as 73 progeny bearing newly induced compound autosomes. The frequency of recovery of these progeny is similar to that obtained in females with standard second chromosomes given the same irradiation treatment and brooding (Gibson 1977).

The foregoing data have been extracted from Hilliker (1975).

Hunter, A.S. Univ. of the Pacific, Stockton, California. A small collection of Drosophila was made in December 1978 in Pompano Beach. The flies were collected by net sweepings over the fallen fruit under various citrus trees. The number of flies of the various species found are as follows:

<table>
<thead>
<tr>
<th>Species</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. melanogaster</td>
<td>54</td>
</tr>
<tr>
<td>D. simulans</td>
<td>12</td>
</tr>
<tr>
<td>D. cardini</td>
<td>134</td>
</tr>
<tr>
<td>D. acutilabellia</td>
<td>5</td>
</tr>
<tr>
<td>D. willistoni</td>
<td>26</td>
</tr>
<tr>
<td>D. equinoxialis</td>
<td>10</td>
</tr>
<tr>
<td>D. sturtevanti</td>
<td>87</td>
</tr>
<tr>
<td>D. latifasciaeformis</td>
<td>48</td>
</tr>
</tbody>
</table>

D. willistoni group females were each isolated and the genitalia of the male offspring were checked. These data are reported here because I believe that this is the northernmost range of D. equinoxialis. Additional collections made in 1979 and 1980 in the same location contained the same species, although in different frequencies.

James, A., M. Bownes* and S. Glenn**. Sidney Farber Cancer Institute, Boston, Massachusetts; *Edinburgh University, Edinburgh; **Center for Pathobiology, University of California, Irvine. The re-establishment of pattern elements in regenerating imaginal wing discs of D. melanogaster.

We have attempted to analyze how regeneration occurs in imaginal discs by determining the sequence in which pattern elements reappear during regeneration of a fragment of the wing disc.

Late third instar wing discs were cut into a small 02 fragment corresponding to presumptive notum and a large 28 fragment corresponding to the wing hinge and blade (Bryant 1975). The 02 pieces were metamorphosed immediately as controls. The 28 pieces were injected into females and allowed to grow for 1 to 5 days before metamorphosis in a larval host was induced. The metamorphosed implants were scored for the regeneration of the bristles found in the notum.

The process of wound healing and growth observed in the majority of discs can be seen in Fig. 1. Before culture in the adult abdomen the 28 fragment has an exposed surface of cells. After culture for 1 to 2 days these cells have healed together. Maximum growth occurs between 2 and 4 days of culture.

The results of the sequence of regeneration are shown in Table 1. Regeneration in the 28 pieces was measured as an increase in the frequency of those elements expected from the immediate metamorphosis of the 02 controls. Fig. 2a shows the wing disc fate map and the location of the cutting line. The bristles scored were the presutural bristles, the anterior and posterior notopleural bristles, the anterior and posterior supraalar bristles, the anterior and posterior postalar bristles, the anterior and posterior dorsocentral bristles and the scutellar bristles. All of these bristles, with the exception of the presutural bristle, were present at least 75% of the time in 02 control implants.

28 fragments metamorphosed immediately in larvae produced no thoracic bristles. Implants cultured for one day showed very little regeneration. The pattern elements which were regenerated at a low frequency were those structures near to the original 02 cutting line, notopleural bristles, presutural bristles, supraalar bristles, and structures furthest from the cut edge, the scutellar bristles. Fig. 2b shows the frequency of regenerated elements and three outside markers. By the second day all of the pattern elements of the notum were present at a low frequency except the postalar bristles, which were missing completely. As seen in Fig 2c, the notopleural, supraalar, and scutellar bristles were present in the highest frequencies. Implants cultured for three days had regenerated the notopleural and scutellar bristles more than 20% of the time (Fig. 2d). The dorsocentral and presutural bristles were regenerated with lower frequencies. The notopleural, supraalar, postalar, and scutellar bristles were regenerated at least 70% of the time in pieces cultured for four days (Fig. 2e). The remaining bristle elements were present more than 50% of the time, except for the presutural bristle which was present 20% of the time. However, the presutural bristle is often absent in control implants, being present in only 62% of the 02 control fragments. In
<table>
<thead>
<tr>
<th>Element scored</th>
<th>control 0 Day 28</th>
<th>control 0 Day 28</th>
<th>experimental 1 Day 28</th>
<th>experimental 2 Day 28</th>
<th>experimental 3 Day 28</th>
<th>experimental 4 Day 28</th>
<th>experimental 5 Day 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presutural Bristles</td>
<td>62</td>
<td>5</td>
<td>4</td>
<td>13</td>
<td>20</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Notopleural Bristles</td>
<td>81</td>
<td>10</td>
<td>15</td>
<td>57</td>
<td>80</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Supraalar Bristles</td>
<td>93</td>
<td>5</td>
<td>15</td>
<td>25</td>
<td>85</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>Post alar Bristles</td>
<td>86</td>
<td></td>
<td>4</td>
<td>17</td>
<td>55</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Dorsocentral Bristles</td>
<td>86</td>
<td></td>
<td>4</td>
<td>17</td>
<td>55</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Scutellar Bristles</td>
<td>94</td>
<td>5</td>
<td>8</td>
<td>52</td>
<td>70</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>Anterior notal wing process</td>
<td></td>
<td>46</td>
<td>52</td>
<td>54</td>
<td>96</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>Tegula</td>
<td>8</td>
<td>88</td>
<td>81</td>
<td>85</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Humeral plate</td>
<td>79</td>
<td>67</td>
<td>92</td>
<td>100</td>
<td>100</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Unnamed plate</td>
<td>75</td>
<td>48</td>
<td>88</td>
<td>100</td>
<td>100</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>Axillary sclerites</td>
<td></td>
<td>6</td>
<td>96</td>
<td>76</td>
<td>96</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>first</td>
<td>6</td>
<td>96</td>
<td>76</td>
<td>96</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>second</td>
<td>1</td>
<td>100</td>
<td>95</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>third</td>
<td>92</td>
<td>90</td>
<td>100</td>
<td>78</td>
<td>100</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>fourth</td>
<td>69</td>
<td>52</td>
<td>23</td>
<td>35</td>
<td>60</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Proximal costa</td>
<td>96</td>
<td>67</td>
<td>88</td>
<td>83</td>
<td>95</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Medial costa</td>
<td>96</td>
<td>86</td>
<td>88</td>
<td>87</td>
<td>100</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Distal costa</td>
<td>92</td>
<td>71</td>
<td>85</td>
<td>78</td>
<td>90</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>Triple row</td>
<td>100</td>
<td>76</td>
<td>92</td>
<td>96</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double row</td>
<td>96</td>
<td>52</td>
<td>81</td>
<td>74</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posterior row</td>
<td>25</td>
<td>38</td>
<td>69</td>
<td>52</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc4d</td>
<td>92</td>
<td>52</td>
<td>92</td>
<td>65</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sc25</td>
<td>100</td>
<td>90</td>
<td>96</td>
<td>87</td>
<td>95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precord apophysis</td>
<td>21</td>
<td>90</td>
<td>73</td>
<td>74</td>
<td>65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow club</td>
<td>88</td>
<td>90</td>
<td>85</td>
<td>91</td>
<td>85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proximal ven tral radius</td>
<td>92</td>
<td>67</td>
<td>73</td>
<td>83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pleural wing process</td>
<td>71</td>
<td>90</td>
<td>92</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axillary pouch</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>96</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total implants</td>
<td>84</td>
<td>24</td>
<td>21</td>
<td>26</td>
<td>23</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

All figures refer to the percentage occurrence of each element in the total implants obtained for that series.
the five day implants all pattern elements of the notum appeared less frequently than in the four day pieces, with the exception of the presutural bristle which now appeared in 26% of the implants.

Using statistics we were able to conclude that the sequence with which the bristles reappeared was: (1) notopleurals, (2) supraalars and scutellar bristles, (3) presuturals, postalar, and dorso-central bristles. It should be noted that presutural bristles are not included in the figures since they are often not differentiated in the controls (Table 1).

During regeneration the cells respond to positional cues which are set up in the growing tissue mass and these in turn define which part of the regenerate the cells will make. Initially there are not enough cells to regenerate the entire thorax and cells must decide which pattern elements to differentiate first. One might have expected a simple sequence beginning close to the cut surface and moving towards the edge of the fate map of the disc until the pattern of the thorax is complete. It appears, however, that regions close to the cut edge, notopleural and supraalar bristles, and those furthest from it, scutellar bristles, are re-established first in the regenerating disc and the remaining structures are then intercalated.

Kaplin, V. and L. Korochkin. Institute of Cytology & Genetics, Novosibirsk, USSR. Histochernistry of the tissue distribution of some enzymes during the development of D. melanogaster.

This work was aimed at discovering genetic consequences of long-term selection on sexual activity. The concentration of mutations to viability has been studied for selected stocks of flies. We used the following stocks: LA (low activity) and HA (high activity), produced from the former by reverse selection. Both of these have been maintained by closed inbreeding during about 300 generations. After 261 generations lateral branches were founded, which were selected for increasing a number of abdomen bristles. In contrast to HA the LA selection was very effective. There were also some differences between the stocks. The rate of LA and its lateral branches' semi- and sublethal mutations was higher (55-65% for 2 chromosome). When the selection of LA was stopped, the result was gradual clearing of the stock from mutation load. There was no equal distribution of harmful mutations among the LA genome; they have been concentrated in chromosome 2. The reasons for their accumulation were artificial selection and increased rate of spontaneous mutations (Gorbunova and Kaidanov 1975; Kaidanov 1979). The latter probably also was a result of previous selection. The mutable loci have been localized (Kaidanov 1979).

This work was aimed at discovering genetic consequences of long-term selection on sexual activity. The concentration of mutations to viability has been studied for selected stocks of flies. We used the following stocks: LA (low activity) and HA (high activity), produced from the former by reverse selection. Both of these have been maintained by closed inbreeding during about 300 generations. After 261 generations lateral branches were founded, which were selected for increasing a number of abdomen bristles. In contrast to HA the LA selection was very effective. There were also some differences between the stocks. The rate of LA and its lateral branches' semi- and sublethal mutations was higher (55-65% for 2 chromosome). When the selection of LA was stopped, the result was gradual clearing of the stock from mutation load. There was no equal distribution of harmful mutations among the LA genome; they have been concentrated in chromosome 2. The reasons for their accumulation were artificial selection and increased rate of spontaneous mutations (Gorbunova and Kaidanov 1975; Kaidanov 1979). The latter probably also was a result of previous selection. The mutable loci have been localized (Kaidanov 1979).

Using histochemical methods we investigated the tissue distribution of some enzymes at the different stages of development in D. melanogaster. Two stocks, Canton S and In(3LR)D/Sb with the complicate inversion on the 3rd chromosome, have been investigated. Embryonic material was synchronized according to Delcour (1969). Two special methods of preparation of sections for the histochemical staining were elaborated by us.

First method: (1) Washing of eggs in some portions of distilled water. (2) Treatment by 2.5% glutaraldehyde prepared using Hanks solution with the addition of a substrate for a corresponding enzyme, at 4°C.

Fig. 1. Sections which were stained histochemically. (a) Alkaline phosphatase; embryo 22 h. (b) Esterase; embryo 22 h. (c) Malic acid; embryo 24 h.
Fig. 2. Results of histochemical investigations of some enzymes in D. melanogaster, stock Canton-S. – , the first finding of the activity; —, the beginning of the increase of histochemical reaction; APH, alkaline phosphatase; EST-A, esterase, α-naphthyl acetate used as substrate; EST-B, esterase, β-naphthyl acetate used as substrate; ODH, octanol dehydrogenase; XDH, xanthine dehydrogenase; MDII, malic enzyme; AO, aldehyde oxidase. 1-aorta, 2-muscles, 3-fat body, 4-cardia, 5-gastric caeca, 6-ventriculus, 7-midintestine, 8-Malpighian tubules, 9-esophagus, 10-hypopharynx, 11-ganglion, 12-oeenocytes, 13-spiracles, 14-salivary glands, 15-hypoderm.
(3) Egg membranes are pierced by a fine needle; fixation 2 h at 4°C. (4) Chorion and yolk membranes are removed by special needle. (5) Washing in cold Hanks solution for 1 h at 4°C. (6) Incubation in the solution for histochemical staining, 5-30 minutes. (7) Hanks solution 30 min. at 4°C. (8) Alcohols (40, 70, 96, 100%) 5 min. in each concentration at 4°C. Alcohol + aceton (1:1), 10 min.; aceton, 10 min. (9) Araldite:aceton 1:3; 2 h; 1:1, 2 h; 3:1, 2 h. Araldite, 15 h. (10) Polymerization of araldite for 1 day at 43°C and 2 days at 60°C. (11) Preparation of sections. This method was used mainly for the staining of histological sections by the usual histological and cytological technique.

Second method (mainly for the histochemical investigations): (1) Washing of eggs (50-100) in some portions of distilled water. (2,3) Same as in the first method. (4) Hanks solution, 30 min. at 4°C. (5) Impregnation by solution of polyacryl amide gel. The solution is prepared by the mixture of 5 parts solution A and 3 parts solution B. Solution A: acryl amide 30 g, bisacryl amide 1 g, TEMED 0.25 ml, Tris-acetic buffer 0.05M, pH 8.2, 10 ml, distilled water 60 ml. Solution B: 2% ammonium persulfate 20 ml, distilled water 15 ml. (6) Polymerization 20-30 min. (7) Freezing of the gel slabs with eggs. (8) Preparation of sections (5-10 micron) in the cryostate. (9) Histochemical staining. We used histochemical methods according to Pearse (1960) and Burstone (1962). Aldehyde oxidase was detected according to Dickinson (1970).

The quality of our histochemical technique is illustrated in Fig. 1a, b, c. Designated on Fig. 2 are the periods of development when some enzymes are detected in the different tissues for the first time and a time when the increase of enzymatic activity is established histochemically. It was shown that alkaline phosphatase has been detected rather early during development (12-14 h of embryogenesis) before histochemical finding of the activity of most other enzymes investigated by us. Traces of aldehyde oxidase can be seen at the earliest stages of development. This activity is a result of the presence of the maternal products in the eggs, and then the activity of aldehyde oxidase in the embryos decreases. The increase of this activity and correspondingly the intense histochemical reaction is established rather late during development (1st-2nd instar larvae).

The increase of histochemical reaction of NADP-dependent malic enzyme takes place before the corresponding increase in activity of aldehyde oxidase. There is some similarity of the histochemical pattern between the organs which are developed from the same embryonic anlages. It was established that two chains of enzymes are sequentially expressed during development: (1) Alkaline phosphatase → esterase → octanol dehydrogenase → xanthine dehydrogenase. (2) Malic acid → aldehyde oxidase. It is possible that there is a correlation between the sequence of phenotypic expression of some enzymes and the sequence of distribution of genes coded for the corresponding enzymes (Korochkin 1978).

The histochemical pattern in the developing embryos and larvae of the stock with the inversion In(3LR)D/Sb has in general some similarity to the same in Canton-S, but there are also some differences in the periods of the first histochemical detection of enzymes in the different tissues.

al and th (decreases the number of aristal filaments and the number of claws on the prothoracic legs) and "leg" mutations d and fj (decreases the number of tarsal segments on the prothoracic legs) at 16°C and 29°C in D. melanogaster, we found the appearance of essential signs of non-homoeotic mutations on the corresponding homeotic structures (Kaurov et al. 1976, 1978). In addition, in double mutants pb ss a we observed a special manifestation of mutation ss a on homeotic structures, caused by the action of mutation pb (Kaurov et al. 1977). Similar effects were also observed by other authors (Brown 1940, Ouwenell 1970, Lewis 1963, Stepshin and Ginter 1972).

On the basis of the data obtained I suggest defining the notion "field gene activity" as a totality of cells of definite determination, specific for manifestation of activity of a given gene, to which a definite phenotype of definitive structures corresponds. The consequences include application for definition of gene activities, morphogenetic relationship of normal and homoeotic structures and gene activity after the appearance of cells of definite determination, independently of its origin in ontogenesis and localization.

Kaurov, B.A. Institute of Medical Genetics, AMI USSR, Moscow, USSR. Mutation aristapedia causes the transformation of distal segments of antennae to five-segmented tarsi in D. melanogaster.

Despite the fact that homoeotic mutation causing the transformation of distal segments of antennae to the distal structures of mesothoracic legs has been discovered by Balkaschina in 1928 in D. melanogaster, there was no information concerning the number of tarsal segments in the homoeotic tarsus up to now. This number is considered to be equal to four and to correspond to Ta2-Ta4 of the tarsus, which are homologous to AII-AY of the antenna; Tal of the tarsus is homologous to AIII of the antenna (Postlethwait and Schneiderman 1971). So, the appearance of leg bristles on AIII and four tarsal joints on the homoeotic tarsus will indicate the presence of Tal on it.

Studying the different alleles of the aristapedia locus (ss ak, ss ax and ss a40 a) in D. melanogaster at 16, 25 and 28°C, we observed the appearance of four tarsal joints on homoeotic tarsi in the mutants ss a40 a at 16° C and between Tal and Ta2 (Kaurov and Ivanov 1977). The tarsal joints in the mutants ss a at this locus have been observed by other authors (Mglinetz 1974). In addition, we observed leg bristles on AIII. The mean number of these bristles varied depending on the temperature (16, 25 or 28°C) and the genotype (ss ak, ss ax or ss a40 a) from 1.5±0.1 to 7.4±0.4. It can be noted that leg bristles on AIII in different mutants ss a reacted to the change in temperature, as well as the bristles reacted to Ta2-Ta5 of homoeotic tarsus. At 16°C the number of leg bristles on AIII in the mutants ss ak and ss ax was increased, while in the mutants ss a40 a it was decreased in comparison with 28°C.

So, the data obtained show that the homoeotic mutation aristapedia causes the transformation of AIII-AY of the antenna to Tal-Ta5 of the tarsus, i.e., the formation of five-segmented homoeotic tarsi.

Kidwell, M.G. Brown University, Providence, Rhode Island. The use of pupation height as a method for distinguishing between the sibling species D. melanogaster and D. simulans.

Although males of the sibling species D. melanogaster and D. simulans may be readily distinguished by examination of their external genitalia, separation of females is difficult on the basis of morphological differences. We have found that pupation height in shell vial cultures provides a quick and reliable means of preliminary separation for females of the two species without time-consuming microscopic examination of male progeny.
During the 1977 and 1978 summer seasons, Drosophila collections were made at a number of North American locations in order to establish isofemale lines of D. melanogaster from widely dispersed geographical areas. The frequency of D. simulans at several locations was high, but after some practice it was possible to separate individual female cultures of the two species with a high degree of accuracy according to their pupation pattern in shell vials. It was observed that a majority of melanogaster larvae pupated at a level clearly above that of the food medium while simulans pupae were only occasionally seen above this level. Typical examples of these two distinct patterns are illustrated in Fig. 1. The fact that similar differences were observed in flies collected in Rhode Island, New Hampshire and Texas suggests that species differences rather than strain differences are involved.

An experiment was designed in order to quantify the observed variation in pupation site. An equal volume of a standard cornmeal-molasses-agar medium was dispensed into sixty 8-dm shell vials and all were seeded with live yeast. The level of the medium in the vials was at a height of 2.5 cm. Into 30 of the vials were placed single gravid melanogaster females, aged 4-5 days, which were the progeny of flies collected locally in October 1978. Into the remaining 30 vials were similarly placed simulans females, the progeny of flies from the same collection. Development took place at 21°C under identical humidity and lighting conditions. All pupation sites located above the initial level of the medium were marked daily on the exterior of the vials with a magic marker. The number of adult progeny were counted on the 22nd day after the start of the experiment. The mean adult production per female at 22 days was 59.3 for melanogaster but only 39.9 for simulans. The number of pupae located above the 2.5 cm level was 95.4% of the 22 day adult production for melanogaster but only 8.9% of that production for simulans. This difference in pupation behavior cannot be explained in terms of larval density, however, because the 15 melanogaster vials that were ranked lowest for adult production had a higher frequency of pupation above the 2.5 cm level than the 15 vials with the highest production. Close examination of the culture vials indicated that simulans tended to pupate on the surface of the medium itself. It was further noted that the medium in melanogaster vials was clearly more liquefied by the action of the larvae than in simulans vials. Indeed, in most cases, pupation on the surface of the liquefied medium in melanogaster vials would likely have resulted in the drowning of the pupae.

These observations of species differences in pupation height are consistent with the previously reported results of Barker (1971) and Markow (1979).

Liebrich, W. Institut für Genetik, Universität Düsseldorf, F.R. Germany. In vitro differentiation of single cysts of spermatocytes of Drosophila hydei. In this laboratory techniques have been developed to study the in vitro differentiation of single cysts of spermatocytes isolated from testes of Drosophila hydei (Fowler and Uhlmann 1974, Fowler and Johannisson 1976). Recently Cross and Shellenbarger (1979) showed that it is possible to obtain differentiation of isolated cysts of D. melanogaster, too.

Improvements of these culture techniques have recently been worked out. A simple culture chamber (details described below) permits the observation of the developing cells even with an oil immersion objective (100x).
For proper development of the isolated cysts it is important to stage the pupae from where the testes are isolated: the color of the cuticula should be light brown and the contour of the developing embryo should be visible through the transparent cuticula. The eyes should still be white, i.e., they should not yet show the final red color. The testes of these pupae, in general, are ellipsoid and have lose their dense contact to fat-body cells. After collecting pupae of the right stage, the testes are isolated in *Drosophila* Ringer, removed from the Ringer with a Pasteur-pipette, and transferred immediately into Shields and Sang's medium to which 20% fetal calf serum and a mixture of antibiotics are added. After washing the testes a second time in fresh medium, one testis is pipetted into a culture chamber and opened by means of thin glass needles. The culture chamber is filled with medium and closed as described below.

The basic part of the culture chamber is a thick glass slide with a hole of 15mm diameter (Fig. 1). From one side a thin coverslip (Fig. 1, b') is mounted with vaseline. The chamber is filled partly with nutrient medium. The isolated testis is transferred into it and opened. To close the chamber another coverslip (Fig. 1, b") is mounted leaving a small cleft through which the chamber finally is filled with medium. Thereafter, the cleft is closed with a small piece of coverslip (or mica; Fig. 1, c) using vaseline as a glue. By removing the small coverslip it is very easy to change partly the medium under the stereo microscope with the aid of a Pasteur-pipette or to transfer the cysts with a microliter pipette into a chamber with fresh medium. Observations are made with the inverted light microscope (Zeiss IM 35) with phase contrast optics.

With this technique it is possible to follow the development of 5-10 cysts up to the "coiling process" (Tokuyasu et al. 1972). When the medium is not changed, the two cysts often detach from their 8 primary spermatocytes or the 32 spermatids. Despite this, it might occur that the "naked" spermatocytes continue meiosis until metaphase I. Spermatids also continue to differentiate (Fig. 2). The apical tips of the spermatids of the burst cyst emanate in all directions thus forming a star-like configuration. The spermatids are connected only terminally in a center which often is covered by the detached cyst cells. Free spermatids elongate continuously, whereas the detached cyst cells do not alter their fibroblast-like shape. Individualization of the spermatids was not
observed. However, individualization may sometimes occur also in vitro, since we found a damaged cyst in the coiling stage which contained unconnected spermatozoa. An "individualization cone" as seen in vitro (Tokuyasu et al. 1972) and in vitro (Cross and Shellenbarger 1979) on D. melanogaster was not detected. In our preparations coiling occurs even in cysts which are not so much elongated as is expected from in vivo investigation.

The following preliminary conclusions can be drawn from our observations. (1) The elongation of the spermatids is independent of an intact cyst. (2) The elongation of the cyst is more a consequence of the elongation growth of spermatids. (3) Individualization seems to occur only in an intact cyst. (4) Individualization and coiling of spermatids may also occur in completely elongated cysts, or spermatids, respectively.

Lohs-Schardin, M. Biologisches Institut I, Freiburg, West Germany. A new allele of Ubx causing a strong phenotype.

and show the typical Ubx-phenotype (Lindsley and Grell 1968) which is characterized by enlarged haltere. The homozygous condition is lethal at late embryonic stages or shortly after hatching. In the homozygous state, the Ubx78 allele has a more extreme phenotype than any other Ubx allele described so far. It resembles the phenotype of larvae homozygous for Df(3)P9, the deficiency of the entire bithorax complex (Lewis 1978). On all segments posterior to the mesothorax the homozygous larvae show morphological structures which are characteristic for the mesothorax (Fig. 1). These characteristics include the thorax-type ventral row of fine denticles with some stronger denticles in the posterior segments. Keilin's organs, "black" sense organs (Lohs-Schardin et al. 1980) and a separate section of the tracheal trunk are found on all segments, but the 8th abdominal segment. However, the phenotype differs from larvae homozygous for Df(3)P9 at the posterior end where the telson appears normal.

Trans-combination between Ubx78 and other mutations of the bithorax region [bx3, pbx, bx3-pbx, Cbx (Lindsley and Grell 1968)] produce flies with extreme phenotypes; in this respect Ubx78 is comparable to some other Ubx alleles (Ubx130, Ubx80) and to deficiencies of the whole bithorax complex [Df(3)P115, Df(3)P9 (Morata 1975)].
In larvae homozygous for Pc3(3-48) and Ubx78 each segment posterior to the mesothorax is influenced by both mutations. Ubx78 exerts its effect on the ventral denticle rows which are thorax-like but at the same time Ubx78 enhances the expression of Pc3: most segments develop rudimentary posterior spiracles with "Filzkörper" and carry posterior sense organs which decrease in size towards the anterior segments (Fig. 2) while Pc3 carries these structures only on the posterior 4 segments. This effect is even stronger than in larvae homozygous for Pc3 combined with 3 doses of the bithorax complex (Lewis 1978).

When exposed to ether vapors at the cellular blastoderm stage, Ubx78 produces in 75% of the treated embryos bithorax phenocopies as compared to 25% phenocopies in the sib controls. The response to ether is known to be higher in embryos carrying bithorax mutations associated with break-points in the bithorax region [Ubx80, Ubx130, Df(3)P9 (Capdevilla and Garcia-Bellido 1978)]. Cytological analysis of salivary gland chromosomes with the genetical constitution Ubx78/Df(3)P9 [Dp(3)P115 translocated] and Ubx78/+ failed to reveal any deficiency in the bithorax region linked to Ubx78.

The allele Ubx78 resembles the deficiency of the entire complex by its homozygous phenotype. However in combination with Pc3 it shows effects ascribed to increased doses of the bithorax complex. Yet the yield of ether phenocopies is increased as in bithorax mutants known to carry a break-point within the bithorax region.

Supported by the Deutsche Forschungsgemeinschaft (SFB 46).

We found that D. melanogaster possess the corresponding locus to Est-9 of D. subobscura. This esterase is detected only in the adults and only when 1-leucyl-β-naphthylamide is used as a substrate together with α-naphthyl acetate. (For the technique used for detecting the enzyme, see Loukas and Krimbas 1975.) It is located on the fly's head and migrates in the gel as fast as Est-9 of D. subobscura.

In order to locate this gene we performed the following crosses (in all cases we refer to the same Fast and Slow alleles): For chromosome 3: Males of the "curled" strain (cu a recessive mutant located on chromosome 3), homozygous for the Slow allele (SS), were crossed with females of wild type homozygous for the Fast allele (FF). F1 males were then crossed with females of the curled strain. Half of the wild and half of the curled progeny of this backcross were heterozygous (FS), while the other half were homozygous (SS). So, the esterase gene is not located on chromosome 3. For chromosome 4: Males of the "cubitus interruptus-Dominant" strain (cID a dominant mutant, lethal in homozygotes, located on chromosome 4), homozygous FF, were crossed with females of wild type homozygous SS. F1 males of phenotype cID were then backcrossed with the females of wild type. Half of the wild and half of the mutant progeny were heterozygous, while the other half were homozygous (SS). So, the esterase gene is not located on chromosome 4. For chromosome 2: Males of the "orange" strain (or, a recessive mutant located on chromosome 2), homozygous FF, were crossed with females of wild type homozygous SS. F1 males were then crossed with females of the orange strain. All the wild type progeny were heterozygous and all the orange ones homozygous FF. So, the esterase gene is located on chromosome 2.

Taking into consideration all the similarities between this esterase gene and the Est-9 of D. subobscura (similar biochemical properties of the enzymes and probably similar physiological role) as well as the fact that Est-9 is located on chromosome E of D. subobscura which is homologous to 2R of D. melanogaster (Krimbas and Loukas 1980), we suggest that these esterase loci are homologous.

Until now very little was known of the breeding sites of D. subobscura. Decaying Cornus berries in northern Italy (Buzzati-Traverso 1948), diseased Iris root in England (Smart 1945), oak galls of Biorrhiza pallida in England (Basden 1952) or slime fluxes, where larvae of other obscura group species are found (e.g., D. ambigua by Prevosti 1959) have been advocated as possible breeding sites. Also, D. subobscura flies emerged from rowan-berries collected in the field (Begon 1975), from apples (Hummel 1978) and from fruits of Magnolia grandiflora (Lachaise 1978). Finally Shorrocks (unp. information) found that the species breeds in England on mushrooms, especially Amanita phalloides, and Fontdevila (1978) in northwest Spain (Galicia) in Amanita rubescens.

We collected 30 fruits of Ziziphus jujuba and 30 orange fruits from the Botanical Garden of Athens. From the Zizyphus jujuba fruits 218 D. subobscura and 637 D. melanogaster flies emerged while from the orange fruits only D. melanogaster.

The rarity of all these substrates mentioned above does not seem to justify the great densities of D. subobscura at least in the "central" populations (Begon, Krimbas and Loukas in prep.). The situation resembles its North American counterparts, for which we ignore their breeding sites.

Although a number of mutants affect the disposition of bristles on Drosophila none has the extensive pleiotropic effects of shibirets (Poodry et al. 1973) and NotchtS (Shellenbarger and Mohler 1975). The developmental phenotypes of these two mutants are remarkably similar even though the mutants are located far from each other on the X chromosome and they do not share the phenotype of reversible paralysis. A detailed analysis of the temperature-sensitive periods for each mutant and for the double mutant was undertaken to determine whether the loci interact in any way.

Strains bearing shibirets (shitsu) and NotchtS (Wantslr) and both mutations (Wantslr shitsu) were reared in mass cultures on standard food at 22°C. White prepupae were collected at 1 hr intervals, transferred to shell vials and shifted to 29°C for 6 hrs then returned to 22°C for the remainder of their development. The 6 hr heat pulses were delivered at various times in 1 hr increments from pupariation to 48 hrs after pupariation.

The results confirmed the similarity in phenotypes and temperature-sensitive periods reported previously. The effects causing deletion of structures are more severe in shitsu. The period from pupariation to pupation is lethal at 29°C for shitsu but not for Ntsl. The deletion of bristles especially macrochaetes is much less severe in NotchtS. In contrast, NotchtS appears to have a much stronger response to heat pulses causing supernumerary microchaetes. Since the temporal pattern of temperature-sensitive periods is specific to various regions, and even to bristle rows, on the thorax a single 6 hr heat pulse may lead to overlapping phenotypes. That is, supernumerary bristles in one area or row may be near regions where deletion of bristles has begun. NotchtS is less effective in deleting bristles so the net result is a more hirsute thorax on NotchtS animals given comparable heat pulses to shitsu. The timing, duration and intensity of the effect on bristle shape called "scimitar" is the same in the two mutants.

The phenotype of the double mutant is essentially that of shibirets alone. The presence of NotchtS does not enhance or rescue any of the shibire effects at the restrictive temperature. Neither does it alter the restrictive temperature.

The similar complex pleiotropic phenotypes of these two non-interacting temperature-sensitive mutants are difficult to explain by a hypothesis of intermittent gene activity. The interpretation we favor is that the temperature-sensitive periods reflect times when the particular cells enter a sensitive stage of their cell cycle or developmental program. This work was supported by NTH Grant RR 08132.

Lyttle, T.W. University of Hawaii, Honolulu. Segregation in XYY males and XXY females of D. melanogaster. Grell (1958) investigated the pattern of sex chromosome segregation in the progeny of XYY males and recovered XY/Y segregation in excess of the .667 frequency predicted under non-preferential segregation. In addition, there appeared to be a deficiency of XYY males which Grell attributed to a lowered viability of such aneuploid types. This report presents data which independently supports Grell's speculation.

In the course of our work with a translocation \((T(Y;2), \text{SD} L^2)\) in D. melanogaster which has its autosomal break in division 58 proximal to bw\(^+\), we found it necessary to measure the amount of sex chromosome nondisjunction in \(X/X/T(Y;2), \text{SD} L^2/CyO\) females and \(X/Yb^w+/y^+YBS\) males. Flies hyperploid for the 2R tip survive and carry all the Y fertility factors.

Table 1 shows the resulting progeny when \(X/X/T(Y;2), \text{SD} L^2/CyO (= RspI)\) females are mated to \(y^+/YBS; RspS \text{ cn bw (or } RspI-16 \text{ cn bw, kindly provided by B. Ganetzky) males. Here } RspS \text{ and } RspI \text{ denote the alleles at the Responder locus which are sensitive and insensitive, respectively, to the sperm dysfunction induced by Segregation distorter (SD)}.\)

Some progeny classes are lethal and others are confounded, but a reasonable estimate of the overall nondisjunction rate can be obtained by doubling the contribution of the three surviving nondisjunctional classes to the total, to give \(m = \text{proportion of XX/Y disjunctions} = 14/635 = .022.\) This should be compared to the somewhat higher rate of 2494/54070 = .086 obtained by Bridges (1916, \(\chi^2 = 15.4, p << .001\)). The apparent reduction in secondary nondisjunction may be partially due to a decreased viability of y flies, or may be explained on the basis of a decreased probability of heterosynapsis owing to the interference of the bw\(^+\) material on the Y.

Two classes of progeny males (A and B) were themselves progeny tested in matings to cn bw females in order to further determine the viability of, and segregation in, XY flies. Tests of B Cy cn males (class A in Table 1) showed 3/21 males were XYY, and their progeny distribution is presented in Table 2. The B L males (class B, Table 1) are all XXY, but some of those (5/14) tested were carrying RspS and showed segregation distortion, while the remainder were \(X/y^+YBS; T(Y;2), \text{SD} L^2/RspI - 16 \text{ cn bw and showed no SD activity. The progeny from these crosses are summarized in Tables 3b and a, respectively.}\)

Several observations can be made from this somewhat heterogeneous mass of information. First, the data from Table 2 include all progeny classes and allow the best estimate of \(\hat{\lambda} = \text{proportion } X/YY \text{ disjunction} \) (summarized in Table 4b). I give a range for \(\hat{\lambda}\) because its value depends critically on whether there is a viability reduction in XYY flies, since \(\hat{\lambda}_1 = (X + YY)/\text{TOTAL}\) will then underestimate \(\hat{\lambda}\). On the other hand, \(\hat{\lambda}_2 = X/(X + Y)\) uses less of the available information and is therefore less precise, though perhaps more accurate. Secondly, the presence of the SD L portion of the T(Y;2) in the B L males allows us to use Table 3a to determine whether the translocation itself affects segregation. Finally, from Table 3b we can determine whether the strength of SD is altered by the presence of the extra sex chromosome.

Also in Table 3a, we attempt to measure \(\hat{\lambda}\) by first estimating the three missing classes by the observed numbers for their respective complementary classes (immediately right adjacent to each empty box) and summarizing the data in Table 4c. Notice that the range of \(\hat{\lambda}\) here barely overlaps that obtained from the data of Table 2 (see Table 4b). This is primarily because of the zero value for the XYY class in the latter data, which males \(\hat{\lambda}_1\) extremely low. It should be noted that the pattern of the data and the estimates of \(\hat{\lambda}_1\) vary very little if we ignore the missing or confounded data classes in Tables 2 and 3 and use only the even numbered columns for purposes of estimation. These alternate estimates of \(\hat{\lambda}\) are presented in Table 4 with asterisks.

The overall estimate of \(\hat{\lambda}\) in the current data may also have a slightly upward bias owing to the apparent tendency of \(y^+YBS\) to be involved in a proportionally greater number of heterosynapses in these XYY males, perhaps due to some pairing ability of the X material on \(y^+YBS\). This shows up in all crosses as an increased tendency for \(X/Yb^w+/y^+YBS\) compared to \(X/y^+YBS/ Yb^w+\) segregations. The data from both Tables 2 and 3 are homogeneous in this respect, and when pooled (ignoring the SD L classes) gives an overall \(\chi^2 = 15.63, p << .001\) for the contingency test for independence of the X and the type of Y chromosome present (89 Xyb\(^+\):50 Xy\(^+\)YBS:57 Yb\(^+\):84 y\(^+\)YBS). If there is an enhanced tendency for Xy\(^+\)YBS synapses, this will increase the proportion of recovered X ↔ YY disjunctions and thus increase \(\hat{\lambda}\) above the level...
Table 1 - Progeny from X/X/T(Y;2)SD L²/Cyo y by

\(y/y^{+}y_{B}^{S}:cn \, bw^{+} \).

<table>
<thead>
<tr>
<th>GAMETES (y;cn , bw)</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>Ybw⁺</th>
<th>X</th>
<th>X</th>
<th>Ybw⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y;cn , bw)</td>
<td>303</td>
<td>1</td>
<td>97</td>
<td>2y</td>
<td>Cy</td>
<td>cn</td>
<td>1</td>
<td>yL</td>
</tr>
<tr>
<td>(y^{+}y_{B}^{S}:cn , bw)</td>
<td>160</td>
<td>B</td>
<td>Cy</td>
<td>61</td>
<td>BL</td>
<td>4</td>
<td>B</td>
<td>Cy</td>
</tr>
</tbody>
</table>

Table 2 - Progeny from X/y⁺y⁺B/Cyo⁺ by X/x cn bw².

<table>
<thead>
<tr>
<th>(y;cn , bw)</th>
<th>X</th>
<th>X</th>
<th>X</th>
<th>Ybw⁺</th>
<th>X</th>
<th>X</th>
<th>Ybw⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y;cn , bw)</td>
<td>18</td>
<td>28</td>
<td>8</td>
<td>12</td>
<td>22</td>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

† based on partitioning 26 Cy² progeny according to XY cn bw: X cn bw proportions observed.

* \(Y = Y_{bw}^{+} \)

\(Y^{1} = y^{+}y_{B}^{S} \)
Table 3a, b - Progeny from a) $X/Yb^S_{2};T(Y;2),SD L^2/Rsp^I - 16 cn bw$

or b) $X/Yb^S_{2};T(Y;2),SD L^2/Rsp^S_{cn bw} \delta \sigma$ by $X/X;cn bw \Omega \omega$.

<table>
<thead>
<tr>
<th>(\sigma) GAMETES</th>
<th>XY SDL</th>
<th>XY SDL</th>
<th>XY SDL</th>
<th>XY SDL</th>
<th>Y SDL</th>
<th>Y SDL</th>
<th>Y SDL</th>
<th>Y SDL</th>
<th>X SDL</th>
<th>X SDL</th>
<th>YY SDL</th>
<th>YY SDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGENY a</td>
<td>39</td>
<td>42</td>
<td>-</td>
<td>26</td>
<td>14</td>
<td>33</td>
<td>-</td>
<td>42</td>
<td>-</td>
<td>30</td>
<td>13</td>
<td>6</td>
</tr>
<tr>
<td>b</td>
<td>71</td>
<td>1</td>
<td>-</td>
<td>5</td>
<td>73</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>-</td>
<td>0</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>PHENOTYPE</td>
<td>L</td>
<td>cn</td>
<td>+</td>
<td>cn_bw</td>
<td>L</td>
<td>cn</td>
<td>+</td>
<td>cn_bw</td>
<td>+</td>
<td>cn_bw</td>
<td>BL</td>
<td>B cn</td>
</tr>
</tbody>
</table>

* \(Y = Ybw^+ \)

* \(Y^1 = X/Yb^S_{2} \)

Table 4 - Summary of data from Grell (1958) and Tables 2 and 3.

<table>
<thead>
<tr>
<th>(\sigma) GAMETES</th>
<th>XY</th>
<th>X</th>
<th>YY</th>
<th>Y</th>
<th>(\hat{l}_1)</th>
<th>(\hat{l}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGENY</td>
<td>XXY</td>
<td>XX</td>
<td>XYY</td>
<td>XY</td>
<td>(l_1)</td>
<td>(l_2)</td>
</tr>
<tr>
<td>a</td>
<td>1153</td>
<td>307</td>
<td>207</td>
<td>1155</td>
<td>.182</td>
<td>.210</td>
</tr>
<tr>
<td>b</td>
<td>64</td>
<td>20</td>
<td>0</td>
<td>66</td>
<td>.133</td>
<td>.233</td>
</tr>
<tr>
<td>c</td>
<td>133</td>
<td>60</td>
<td>19</td>
<td>131</td>
<td>.230</td>
<td>.314</td>
</tr>
</tbody>
</table>

* see text
obtained for normal XYY males. In any case, even if we ignore this potential bias, the various estimates for \(\hat{k} \) tend to argue against nonpreferential segregation (i.e., \(\hat{k} = .333 \)), and in favor of Grell's conclusion of preferential pairing of the Y chromosomes.

Table 3b can be used to estimate \(\hat{k} \) (= proportion of SD bearing sperm) in these crosses where distortion is active. The estimate obtained is \(\hat{k} = 156/158 = .987 \), indistinguishable from a control value obtained for \(X;T(Y;2),SD L^2/RspS \) cn bw males of 6260/6290 = .995 \((\chi^2 = 1.94, p = .173) \). Therefore, I conclude that the presence of the extra Y is having no significant effect on the strength of distortion.

The low frequency of XYY males among the B Cy cn progeny tested from Table 1 (14% recovered) as well as the disparity in the X versus YY gamete recovery in all data of Table 4 indicates a reduced viability for XYY flies, best estimated from Grell's data alone as a loss of about 0.33 compared to XY males. The viability is further lowered in my data by the fact that the XYY males are often hyperploid for the 2R tip.

The estimates of \(\hat{k} \) differ somewhat, with \(\hat{k} \) being most reliable owing to the viability effect. After making allowances for the possible biases discussed, it would seem that \(\hat{k} \approx .2 - .25 \) is a reasonable estimate. However, an important inference from the data presented here should be that marked Y chromosomes may introduce considerable bias for segregation studies in Drosophila.

Malogolowkin-Cohen, Ch. and M. Livni. Institute of Evolution, University of Haifa, Israel. A preliminary study on polymorphism and heterozygosity found in D. subobscura in Israel.

A genetic analysis, polymorphism and heterozygosity of 16 loci of 12 enzymes of Israeli populations of D. subobscura was initiated in our laboratory in 1976. Five collecting sites from three of the four biogeographic regions cited by Malogolowkin-Cohen (1979) and Malogolowkin-Cohen et al. (1979) are used in this study: (1) mountains - Biryah-Zefat, Carmel and Quiriat Anavim-Mevasseret; (2) foot hills - Tivon-Oranim; (3) coastal plain - Dor (Fig. 1). Males caught at the above mentioned places were pair-mated to virgin females from a stock of inversion-free chromosomes and wild impregnated females caught at the same places were permitted to oviposit in the lab, after which wild males and wild females were assayed for enzymes. Horizontal starch gel electrophoresis was carried out according to the techniques of Ayala et al. (1972) with modifications and additions made by Saura et al. (1973). The allele frequency, \(\bar{A} \), polymorphism, \(\bar{p} \), and heterozygosity, \(\bar{H} \), are calculated and the results may be seen in Table 1. Polymorphism and allele frequencies are found to be higher in the center (Tivon-Oranim, Mount Carmel and Dor) and in the north (Biryah-Zefat) and lower in the western distribution area of the fly (Quiriat-Anavim-Mevasseret), while no variation is found in heterozygosity (Table 1). The estimates are based on the following loci: acid phosphatase (Acp1, 2, and 3), aldehyde oxidase (Ao), esterase (Est), fumarase (Fum), \(\alpha \)-glycerophosphate dehydrogenase (\(\alpha \)-Gpdh), hexokinase (Hk), isocitrate dehydrogenase (Idh), leucine aminopeptidase (Lap), malate dehydrogenase (Mdh 2 and R), malic enzyme (Me), phosphoglucomutase (Pgm) and phosphoglucomutase isomerase (Pgi 1 and 2).
Acknowledgements: We would like to thank Mrs. D. Sarid for her technical assistance. This work was supported by the Israel Absorption Center, Contract II to the senior author and by a grant from the U.S.-Israel Binational Science Foundation (BNSF), Jerusalem, Israel.

Fig. 1. Map of Israel illustrating sites where D. subobscura was found by us in 1976. Underlined are the sites used for the present study. U.H. = University of Haifa.

Mather, W.B. and G. Balwin. University of Queensland, Brisbane, Australia.

Inversions in three species of Drosophila from the River Kwai, Thailand.

June 1978 and January 1979 (Mather et al. 1980; Mather and Balwin 1979 and in press).

In June 1979 twenty-four isolines of D. s. albostrigata, fifteen of D. albomicans and three of D. kohkoa were established from the River Kwai region of Thailand. The inversions from this region have been reported on three times before from collections made in November 1977, (a) D. s. albostrigata. Seven simple and one complex inversions were detected. No new inversions were detected but this is the first time that inversions G and F3 have been recorded at the River Kwai. Inversion G - Mather, W.B. and P. Thongmeeeark DIS 48:40 previously recorded at Cebu (Phil.), DIS 48:40 and Luzon (Phil.), DIS 50:60. Inversion F3 - Mather, W.B. and P. Thongmeeeark, M. Clyde and D. Lambert DIS 51:86, recorded at Kuala Lumpur (Malaysia). The heterozygosity frequency of all inversions detected is given in Table 1.

<table>
<thead>
<tr>
<th>Inversion</th>
<th>Chromosome</th>
<th>Simple</th>
<th>Complex</th>
<th>Het. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>III</td>
<td>X</td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>E</td>
<td>III</td>
<td>X</td>
<td></td>
<td>12.5</td>
</tr>
<tr>
<td>G</td>
<td>I</td>
<td>X</td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>W2</td>
<td>III</td>
<td>X</td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>F3</td>
<td>III</td>
<td>X</td>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>A5</td>
<td>III</td>
<td>X</td>
<td></td>
<td>91.7</td>
</tr>
<tr>
<td>C5</td>
<td>III</td>
<td>X</td>
<td></td>
<td>45.8</td>
</tr>
<tr>
<td>D5</td>
<td>III</td>
<td>X</td>
<td></td>
<td>25.0</td>
</tr>
</tbody>
</table>
Eight simple and three complex inversions were detected. All inversions except one had previously been detected at the River Kwai. A photograph of the new inversion (E6) is presented and break-points assigned (in relation to the standard photographic map - Mather, W.B. and P. Thongmeearkom, DIS 55:101). See Table 2. The heterozygosity frequency of all inversions detected is given.

(c) D. kohkoa. One simple and one complex inversion were detected. Both inversions F6 and G6 are new. Photographs are presented and break points assigned (in relation to the standard photographic map, Mather, W.B. and P. Thongmeearkom 1978, DIS 53:150). See Table 3.

The material was collected and the isolines established by W.B.M. The laboratory work was carried out by G.B.

References: Mather, W.B. and G. Balwin, University of Queensland, Brisbane, Australia.

Inversions in species of the nasuta complex from the River Kwai region of Thailand have been reported on twice before from collections made in November 1977 and June 1978 (Mather et al. 1980; Mather and Balwin 1980). In January 1979 seventy-one isolines of D. s. albostrigata and four isolines of D. albomicans were established.

(a) D. s. albostrigata. Nine simple and one complex inversions were detected. Seven of these had previously been detected at the River Kwai and one (A2) had first been detected elsewhere in Southeast Asia (Mather and Thongmeearkom 1973). The remaining inversions Y5 and Z5 are new and photographs are presented and break points assigned (in relation to the standard photographic map, Thongmeearkom 1977). See Table 1. The heterozygosity frequency of all inversions detected is given and compared with June 1978. It will be noted that there are considerable differences in frequency in some cases. (Seventy-six isolines were analyzed in the June 1978 collection.)
(b) *D. albomicans*. Eight simple and two complex inversions were detected. Five of these had previously been detected at the River Kwai; four in *D. albomicans* and *J₂* in *D. s. albostrigata*. One (L₃) had been detected previously at Phuket in Thailand (Mather and Thongmeearkom in press). The remaining inversions A₆, B₆, C₆ and D₆ are new and photographs are presented and break points assigned (in relation to the standard photographic map, Mather and Thongmeearkom in press). See Table 2. Because only four isolines were established and analyzed heterozygosity frequencies are not given but a comparison between the inversions detected in June '78 and Jan. '79 is given.

The material was collected and the isolines established by W.B.M. The laboratory work was carried out by G.B.

Table 1. *D. s. albostrigata*

<table>
<thead>
<tr>
<th>Inversion</th>
<th>Type</th>
<th>Chromosome</th>
<th>Break Points</th>
<th>Jan. '79</th>
<th>June '78</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>5.6</td>
<td>1.3</td>
</tr>
<tr>
<td>E</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>19.7</td>
<td>14.5</td>
</tr>
<tr>
<td>A₂</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>4.2</td>
<td>--</td>
</tr>
<tr>
<td>W₂</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>9.9</td>
<td>3.9</td>
</tr>
<tr>
<td>A₄</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>76.1</td>
<td>55.3</td>
</tr>
<tr>
<td>B₂</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>7.0</td>
<td>7.9</td>
</tr>
<tr>
<td>C₂</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>29.6</td>
<td>55.3</td>
</tr>
<tr>
<td>D₂</td>
<td>complex</td>
<td>III</td>
<td></td>
<td>16.9</td>
<td>34.2</td>
</tr>
<tr>
<td>Q₂</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>--</td>
<td>2.6</td>
</tr>
<tr>
<td>Y₂</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>10.2 - 15.6</td>
<td>1.4</td>
</tr>
<tr>
<td>Z₂</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>17.0 - 21.4</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table 2. *D. albomicans*

<table>
<thead>
<tr>
<th>Inversion</th>
<th>Type</th>
<th>Chromosome</th>
<th>Break Points</th>
<th>Jan. '79</th>
<th>Detection</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>J₂</td>
<td>complex</td>
<td>III</td>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>L₃</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>R₂</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A₃</td>
<td>simple</td>
<td>II</td>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>T₂</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>U₂</td>
<td>complex</td>
<td>III</td>
<td></td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>V₂</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>W₂</td>
<td>simple</td>
<td>III</td>
<td></td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>X₂</td>
<td>complex</td>
<td>III</td>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>A₆</td>
<td>simple</td>
<td>III</td>
<td>32.4 - 38.8</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>B₆</td>
<td>simple</td>
<td>III</td>
<td>34.2 - 40.1</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>C₆</td>
<td>simple</td>
<td>III</td>
<td>1.1 - 10.0</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>D₆</td>
<td>simple</td>
<td>III</td>
<td>1.1 - 7.4</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>1975</th>
<th></th>
<th>1976</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D. melanogaster</td>
<td>30</td>
<td>92</td>
<td>21</td>
<td>76</td>
</tr>
<tr>
<td>D. simulans</td>
<td>67</td>
<td>122</td>
<td>38</td>
<td>69</td>
</tr>
<tr>
<td>D. tripunctata</td>
<td>13</td>
<td>9</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>D. immigrans</td>
<td>63</td>
<td>31</td>
<td>86</td>
<td>39</td>
</tr>
<tr>
<td>D. affinis</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>D. putrida</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D. robusta</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>D. quinaria</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>D. buskii</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D. hydei</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>D. nigromelanica</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D. micromelanica</td>
<td>5</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D. melanica</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D. falleni</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D. duncanii</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Collections | 4 | 4 | 6 | 12 | 13 | 29 | 30 | 31 | 26
Table 1. (cont'd).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>♂♂</td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>59</td>
<td>119</td>
<td>46</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>" simulates</td>
<td></td>
<td>37</td>
<td>116</td>
<td>148</td>
<td>77</td>
<td>45</td>
<td>0</td>
<td>1</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>" tripunctata</td>
<td>65</td>
<td>20</td>
<td>194</td>
<td>96</td>
<td>53</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>50</td>
</tr>
<tr>
<td>" immigrans</td>
<td>13</td>
<td>15</td>
<td>17</td>
<td>13</td>
<td>23</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td>12</td>
<td>22</td>
</tr>
<tr>
<td>" affinis</td>
<td>2</td>
<td>1</td>
<td>29</td>
<td>5</td>
<td>12</td>
<td>8</td>
<td>14</td>
<td>20</td>
<td>15</td>
<td>46</td>
</tr>
<tr>
<td>" putrida</td>
<td>90</td>
<td>7</td>
<td>84</td>
<td>7</td>
<td>24</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>74</td>
<td>6</td>
</tr>
<tr>
<td>" robusta</td>
<td>6</td>
<td>17</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>" quinaria</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>12</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>" buskii</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>17</td>
</tr>
<tr>
<td>" hydei</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>" nigromelanica</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>" micromelanica</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>" melanica</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>" falleni</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>" duncani</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Collections | 10 | 17 | 14 | 8 | 7 | 8 | 11 | 9 | 9 | 7 |

A shaded glen on the campus of North Carolina State University at Raleigh, NC provided a suitable and convenient area for Drosophila collections. A fixed trap site was the source of data from October 1975 to June 1977. During evening activity periods Drosophila were netted above a bucket containing fermenting banana. Collections were taken at least once a week except for the months of December (1976) and January (1977) when the weather was extremely unfavorable for Drosophila. The results of the samples are shown in Table 1 [preceding pages].

Several comments can be made about the seasonal variations in abundance of the 15 species trapped. Typically, the arrival of warm spring temperatures heralded the arrival of large numbers of Drosophila, occasionally with suddenness. Populations of the most numerous species, D. tripunctata, D. immigrans, D. affinis appear to increase swiftly during March or April before tapering off gradually into the winter months. Two of these species, D. tripunctata and D. affinis, seem to have continuity year-round, though their means of overwintering is not known. Interestingly, D. duncani was trapped almost exclusively during the winter months, albeit at low numbers. Of the two sibling species, D. melanogaster and D. simulans, the latter appeared later in the spring yet lasted longer during the fall. However, the spring catch of D. melanogaster could have been at least partly due to escaped laboratory flies from a campus building only 1/4 mile from the trap site (known multiply marked laboratory mutants were sometimes trapped). The female members of these siblings are not reliably distinguished on morphological grounds so only a single total is given for them. With the exception of D. quinaria, males were consistently trapped in greater numbers than females. D. putrida was the most extreme example of this.

During the summer and fall of 1977, Drosophila were collected at various sites around the city of Raleigh, NC. One site was maintained on the campus of North Carolina State University, another sustained in a residential park, and two others set in suburban pine (Schenck Forest) or hardwood (Umstead State Park) areas. A difference between the campus and residential park data was noted in the timing of the onset of relatively high frequencies of D. melanogaster and D. simulans. For the campus site, combined frequencies (ca. 75%) of D. melanogaster and D. simulans were observed by early June, but at the residential park the peak did not occur until late June or early July. The phenomenon of a gradual spread of "domesticated" species of Drosophila from source areas of human habitation into wilder habitats has already been observed for D. melanogaster, D. hydei and D. busckii by McCoy (1962) in Indiana. The relevancy of this notion to the Raleigh area of North Carolina is further strengthened by the Schenck Forest and Umstead Park data. The peak populations of the siblings appeared in August or September at Schenck Forest, sometime after their appearance at the campus and residential park sites. At the most isolated of collecting areas (the experimental field at Umstead Park) the siblings never attained ascendancy over the class of other Drosophila combined, while their greatest abundance came in October. As a result of the late arriving pulse of D. melanogaster and D. simulans in the study areas, the peak populations of the sibling species are correspondingly more short-lived than in the two urban sites. By the end of November, colder temperatures apparently reduced numbers of Drosophila to near zero at all four trap sites.

Mean body weight (mg) per 40 males was measured for 12 Adh I/Adh I and 40 Adh II/Adh II isochromosomal lines extracted from 16 Mexican populations of D. melanogaster (Pipkin et al. 1976) raised at 25°C. A significant correlation (r = 0.627; p < 0.05) was observed between the altitude and mean body weight of the populations representing the Adh II/Adh II lines. The sites located at higher altitudes were in northern Mexico where the mean annual temperatures were low as compared to the sites located at lower altitudes in southern Mexico (Atlas Climatologico de Mexico, 1921-30). This
relationship suggested that the increased body weight at low temperatures may be due to the slower development of the individual. This view was supported by highly significant differences ($p < 0.001$) in mean body weight among three developmental stages (third instar larvae > pre-emergency pupae > adult) raised at 18°C and 28°C. It was also observed that the rate of development at 18°C was approximately one half the rate at 28°C. The above relationship suggested a possible cline between the body weight and altitude in Mexican populations of D. melanogaster.

ADH activity was compared with the activity of ADH for each line after treatment with 0.7M guanidine hydrochloride (GuHCl) or 1.0M urea (UR) for 40 seconds or with heat for 15 minutes at 45°C. The relationship between native ADH activity and ADH activity after treatments with denaturants was investigated. A significant correlation ($r = 0.63; p < 0.05$) was observed between native ADH activity for the 12 Adh I/Adh I lines and ADH activity after treatment with UR. Significant correlations were observed between native ADH activity for the 40 Adh II/Adh II lines and ADH activity after treatment with GuHCl ($r = 0.59; p < 0.01$) and UR ($r = 0.71; p < 0.01$). These relationships suggested that the degree of ADH denaturation was possibly dependent on the native ADH activity levels of the strain.

Wild type Ore-R males were fed EMS (ethyl methane sulfonate) using an 0.0125M concentration for 24 hours. These males were mated to virgin y w f females and the F1 flies were observed for mutations of yellow body, white eyes, or forked bristles. Altogether 21 yellow, 5 forked and 5 white (all mosaics), and one apricot (momo) mutations were found among 9638 F1 progeny.

The yellow mutations were classified as mosaic or complete in phenotype and then mated to y w f males for a test of transmissibility. Of the 21 yellow mutations, 7 were transmitted, 4 were probably gynandromorphs involving $(y f)$ F1 mosaic phenotypes with non-white head areas. Of these 4 gynandromorphs, 2 were sterile, and the 2 which were fertile segregated the $y w f$ and Ore R wild type X (along with some f crossovers). Of the 17 yellow phenotypes not due to chromosome loss, 6 were sterile. Of the 11 fertile yellow mutants, 10 were mosaic and 1 was complete. The complete transmitted as did 6 of these 10 mosaics.

The transmissibility data for the yellows are shown in Table 1.

These results show that EMS induces chromosome loss as well as gene mutations affecting yellow (none of the transmitted viable yellows showed achaete or scute mutations in association with the yellow). One of the two lethals is not associated with an 111 lethal because
Table 2. Frequency of transmissibility of y mosaics.

<table>
<thead>
<tr>
<th></th>
<th>Transmitted</th>
<th>Sterile</th>
<th>Non-transmitted mosaics</th>
<th>Total yellow mosaics</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMS run #1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>EMS run #2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>EMS run #3</td>
<td>2**</td>
<td>1</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EMS run #4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>total</td>
<td>6</td>
<td>6</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

**Both lethal—no (y) males.

Total transmitted = (6/16)(100) = 37.5% frequency of transmission.

Total transmitted Total fertile (y) mosaics = (6/10)(100) = 60% frequency of transmission.

The y w f / y EMS females do not produce (y) sons, indicating the presence of an independent lethal to the right of white. Of 4 surviving stocks carrying the EMS-induced yellow, one shows a (y2) phenotype (dark bristles). The others have typical yellow-brown bristle color. Unlike X-rays, which frequently involve the 11t+, ac+, or sc+ regions, none of the transmitted mutants in this series shows evidence of minute structural rearrangements or multiple involvement of these neighboring genes.

This work was supported by USPHS Biomedical Research Support Grant RF431-H114G.

Hannah (1951) described two main characteristics of intercalary heterochromatin in D. melanogaster: ectopic pairing and a high frequency of chromosome rearrangement break points. Since then new peculiarities if intercalary heterochromatin have been described: late replication (Arcos-Teran 1972; Zhimulev and Kulitchkov 1977), "weak points" (Zhimulev and Kulitchkov 1977), and strong homologous synapsis (Kulitchkov and Belyaeva 1975; Polyanskskaya 1975). After in situ hybridization, bands, having the characteristics of intercalary heterochromatin, preferentially bind labelled nucleic acids, i.e., c-DNA (Rudkin and Tartof 1974), c-RNA (Gvozdev et al. 1980), poly (A+) RNA (Spredling et al. 1975; Gvozdev et al. 1980) and also some cloned D. melanogaster sequences (Ilyin et al. 1977; Finnegan et al. 1977). In addition, more precise data on the location of the regions of ectopic pairing in the polytene chromosomes (Kaufman and Iddles 1963; Kulitchkov and Zhimulev 1976) and numerous chromosome rearrangements have been published in recent years.

Distribution of chromosome rearrangement breaks along the polytene chromosomes will be described here.

We have chosen to exclude mutations selectively induced in a specific region by investigator and have included only those rearrangements which either were induced in Drosophila genome at random or those found in populations (we classify these provisionally as "spontaneous"). Table 1 lists the origin of the rearrangements analyzed.

Data on the localization of break points in F1 larvae after mating females with irradiated males (Prokofyeva-Belgovskaya and Khvostova 1939; Kaufman 1946) were also used.

The distribution of breaks is shown in Figs. 1-6. Data on translocations and inversions both naturally occurring and induced are presented separately. In the summary histogram as well as the inversions and translocations, all the remaining aberrations listed in Table 1 are included. For the regions adjacent to the centromere: 20A-F, 40A-41F, 80D-81F, the total number of breaks was divided by the number of letter subdivisions of these regions and mean data are shown in Figs. 1, 2 and 4.

Distribution of the breaks in the X chromosome (Fig. 1F) is clearly non-random. In addition to the centromeric region 20A-F such regions as 1B, 2B, 3C, 7B, 11A, 12E, 16F, 19E show marked peaks as well. All these regions are considered to be intercalary heterochromatin re-
Table 1. List of chromosome rearrangements studied.

<table>
<thead>
<tr>
<th>Nature of rearrangements</th>
<th>Deficiencies</th>
<th>Duplications</th>
<th>Translocations and inversions</th>
<th>Rearrangements with non-precise locations of 1 break</th>
<th>Breaks in the first generation</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spontaneous</td>
<td>28</td>
<td>6</td>
<td>34 8</td>
<td>17</td>
<td></td>
<td>Lindsley, Grell 1968</td>
</tr>
<tr>
<td></td>
<td>52</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>Yamaguchi et al. 1976</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td>Stalker 1976</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>Pipkin et al. 1976</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Dubinen et al. 1940</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Zacharopoulou 1974a</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Yang et al. 1971</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Zacharopoulou 1947b</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>Paik et al. 1969</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td>Mukai et al. 1970</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Kollantz 1971</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Ashburner, Lemeunier 1976</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Choi 1977</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Mettler et al. 1977</td>
</tr>
<tr>
<td></td>
<td>103</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>Yutaka et al. 1979</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Yamaguchi et al. 1974</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alahiotis et al. 1977</td>
</tr>
<tr>
<td>Totally spontaneous</td>
<td>29</td>
<td>6</td>
<td>315 13</td>
<td>46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Induced</td>
<td>9</td>
<td>6</td>
<td>11 309</td>
<td>61</td>
<td></td>
<td>Lindsley, Grell 1968</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>269</td>
<td>6</td>
<td></td>
<td></td>
<td>Lindsley et al. 1972</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>60</td>
<td>16</td>
<td></td>
<td></td>
<td>Roberts 1970</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>25</td>
<td>17</td>
<td></td>
<td></td>
<td>Stewart, Meriam 1973</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>48</td>
<td>1</td>
<td></td>
<td></td>
<td>Valencia 1970</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>7</td>
<td>17</td>
<td></td>
<td></td>
<td>Mukhina, Zhimulev 1980</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mamon et al. 1977</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Lefevre 1974</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td>Ashburner 1972</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>Denell et al. 1978</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Roberts 1972</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>20</td>
<td>6</td>
<td>170</td>
<td></td>
<td>Woodruff, Ashburner 1978</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prokofyeva-Belovskaya, Khvostova 1939</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prokofyeva-Belovskaya, Khvostova 1939</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Kaufman 1976</td>
</tr>
<tr>
<td>Totally induced</td>
<td>59</td>
<td>86</td>
<td>842 130</td>
<td>130</td>
<td>1529</td>
<td></td>
</tr>
<tr>
<td>Totally</td>
<td>88</td>
<td>6</td>
<td>401 855</td>
<td>176</td>
<td>1529</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 shows the correlation coefficients between frequencies of breaks in the regions and the other cytological characteristics of polytene chromosomes. All the coefficients with the exception of the underlined ones are statistically significant (P > 0.05). It is unlikely that break point frequencies follow the DNA concentration in the region. Although precise estimations of DNA quantities in the lettered subdivisions have not been done, it can be seen that in the regions 9A, 10A and 10B where very large bands are located there are no peaks of break points. This suggests that higher break frequencies in different regions may have structural significance.
Table 2. Coefficients of correlation between the frequencies of breakage in weak points (wp), ectopic pairing (ep), late replication (lr), strong homologous synapsis (ss), preferential binding of c-RNA (cR), poly(A⁺) RNA (pR), and chromosomal rearrangements (b).

<table>
<thead>
<tr>
<th></th>
<th>ep</th>
<th>lr</th>
<th>cR</th>
<th>pR</th>
<th>b</th>
<th>ss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromosome X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wp</td>
<td>0.77</td>
<td>0.61</td>
<td>0.49</td>
<td>0.48</td>
<td>0.47</td>
<td>0.49</td>
</tr>
<tr>
<td>ep</td>
<td>0.65</td>
<td>0.39</td>
<td>0.43</td>
<td>0.55</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>lr</td>
<td>0.55</td>
<td>0.58</td>
<td>0.34</td>
<td>0.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cR</td>
<td></td>
<td></td>
<td>0.77</td>
<td>0.40</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>pR</td>
<td></td>
<td></td>
<td></td>
<td>0.36</td>
<td>0.64</td>
<td>0.50</td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chromosome 2L						
wp	0.72	0.54	--	--	0.21	--
ep	0.62		--	--	0.27	--
lr			--	--	0.24	--

Chromosome 2R						
wp	0.54	0.40	0.33	0.27	0.08	--
ec	0.67	0.53	0.41	0.17		
lr	0.68	0.67	0.32			
cR	0.80	0.22				
pR		0.30				

Chromosome 3L						
wp	0.83	0.62	--	--	0.24	--
ep	0.59		--	--	0.35	--
lr			--	--	0.20	--

Chromosome 3R						
wp	0.78	0.58	--	--	0.06	--
ep	0.60		--	--	0.16	--
lr			--	--	0.25	--

Data were taken: for weak points, ectopic pairing, late replication from Zhimulev and Kulitchkov (1977), for strong homologous synapsis from Kulitchkov and Belyaeva (1975), for binding of c-RNA and poly(A⁺) RNA from Gvozdev et al. (1980).

Fig. 1-6: Distribution of chromosome rearrangement breaks along the X chromosome (Fig. 1), 2L chromosome (Fig. 2), 2R chromosome (Fig. 3), 3L chromosome (Fig. 4), 3R chromosome (Fig. 5) and fourth chromosome (Fig. 6).

Abscissa: chromosome regions according to Bridges' revised maps.
Ordinate: number of breaks in the letter subdivision of the map.

Fig. 1. A=inversions induced, B=inversions spontaneous, C=translocations induced, D=sum of A-C plus deficiencies, duplications and translocations indicated in Table 1. E=sum of the data of Kaufman and Prokofyeva-Belgovskaya and Khvostova, F=sum of D and E.
Fig. 2. A=inversions induced, B=inversions spontaneous, C=translocations induced,
D=translocations spontaneous, E=sum of A-D plus deficiencies, duplications and
transpositions, indicated in Table 1.

Fig. 3. A=inversions spontaneous, B=translocations induced, C=translocations sponta-
neous, D=sum of A-C plus deficiencies, duplications and transpositions (Table 1).

Fig. 4. A=inversions induced, B=inversions spontaneous, C=translocations induced,
D=translocations spontaneous, E=sum of A-D plus deficiencies, duplications and
transpositions, indicated in Table 1.
Fig. 5. A=inversions induced, B=inversions spontaneous, C=translocations induced, D=translocations spontaneous, E=sum of A-D plus deficiencies, duplications and transpositions, indicated in Table 1.

Fig. 6. Sum of all breaks.

Nikoshkov, A.B. and V.T. Kakpakov. Institute of General Genetics, Moscow, USSR. Dosage compensation of sex-linked genes in established cell lines of D. melanogaster. Established cultures of Drosophila cells which are homogeneous from cytological point of view and have different ratio between sex chromosomes and autosomes represent an advantageous model for the study of dosage compensation.

We measured the activity of two enzymes, 6-phosphogluconate dehydrogenase (Luccheci and Rawls, Jr. 1973) and fumarase (Pipkin et al. 1977), determined by sex-linked structural genes Pgd (1-0.64) and Fuh (1-19.9) and α-glycerophosphate dehydrogenase (Luccheci and Rawls, Jr. 1973), determined by autosomal structural gene α-Cpdh (2-20.5) in cell cultures with different ratio between sex chromosomes and autosomes (see Table 1).

Identification of the isozymes of all three enzymes was carried out by means of polyacril amide gel electrophoresis. All cultures showed heterozygosity in three enzymes except Kc cell line cells. We could find only two bands of fumarase in heterozygotes.

The ratio of fumarase and α-glycerophosphate dehydrogenase activity remains approximate-

<table>
<thead>
<tr>
<th>Cell lines</th>
<th>Passage</th>
<th>Caryotype</th>
<th>X:A</th>
<th>Fumarase activity</th>
<th>α-glycerophosphate dehydrogenase activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>KcH</td>
<td>(3)</td>
<td>80-100</td>
<td>1X:2A</td>
<td>0.5</td>
<td>0.163 ± 0.008</td>
</tr>
<tr>
<td>KcI</td>
<td>(3)</td>
<td>1-10</td>
<td>2X:2A</td>
<td>1.0</td>
<td>0.175 ± 0.011</td>
</tr>
<tr>
<td>67jDBS</td>
<td>(4)</td>
<td>180-200</td>
<td>2X:2A</td>
<td>1.0</td>
<td>0.151 ± 0.002</td>
</tr>
<tr>
<td>67j25D</td>
<td>(4)</td>
<td>600-620</td>
<td>2X:2A</td>
<td>1.0</td>
<td>0.172 ± 0.006</td>
</tr>
</tbody>
</table>
ly constant in all cell cultures (see Table 1). It means that the cells with one X chromosome have fumarase activity per X chromosome two times higher than the cells with 2X chromosomes. The change of ratio between X chromosomes and autosomes from 1 to 0.5 causes the "switching" of gene activity from the low level to the high which means the existence of dosage compensation on the cell level (see Table 1).

The same data obtained for 6PGD varied greatly from passage to passage and from experiment to experiment. For instance, in 67j25 cell lines and KcH the ratio between 6PGD and α-GPDH activities was fluctuating from 1.8 to 4 and from 2 to 6.4, respectively.

Detection of dosage compensation on cell level will make it possible to make further investigation of this phenomenon.

The following stocks of D. melanogaster have been investigated: Oregon R - wild type. Lozenge 50 (stable allele) - eye narrower than wild type and ovoid, facets are absent; females are fertile. Lozenge A (unstable allele) - males are characterized by oval small eyes; facets are absent, tarsal claws reduced; females are sterile. Stock A+1 (stable allele A+ - reverse of unstable izA to wild type A+); phenotype of males is identical to the wild type. Stock B+5 (stable allele A+ - revertant of unstable IzA to the wild type); males are phenotypically identical to stocks Oregon R and A+1. In all stocks (except Oregon R and Iz50) males cross to females XX (linked X chromosomes) with markers w of ywf. The development of flies was synchronized beginning with the stage of white pupa (the formation of puparium). The pupae have been investigated in different times after pupariation.

The unstable stock IzA is characterized by the low level of enzymatic activity on the stage of white pupae and in 96 h after pupariation and by the high level of the activity of phenol oxidase during the middle pupal period. It is interesting that the pattern of enzymatic activity during the development of two reversible stocks is different on the stage 48 h after pupariation. In this period the enzymatic activity is higher in stock A+1 in comparison with stock B+5 (see Table 1).

<table>
<thead>
<tr>
<th>Age of pupae (hours)</th>
<th>Total activity of phenol oxidase (units of act./mg/min)</th>
<th>Oregon R</th>
<th>lozenge A</th>
<th>A+1</th>
<th>Iz50</th>
<th>B+5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>43.5±0.5</td>
<td>18.0±1.0</td>
<td>29.5±0.5</td>
<td>34.0±1.0</td>
<td>32.5±1.0</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>17.5±1.1</td>
<td>22.5±1.2</td>
<td>21.0±0.5</td>
<td>16.8±1.0</td>
<td>21.5±1.5</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>23.0±0.5</td>
<td>30.0±1.0</td>
<td>24.5±1.25</td>
<td>17.8±1.0</td>
<td>15.1±1.0</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>26.0±1.0</td>
<td>28.0±1.0</td>
<td>23.5±1.0</td>
<td>23.0±1.0</td>
<td>28.1±1.8</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>17.5±1.0</td>
<td>12.5±0.7</td>
<td>11.3±0.5</td>
<td>17.0±0.2</td>
<td>10.0±0.5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age of pupae (hours)</th>
<th>Ratio A2/A1</th>
<th>Oregon R</th>
<th>lozenge A</th>
<th>A+1</th>
<th>Iz50</th>
<th>B+5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.76±0.07</td>
<td>---</td>
<td>0.71±0.07</td>
<td>0.50±0.05</td>
<td>0.65±0.12</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1.20±0.04</td>
<td>3.70±0.40</td>
<td>0.78±0.08</td>
<td>1.54±0.02</td>
<td>1.02±0.11</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>0.98±0.10</td>
<td>1.43±0.14</td>
<td>1.28±0.19</td>
<td>1.67±0.30</td>
<td>0.87±0.05</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>0.44±0.14</td>
<td>0.07±0.06</td>
<td>0.83±0.21</td>
<td>2.25±0.30</td>
<td>1.05±0.24</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>2.02±0.31</td>
<td>---</td>
<td>0.61±0.05</td>
<td>1.05±0.24</td>
<td>0.65±0.05</td>
<td></td>
</tr>
</tbody>
</table>
Reversible stocks differ from the unstable stocklzA, which is their ancestor. These differences are especially distinct during pupariation and 48 h later. In the first stage of pupal development the activity of phenol oxidase is higher in reversible stocks in comparison with lzA (P > 0.999) but 48 h later the enzymatic activity is higher in stock lzA. The similar pattern of changes of the enzymatic activity in the reversible stock A+1 and Oregon R was established.

After microelectrophoretic investigations and densitometry we determined the ratio A2/A1 - fractions of phenol oxidase. The results are shown in Table 2. Stock Oregon R is characterized by the predominance of A1 fraction (monophenol oxidase). The ratio A2/A1 in this time is equal to 0.76 ± 0.07. Then (24 h after pupariation) the activity of the fraction A2 (diphenol oxidase) is higher. The total enzymatic activity decreases in this period (see Table 1). Probably this process is caused mainly by the change of activity of monophenol oxidase. However, in the following stages of pupal development (48 h and 72 h after pupariation) the ratio A2/A1 decreases again. In this period the total enzymatic activity increases and we suggest that the activity of A2 fraction is not changed and the activity of A1 fraction increases. The activity of A2 fraction is twice that of A1 at 96 h after pupariation. The total enzymatic activity is relatively low in this period. Probably the predominance of A2 fraction is explained mainly by the decrease of activity of monophenol oxidase. It can be proposed that the changes of the enzymatic activity and the pattern of phenol oxidase isozymes is caused by the changes of the level of activity of monophenol oxidase.

Unstable stocklz50 is characterized by the specific change of the pattern of isozymes of phenol oxidase during ontogenesis. In this stock diphenol oxidase is absent during pupariation formation. Its activity is detected at 24 h after pupariation and is very high at this time (ratio A2/A1 is 3.7 ± 0.4). Monophenol and diphenol oxidases are present at 48 h after pupariation. However, the activity of A2 fraction sharply decreases at the end of pupa development. Diphenol oxidase is not detected at 96 h after pupariation. The activity of diphenol oxidase is not detected in the unstable stocklzA during pupariation and 72 and 96 h after pupariation. The pattern of changes of the ratio A2/A1 in the unstable stocklz50 is different from Oregon at this time, although the total activity of enzyme is similar. Unlike the Oregon R stock, lz50 is characterized by the predominance of diphenol oxidase at 72 h after pupariation (ratio A2/A1 is 2.25 ± 0.3), but the activity of monophenol oxidase is higher at 96 h (A2/A1 is 0.61 ± 0.08). The ratio A2/A1 in this case at 72 h after pupariation is intermediate between Oregon and lz50.

We conclude that the unstable stock A has some specific capacities in the pattern of changes of activity of phenol oxidase and pattern of isozymes of phenol oxidase during development and is different from the stable stocklz50, reversible stocks and wild stock Oregon. Probably the instability of locus lz is explained by the insertion and exclusion of a strange segment of DNA into the region of this locus. In this case the regulatory effect of locus lz on the ratio A2/A1 is changed.

By using a unique methodology and a versatile series of choice points in two distinct apparatus, individual Drosophila were shown to possess the ability to learn (Platt, Holliday and Drudge 1980). This behavior can be controlled by a discriminative stimulus (substrate texture). Following a correct response in the presence of the discriminative stimulus at a horizontal choice point, D. melanogaster bred for negative geotaxis in a Hirsch-type geoselection maze were given the opportunity to ascend a vertical alley leading to another choice point. When cues were consistent reliable learning occurred. When cues were inconsistent learning did not occur. Cue reversal produced the classic temporary increase in "incorrect" responses.

The apparatus is inexpensive and versatile. It is described in a technical note herein (Platt and Holliday). We believe there are several factors responsible for our successful demonstration of discrimination learning in D. melanogaster. In general, we took an ethological perspective that the association of a discriminative stimulus with some response pattern would be possible if, and only if, we did not elicit tropistic or escape responses.
Lights and odors tend to elicit an automatic, stereotyped approach response highly resistant to modification. Noxious stimuli (e.g., shock, shaking, sudden movements, sudden strong light) inevitably elicit immediate, and apparently disruptive, flight (escape) responses. We, therefore, allowed the fly to progress from one trial to the next with a minimum of disruption and experimenter interference. Our "reinforcer" for the negative geotaxic strain, the opportunity to ascend a vertical tube, led to the next choice point. At the choice point the presence or absence of paper served as a substrate discriminative cue.

At each of 30 horizontal T-choice points, a correct response was recorded if the fly did not reach the end of the cul-de-sac arm and continued up the vertical alley at the end of the correct arm of the T. An incorrect response was recorded if the fly touched the end cap of the cul-de-sac. Learning was observed in individual flies as an increase in number of correct responses over the 30 choice points. Convincing evidence was noted when the consistent discriminative cue at the first 15 choice points (consistent presence or absence of paper in the arm leading to the next vertical alley) was reversed for the second 15 choice points. Many "incorrect" responses were noted as choice points 16-18 where the previously correct discriminative cue now led to the cul-de-sac.

Using this paradigm and apparatus we are currently attempting to selectively breed for a behavior change over trials—learning.

Polivanov, S. Catholic University of America, Washington, D.C. Possibly non-Mendelian factor for stimulation of egg deposition.

We reported recently (Polivanov et al. 1980) that \(lz631\) males of \(D.\) melanogaster stimulate egg deposition by \(lz631/M-5\) females to a greater extent than \(M-5\) males. The original mutant lozenge male was crossed to \(M-5\) females approximately six years before our experiment began and since that time the lozenge mutant was maintained on \(M-5\) background. Consequently, it is reasonable to assume that the genetic background of the lozenge and \(M-5\) males was largely equalized, and that \(M-5\) and \(lz\) males differed, on the average, from each other only in the X chromosomes. If this is so, then the genetic factor responsible for the increase in egg deposition should be associated with the X chromosomes, containing the mutant \(lozenge631\). In our experiment populations were started with \(lz/M-5\) females and with either lozenge or \(M-5\) males. All populations were started with 100 pairs of flies and were maintained for one generation. Apparently overproduction of eggs in the lozenge-fathered populations led to overcrowding and extremely high larvae mortality. As a result of that, the average size of lozenge-fathered \(F_1\) populations was 529, while that of the \(M-5\) fathered ones was 1041. Checking my old records, I found that I performed a similar experiment in the past but that experiment was initiated for a completely different purpose (Polivanov, unpub.). In that experiment 8 populations were also started with 100 \(lz/M-5\) females and with 100 either lozenge or \(M-5\) males. In four of these populations the flies were derived from one subpopulation, while in the other four they were derived from the other subpopulation. These subpopulations were isolated from each other for approximately 12 generations. The total number of adult flies in the \(F_1\) of the eight experimental populations was as follows:

<table>
<thead>
<tr>
<th>Populations derived from subpopulation 1</th>
<th>Populations derived from subpopulation 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Pop. #</td>
<td>Total # of flies</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>1z-fathered</td>
</tr>
<tr>
<td></td>
<td>821</td>
</tr>
<tr>
<td>2</td>
<td>848</td>
</tr>
<tr>
<td>3</td>
<td>M-5 fathered</td>
</tr>
<tr>
<td></td>
<td>1286</td>
</tr>
<tr>
<td>4</td>
<td>1164</td>
</tr>
</tbody>
</table>

If the sizes of these populations reflect the stimulating effect of the males, it could be said that in the population derived from Subpopulation 1 there was a difference in the stimulating effects of \(lz\) and \(M-5\) males, while none of such existed in the populations derived from Subpopulation 2. It is interesting to note that visible recombinants between \(lz\) and \(M-5\) X chromosomes were almost completely absent. There was found one recombinant in three out of the eight populations.
It is very probable that the factor for the stimulating male effect behaves similarly with the factor for the female sterility reported by Picard (1979); in other words, it could be transposed from one chromosome to another without classical crossing over. Further investigations of this problem are in progress.

Pot, W. University of Groningen, Haren (Gr.), The Netherlands. Courtship and mating success in alcohol dehydrogenase genotypes of D. melanogaster.

Investigating the role of mating behavior in the maintenance of the alcohol dehydrogenase (Adh) polymorphism, Pot et al. (1980) found large differences in numbers of matings performed by flies having different Adh genotypes. In multiple choice experiments FF males were about five times as successful as SS males, and FF females were almost three times as successful as SS females, as indicated by the mating chance ratio r. This paper describes observations of courtship behavior of individual flies in single pair mating chambers (19 mm diameter, 7 mm deep) which were carried out in order to investigate whether differences in the pattern of courtship were involved in the differential mating success.

Table 1. Numbers of matings and percentages mated in single pair mating chambers.

<table>
<thead>
<tr>
<th>g x α</th>
<th>Time (min.)</th>
<th>% mated within 30 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0-10</td>
<td>10-20</td>
</tr>
<tr>
<td>FF x FF</td>
<td>26</td>
<td>10</td>
</tr>
<tr>
<td>FF x SS</td>
<td>15</td>
<td>11</td>
</tr>
<tr>
<td>SS x FF</td>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>SS x SS</td>
<td>16</td>
<td>13</td>
</tr>
<tr>
<td>FF ♂♂</td>
<td>54</td>
<td>17</td>
</tr>
<tr>
<td>SS ♂♂</td>
<td>31</td>
<td>24</td>
</tr>
<tr>
<td>FF ♀♀</td>
<td>41</td>
<td>28</td>
</tr>
<tr>
<td>SS ♀♀</td>
<td>44</td>
<td>20</td>
</tr>
</tbody>
</table>

Not surprisingly, starting a copulation appears to be much easier when only one male and one female are present. Probably as a consequence of this the differences in mating success between the genotypes were much smaller in the single pair experiments. The difference between the males was still significant (FF vs. SS, mated vs. not mated: $\chi^2 = 5.02, P = 0.05$) but the difference between the females was not significant any more ($\chi^2 = 0.37$). Testing the distribution of matings over consecutive periods of time (0-10 min., 10-20 min., 20-30 min., >30 min.) yielded a similar result (FF males vs. SS males: $\chi^2 = 11.06, P < 0.005$; FF females vs. SS females: $\chi^2 = 1.91, N.S.$).

Table 2. Courtship latency times of FF and SS males with FF females.

<table>
<thead>
<tr>
<th>Courtship latency time (min.)</th>
<th>0-1</th>
<th>1-2</th>
<th>2-3</th>
<th>3-4</th>
<th>4-5</th>
<th>>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>FF ♂♂</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>SS ♀♀</td>
<td>1</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

For a behavioral observation one female (always FF) and one male (either FF or SS) were introduced into a mating chamber. Twenty replicate observations were carried out for each male genotype. Table 2 gives the distribution of the courtship latency times, that is the time till the first vibration (see below) occurred. No significant difference was found between the distributions of FF and SS (data taken together in three periods: 0-2 min., 2-4 min., >4 min.; $\chi^2 = 1.35, N.S.$). The behavior of the males was recorded on an event recorder during the first 5 min. after introduction. The following elements of courtship were distinguished: orientation (or): the male stands still, facing the female; approaching (ap): the male walks towards the female or follows her if she is moving; wing vibration (vi); licking (li); and attempted copulation (ac). (For a description of the latter three elements, see Bastock and Manning 1955.) The frequencies (number of
times an element was performed) and duration (total time spent performing an element) of the courtship elements were calculated over a period of 30 sec. and a period of 60 sec., both starting with the first vibration. The duration of ii and ac could not accurately be recorded as these activities lasted very short. The bout lengths (duration divided by frequency) of the elements were calculated over the complete courtship periods. Table 3 gives the outcomes. FF males show significantly higher frequencies of ap and vi. The duration of vi is also significantly longer for FF, while its bout length is exactly the same for FF and SS. FF and SS show no significant differences in duration and bout length of or and ap. So FF males show a more active courtship behavior in which especially the element of vibration, which is performed more often, though not in longer bouts, might be responsible for the higher mating success. Vibration has been shown to be very stimulating to the female (Bastock 1956).

It is theoretically possible that the difference in behavior between the FF and SS males is not an intrinsic quality of the males themselves, but is mediated by the females. Females might be able to distinguish between the genotypes and to exert a differential influence on their courtship, for instance by making more repelling movements (see Bastock and Manning 1955) towards SS males, thus causing more breaks in their courtship.

Ymal+ is an x-ray induced derivative of YSxYx, In(1)EN that arose through the deletion of the majority of the X euchromatin [1(1)J1+] through car+ (E.H. Grell). Among a number of stocks in which Ymal+ was being used to cover proximal lethals induced on the X chromosome by Lifschytz and Falk (1968), one was found that differed from the rest in that the Y, although still covering the proximal lethal in the stock, no longer covered deficiencies for su(f). Tests of this Y in combination with an array of proximal X-linked lethals indicate that it is a derivative of Ymal+ from which the X-derived segment from 1(1)R10-10 through su(f) has been deleted. This segment includes the loci of lethals designated R10-10, Q463, X4, and X1 by Lifschytz and Falk, as well as that of su(f); the Y carries at least one dose of bb+ as determined from its phenotype in combination with bb+. The constitution of this duplicated Y, which we designate Ysu(f)+, may be designated as follows:

KL*bb+? sw+-1(1)Q-56+ bb+? KS
Quinine is one of the commonly used antimalarial drugs in India. It has been shown that it forms an intercalated complex with DNA in vitro (cf. Schupbach 1979). But its mutagenicity in higher organisms remains obscure. The mutagenic activity of injectable quinine (each ml contains 0.3 gm of quinine dihydrochloride I.P and 0.01 gm of sucrose I.P, manufactured by Bengal Immunity Co., Ltd., India) is tested in D. melanogaster at different germ cell stages employing "Basc" test for sex-linked recessive lethals.

Table 1. Induction of sex-linked recessive lethals by quinine in D. melanogaster.

<table>
<thead>
<tr>
<th>Brood</th>
<th>Total no. of chromosomes tested</th>
<th>No. of normal chromosomes</th>
<th>No. of lethals</th>
<th>% of lethals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>640</td>
<td>639</td>
<td>1</td>
<td>0.15</td>
</tr>
<tr>
<td>2</td>
<td>640</td>
<td>614</td>
<td>26</td>
<td>4.23*</td>
</tr>
<tr>
<td>3</td>
<td>620</td>
<td>619</td>
<td>1</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Index: Brood 1 = mature sperm stage
Brood 2 = early spermatid stage
Brood 3 = spermatogonial stage

Two-day-old male Drosophila flies of Oregon-R stock are fed with quinine solution on glass filters for 48 hours following the method described by Vogel and Luers (1974). The brooding pattern (3-2-2) of Wurgler et al. (1977) is followed. The results have been tabulated in Table 1. The data given indicate mutagenic effect of quinine in Drosophila at different germ cell stages. The incidence of sex-linked recessive lethals is significantly very high in Brood 2, which represents the spermatid stage. Detailed work in this direction is in progress.

Acknowledgments: The authors are deeply indebted to the Principal, S. Nijalingappa College, Bangalore for his constant encouragement. This work is financially supported by U.G.C., India.

Experimental manipulations often require that fruit fly larvae be removed from the normal complement of food. We wished to determine the effect of an 8-hour period of food deprivation on the free amino acid pool. Oregon-R larvae 36, 56 or 85 hours after hatching were removed from a yeast seeded cream of wheat-molasses medium. Approximately half the larvae in each age group were placed on paper pulp moistened with water and the remainder were frozen prior to amino acid analysis. After 8 hours, larvae on the paper pulp were also frozen. Amino acids were obtained from supernatants of 80% ethanol homogenates of larvae which had been boiled for 1/2 hour and centrifuged (Rapport and Sing 1971; Rapport and Yang 1974). A Beckman 119 amino acid analyzer was used for quantitative amino acid determinations. Table 1 shows the relative abundance of amino acids in molar percents.

The most striking result is that the relative abundance of alanine diminishes after food deprivation in each age group. It is likely that alanine is deaminated to pyruvic acid for energy metabolism and the amino group is either found primarily as ammonia in the 44-hour larvae or as glutamine in the 64-hour larvae. Other changes less readily interpreted involve a reduction in threonine with "starvation" and an elevation of arginine and a peak identified tentatively as ethanolamine in the two younger age groups. Analysis of the oldest group is complicated by the fact that even under normal conditions feeding is slowing down in this age group as rapid physiological changes occur in preparation for metamorphosis. For example, relative tyrosine levels almost double between 85 and 93 hours and glucosamine was found in the 93 but not 85-hour larvae. The results tend to support the view that certain amino acids like alanine fluctuate in response to physiological stress, perhaps buffering the relative abundance of other amino acids.
Table 1. Percentage (in moles) of free amino acids in Oregon-R larvae at different ages before and after 8 hours of food deprivation.

<table>
<thead>
<tr>
<th></th>
<th>36 hr*</th>
<th>36-44 hr</th>
<th>56 hr*</th>
<th>56-64 hr</th>
<th>85 hr*</th>
<th>85-93 hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H₂O</td>
<td>H₂O</td>
<td>H₂O</td>
<td>H₂O</td>
<td>H₂O</td>
<td>H₂O</td>
</tr>
<tr>
<td>Aspartic acid</td>
<td>3.6</td>
<td>1.6</td>
<td>3.4</td>
<td>2.1</td>
<td>2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Threonine</td>
<td>3.3</td>
<td>0.9</td>
<td>3.9</td>
<td>1.7</td>
<td>4.8</td>
<td>2.4</td>
</tr>
<tr>
<td>Serine</td>
<td>3.5</td>
<td>2.9</td>
<td>3.1</td>
<td>2.7</td>
<td>2.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Asparagine &</td>
<td>32.9</td>
<td>32.2</td>
<td>30.1</td>
<td>37.1</td>
<td>25.6</td>
<td>27.5</td>
</tr>
<tr>
<td>glutamine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proline</td>
<td>2.5</td>
<td>3.1</td>
<td>7.6</td>
<td>5.4</td>
<td>12.2</td>
<td>14.2</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>11.5</td>
<td>12.6</td>
<td>8.9</td>
<td>7.8</td>
<td>7.2</td>
<td>9.8</td>
</tr>
<tr>
<td>Glycine</td>
<td>4.1</td>
<td>5.1</td>
<td>3.5</td>
<td>3.8</td>
<td>3.5</td>
<td>3.2</td>
</tr>
<tr>
<td>Alanine</td>
<td>16.6</td>
<td>5.9</td>
<td>13.3</td>
<td>6.2</td>
<td>10.9</td>
<td>5.6</td>
</tr>
<tr>
<td>Valine</td>
<td>1.3</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.2</td>
</tr>
<tr>
<td>Methionine</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.1</td>
</tr>
<tr>
<td>Methionine</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Isoleucine</td>
<td>0.5</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>Leucine</td>
<td>0.7</td>
<td>0.5</td>
<td>0.5</td>
<td>0.6</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Tyrosine</td>
<td>0.9</td>
<td>0.9</td>
<td>3.4</td>
<td>4.6</td>
<td>7.7</td>
<td>13.3</td>
</tr>
<tr>
<td>Phenylalanine</td>
<td>--</td>
<td>0.2</td>
<td>--</td>
<td>0.4</td>
<td>0.6</td>
<td>0.9</td>
</tr>
<tr>
<td>β-alanine</td>
<td>3.1</td>
<td>2.3</td>
<td>4.7</td>
<td>3.4</td>
<td>4.6</td>
<td>2.4</td>
</tr>
<tr>
<td>Ethanolamine</td>
<td>2.1</td>
<td>5.0</td>
<td>2.3</td>
<td>5.0</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Ammonia</td>
<td>2.9</td>
<td>11.0</td>
<td>2.2</td>
<td>1.2</td>
<td>2.6</td>
<td>1.6</td>
</tr>
<tr>
<td>Lysine</td>
<td>3.1</td>
<td>3.4</td>
<td>4.4</td>
<td>4.0</td>
<td>3.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Histidine</td>
<td>4.2</td>
<td>5.3</td>
<td>3.6</td>
<td>6.7</td>
<td>4.6</td>
<td>4.0</td>
</tr>
<tr>
<td>Typtophane</td>
<td>0.1</td>
<td>--</td>
<td>0.2</td>
<td>--</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Arginine</td>
<td>3.2</td>
<td>6.0</td>
<td>3.6</td>
<td>6.2</td>
<td>4.7</td>
<td>4.2</td>
</tr>
</tbody>
</table>

*removed from growth media and immediately prepared for analysis

Segregation ratios were checked by first crossing 60C+ ♀ to 60C+♂. F1 females and males from this cross were separately backcrossed to the 60C+ stock. Backcross progeny should exhibit a 1:1 ratio of Est 60/Est 60 and Est 60/Est 6+ genotypes. Since females show low esterase 6 activity, only male progeny from the backcrosses were analyzed using standard starch gel procedures (Richmond 1972). In order to determine if larval density affected genotype ratios, the final crosses were completed under conditions which produce high larval density (10 pairs of adults allowed to lay eggs for 4 days at 25°C in a 1/2-pint bottle) or low larval density (2 pairs of adults allowed to lay for 2 days). Since there were no significant differences between the reciprocal backcrosses, they are combined in the data presented below.

Although there is an absolute deficiency of Est 60/Est 60 genotypes at both densities neither case approaches statistical significance as determined by chi-square. A chi-square test of homogeneity of the high and low density crosses is also insignificant (χ² = 0.2) indicating little effect of larval density on segregation ratios. The discrepancy between our results and those of Johnson et al. can likely be traced to the inclusion of morphological markers in the earlier crosses or the presence of a gene affecting viability which was closely linked to the Est 6 locus but which was recombined away in our crosses. The present data demonstrate that the absence of the esterase 6 enzyme has little if any effect on viability.

Acknowledgments to Kathy Sheehan for technical assistance.

D. buzzatii belongs to the mulleri subgroup of the repleta group of the genus Drosophila. Wasserman (1962) has proposed that the chromosomal arrangements of this species are derived from the most primitive chromosomal sequence of the group by fixing three inversions in the second chromosome (2x³, 2k, 2x³) and one inversion in the fifth chromosome (5g). In addition, D. buzzatii has been reported heterzygous for inversion j, jz³ and yj in the second chromosome (Wasserman 1962; Carson and Wasserman 1965).

We have studied the chromosomal polymorphism of 12 populations and two strains of D. buzzatii (Fontdevila et al. 1979) of the Old World. The majority of these samples showed the presence of two new inversions, one in the second and another in the fourth chromosome.
Fig. 1.

Fig. 2.
The second chromosome has been found polymorphic for a new inversion which is always associated with j arrangement and it has been named tentatively jq7. Its breakage points are D3b and G2f, the former included in inversion j region. In Fig. 1 is shown a scheme of both ends of inversion jq7 in a chromosome j/j and also the ends of j and jz3 already described (Wasserman 1962) for comparison.

Fig. 2 shows three microphotographs (A, B, C) of inversion loops formed in polytene chromosomes of three heterokaryotypes for the second chromosome (2jq7/j, 2jq7/st and 2jq7/jz3, respectively), with the interpretative scheme. This inversion was found originally in Carboneras (Spain) and since then it has been found in the great majority of the studied populations of the Iberian Peninsula and Canary Islands. However, it is absent in the Balearic Island, the Madeira Island, Egypt and Dahomey populations. The frequency of jq7 arrangement ranges from 0.13 to 0.04, which qualifies it as moderately frequent.

Most of the populations and strains studied by us have been found also polymorphic for the fourth chromosome. This chromosome shows two arrangements: the standard (st) which is the primitive fourth chromosome of the repleta group (Wasserman 1962), and another arrangement which bears the new inversion extending from Did to Fic regions. The breakage points are diagrammed in Fig. 3. The s inversion had not been detected in all the previous analyses of natural populations (Carson and Wasserman 1965) or laboratory strains (Wasserman 1962, 1954; Mather 1957). Yet, the frequency of this inversion is rather high (between 0.1 and 0.3) in the great majority of populations and strains analyzed by us. Fig. 4 (D) shows a microphotograph of the inversion loop formed in salivary gland chromosome of one heterokaryotype for the fourth chromosome (4st/s), with the interpretative scheme.

The origin of these inversions is not known. The species has been given an Argentinian origin (Wasserman 1962; Carson and Wasserman 1965), on the basis of its high chromosomal polymorphism in the populations of S. Luis (Argentina). However, the polymorphism found by us in the Old World is the highest of all studied and poses the problem of its origin. D. buzzatii was introduced in the Old World following most probably the spread by man of its host plant Opuntia ficus-indica after the discovery of America. The evolutionary implications of this polymorphism, especially on the process of colonization, are discussed elsewhere (Fontdevila et al. 1979) and emphasize the interest for searching these new inversions in the endemic areas of the
New World in order to understand the colonizing strategy of this species. The presence of these new inversions in introduced populations of D. buzzatii suggests that colonization may not necessarily lead to loss of chromosomal polymorphism when the niche is narrow, although more information is needed from the original populations to further substantiate this point.

Sampsell, R. Chicago State University, Chicago, Illinois. Survival differences between Drosophila with different ADH thermostability variants.

Temperature has been implicated as a potential selective agent in maintaining the polymorphism at the Alcohol dehydrogenase locus in D. melanogaster (Gibson 1970; Vigue and Johnson 1973; Clarke 1975). Two alleles, AdhFm and AdhSm (see Sampsell 1977 for an explanation of symbols) are found in most natural populations. AdhSm codes for an enzyme, ADHSm, that is generally less active, but more heat stable than the ADH Fm form produced by AdhFm. Along the eastern coast of the United States, AdhSm increases in frequency from about 60% in Maine to nearly 90% in Florida (Vigue and Johnson 1973; Sampsell 1977). This allelic distribution may be the result of an increasing fitness of flies with ADHSm (or conversely a decreasing fitness of flies with ADH Fm) with increasing mean temperature.

Numerous laboratory studies have shown that ADH is necessary for survival on various alcohol-supplemented media (the exception involves certain alcohols whose ketone metabolites are extremely toxic). If a significant portion of a fly's ADH enzyme were inactivated by high temperatures without killing the fly outright, the alcohol tolerance and thus survival would be reduced.

In an effort to test this hypothesis, larval viability was observed under various environmental conditions. Four strains have been constructed which are nearly isogenic except for a small region of the second chromosome containing the Adh locus. The relative thermostabilities of the allozymes of these strains is ADH Fr > ADH Sm > ADH Fm > ADH Fs (Sampsell 1978). Three

Table 1. Survival of larvae under various combinations of temperature and ethanol.

<table>
<thead>
<tr>
<th>Parental genotype</th>
<th>Temp °C</th>
<th>Ethanol conc.</th>
<th>Number of adults emerging</th>
<th>X²</th>
<th>Relative survival</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>FF</td>
<td>FS</td>
<td>SS</td>
</tr>
<tr>
<td>FFrSm</td>
<td>20</td>
<td>0%</td>
<td>201</td>
<td>422</td>
<td>179</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>185</td>
<td>353</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>13</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>0%</td>
<td>209</td>
<td>413</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>168</td>
<td>362</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>24</td>
<td>50</td>
<td>9</td>
</tr>
<tr>
<td>FmSm</td>
<td>20</td>
<td>0%</td>
<td>234</td>
<td>411</td>
<td>186</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>177</td>
<td>389</td>
<td>150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>30</td>
<td>75</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>0%</td>
<td>190</td>
<td>332</td>
<td>154</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>210</td>
<td>406</td>
<td>185</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>42</td>
<td>85</td>
<td>15</td>
</tr>
<tr>
<td>FfsSm</td>
<td>20</td>
<td>0%</td>
<td>190</td>
<td>440</td>
<td>218</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>193</td>
<td>405</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>57</td>
<td>81</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>0%</td>
<td>179</td>
<td>393</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5%</td>
<td>156</td>
<td>280</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>32</td>
<td>37</td>
<td>7</td>
</tr>
</tbody>
</table>

* p < 0.05
** p < 0.01
different combinations of Adh alleles were studied. Flies homozygous for one of the three fast alleles were crossed to flies homozygous for AdhSm. This is the slow allele which is most common in natural populations. FS heterozygous offspring were used, and the females were allowed to oviposit on "apricot-agar" for 18 hours. The egg-covered dishes of agar were incubated at 25°C for 24 hours, then first-instar larvae were collected and transferred to food vials at a density of 50 per vial. Vials contained Instant Drosophila medium (Carolina Biological) made up with an ethanol solution to produce a final concentration by volume of 0%, 5%, or 10% alcohol. Vials were placed at 20°C or 29°C until development was complete. Twenty vials were prepared for each experimental condition making an initial input of 1000 larvae. After the adults emerged, they were electrophoresed using standard procedures for cellulose acetate strips (Sampsell 1977).

If larvae of all genotypes are equally viable, the adults from an FS x FS cross should appear in a ratio of 1 FF:2 FS:1 SS. Table 1 shows the number of flies of each genotype that emerged, as well as the relative survival of each genotype within a specific set of conditions.

From the data, it is clear that increasing temperature and increasing alcohol concentrations reduce survival among virtually all genotypes. Significant deviations from a 1:2:1 ratio are seen primarily when high concentrations of ethanol are present. The survival of SS flies is about 22% on either 0% or 5% ethanol, regardless of temperature. On 10% ethanol, at both 20°C and 29°C, their survival decreases by 50%. On food supplemented to 10% ethanol, FF and FS flies survive in greater than expected proportions in the vials involving the AdhFr and AdhFm alleles; however, with AdhFs, only the FF homozygotes seem to be favored.

Superficially, these results appear to be in agreement with other studies in which flies with the more active forms of ADH have a relatively higher survival rate on higher alcohol concentrations. Spectrophotometric assays of ADH activity levels in the strains with the rare thermostability variants has only just begun in our laboratory. Visual observation of stained strips following electrophoresis confirms that ADHFs and ADHFm are more active than ADHSm. ADHFr, however, is not nearly as active as the other two allozymes with fast mobility; instead its activity level appears very similar to that of ADHSm. Thus the greater survival of FF flies can't be ascribed to higher activity as that of FmFm and FmFm can.

In the FmSm crosses, there was a significant departure from 1:2:1 on 5% ethanol-supplemented food at 20°C as a result of an excess of FS and a deficiency of SS flies among the emerging adults. At 29°C, the three genotypes are equally viable on 5% ethanol. Although this might reflect a change in the fitness of SS and FS flies caused by the increase in temperature, the relative survival values are not adequate to produce the allele frequencies observed in natural populations. SS need not be the genotype with the highest fitness, but it must be superior to FF if AdhSm is to be the more common allele.

In this experiment, relative survival was clearly a function of the specific environmental conditions, but there was no consistent evidence that flies with the enzymes that have been shown to be more heat-labile in vitro have lower survival rates than ones with the more heat resistant forms when reared at high temperatures. Our failure to observe the kind of differences that would support temperature as a selective agent for this enzyme does not disprove the hypothesis, however. It may well be that a constant temperature of 29°C, while high enough to cause some non-specific mortality, is not a severe enough heat stress to inactivate a substantial fraction of a fly's ADH and thus reduce its alcohol tolerance.

We have recently begun a series of tests in which adult flies are subjected to a heat treatment of 15 min at 40°C. Most adults survive this treatment; however, when FmFs flies are tested immediately after such a treatment, there is almost no ADH activity detectable on the stained strips. That the living flies' alcohol tolerance has indeed been reduced as well is confirmed by placing them on alcohol-supplemented food as soon as they recover consciousness. Preliminary results indicate that flies with ADHFs show much less loss of alcohol tolerance after this heat treatment than ones with the more heat-labile ADHFm. These experiments are being continued with flies with other ADH variants.

This work was supported by an NSF grant DEB-7911538.

The physiological hypothesis of the mutation process (Lobashev 1947) suggests that the endocrine system is able to control mutagenesis. The aim of this work was to study the effects of juvenile hormone analogs (JHA) on mutation frequency in D. melanogaster. Two strains were studied: Canton-S (wild strain) and LA. The latter line was selected for the low male mating activity and characterized by a high rate of spontaneous mutations and hypofunction of the gland corpus allatum (Sapunov and Kaidanov 1977; Kaidanov 1978; Kaidanov et al. 1978).

The analogs used were Altozid and Entacon (Zoecon Corporation). Dominant lethal mutations, effective at the end of embryogenesis, were detected by microscope as eggs which stopped development at the last stages of embryogenesis. Recessive viability mutations were checked by the method of Muller-5 (X-chromosome) and Cy/Pm (chromosome 2).

Analogs were applied in concentrations of 10% (Altozid, water solution) and 20% (Entacon, oil solution). 0.07 μ-liter was applied to pupae at age 135 hours. The data (shown in Tables 1 and 2) suggest that the LA strain has a high rate of mutability in chromosome 2. JHA has no effect on the mutation frequency in the X-chromosome of strain LA, but increased the mutability in chromosome 2 of both lines. Entacon could induce dominant mutations in both strains.

The data suggest that hormones are able to induce some types of mutations. Perhaps the endocrine system is the natural regulator of mutability in living organisms as well.

Table 1. Effects of JH analogs on male mating activity of D. melanogaster.

<table>
<thead>
<tr>
<th>Line</th>
<th>Stage</th>
<th>Variant, analog, concentration</th>
<th>% of ♂♂ engaging in copulation during 30 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canton-S</td>
<td>-</td>
<td>control</td>
<td>86 ± 4.4</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Entacon, 20</td>
<td>128</td>
</tr>
<tr>
<td>LA</td>
<td>-</td>
<td>control</td>
<td>1049</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Entacon, 4</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>"</td>
<td>265</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>"</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Altozid, 10</td>
<td>122</td>
</tr>
</tbody>
</table>

I - white prepupae (98 hrs after hatching)
II - middle pupae (130-140 hrs after hatching)
III - old pupae (165-170 hrs after hatching)

Table 2. Effects of JH analogs on female mating activity of D. melanogaster.

<table>
<thead>
<tr>
<th>Line</th>
<th>Stage</th>
<th>Variant, analog, concentration</th>
<th>% of ♀♀ engaging in copulation during 30 min.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canton-S</td>
<td>-</td>
<td>control</td>
<td>159</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Entacon, 20</td>
<td>118</td>
</tr>
<tr>
<td>LA</td>
<td>-</td>
<td>control</td>
<td>147</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>Entacon, 4</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>"</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>"</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>Altozid, 10</td>
<td>76</td>
</tr>
<tr>
<td>L,y ct</td>
<td>-</td>
<td>control</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>Entacon, 20</td>
<td>128</td>
</tr>
</tbody>
</table>

Studies on chromosomal synapses were carried out in neuroblasts of third instar larvae. Flies of Canton-S were used, and also stocks with pericentromeric heterochromatic deletions of chromosome 2 (Hilliker 1975; Hilliker and Holm 1976). Chromosome preparations were made without colchicine and hypotonic treatment. The slides were stained by the C-banding method (Patkin et al. 1978). Tight synapses of homologous chromosomes have been discovered in hetero- and euchromatic regions during interphase-mitosis (prophase-anaphase). The chromocenter-like structure has been shown for heterologous heterochromatic regions until anaphase. The disturbing influence of colchicine and hypotonic treatment has been noted in relation to somatic synapsis of chromosomes (Semjonov and Smirnov 1979). There were tight homologous synapses of chromosome 2 in Df(2R)MS-210+/+, Df(2L)C'/+, Df(2R)MS-210/Df(2L)C' and In(2LR)SMI/+. However, the frequency of intimic heterozygous SMI inversion of chromosome 2 increased synapses...
There were tight homologous and heterologous synapses of chromosomes during practically all the mitotic cycle. We propose that normal homologous synapses have been connected with the intact structure of the common chromocenter.

Table 1. Homologous synapses of chromosomes X and 2 in neuroblasts of D. melanogaster.

<table>
<thead>
<tr>
<th>Chromosome</th>
<th>Canton-S</th>
<th>Df(2R)MS-21U/+</th>
<th>Df(2L)C'/+</th>
<th>Df(2R)/Df(2L)</th>
<th>In(2LR)SM1/+</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>73.7</td>
<td>61.3</td>
<td>55.8*</td>
<td>29.3*</td>
<td>51.2*</td>
</tr>
<tr>
<td>X</td>
<td>48.0</td>
<td>52.7</td>
<td>51.3</td>
<td>48.9</td>
<td>57.6*</td>
</tr>
</tbody>
</table>

* significant differences from control (Canton-S), P < 0.05

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CERRADO</th>
<th>RESTINGA</th>
<th>DUNES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jan/78</td>
<td>Mar/78</td>
<td>May/78</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>G</td>
<td>C</td>
</tr>
<tr>
<td>Sbg.willistoni</td>
<td>9.8</td>
<td>4.6</td>
<td>10.7</td>
</tr>
<tr>
<td>D.capricorni</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D.nebulosa</td>
<td>0.3</td>
<td>12.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Sbg.bocainensis</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D.austrosaltans</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D.prosaltans</td>
<td>0.5</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>D.simulans</td>
<td>12.6</td>
<td>0.6</td>
<td>69.4</td>
</tr>
<tr>
<td>D.malerkotliana</td>
<td>1.1</td>
<td>0.4</td>
<td>8.7</td>
</tr>
<tr>
<td>D.latifasciaform</td>
<td>0.6</td>
<td>1.7</td>
<td>1.0</td>
</tr>
<tr>
<td>D.immigrans</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
</tr>
<tr>
<td>D.araruma</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gr.cardini</td>
<td>4.1</td>
<td>15.2</td>
<td>4.6</td>
</tr>
<tr>
<td>D.graumunum</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
</tr>
<tr>
<td>D.graunani</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D.pallidipennis</td>
<td>-</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Gr.repleta</td>
<td>9.6</td>
<td>0.4</td>
<td>3.4</td>
</tr>
<tr>
<td>D.griseolineata</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gr.caloptera</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gr.tripunctata</td>
<td>-</td>
<td>11.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>614</td>
<td>474</td>
<td>892</td>
</tr>
</tbody>
</table>

C = Cans; G = Ground

TABLE 1 - Results of collection made using baits setted at different ways in three environments situation, in different times.
200 meters away from any can baits; (c) can baits situated at least 200 meters away from any ground baits. Since we found no difference between the ground baits in cases (a) and (b), they are considered together here; the same happens with can baits in cases (a) and (c).

All flies were brought alive to the laboratory and classified. All of the specimens were deposited in the Museum of Zoology, USP. In the classification we placed some species in groups as follows: willistoni subgroup—consisting of the sibling species which were not identified; cardini group—consisting of three species, D. polymorpha, D. cardini and D. cardinoides. The identification of these flies is in progress. As far as we know, D. cardinoides is rare in all three areas studied, D. polymorpha is more common in cerrado and D. cardini is more abundant in restinga and dunes. Repleta group—this group will be the special subject for a future paper and we can say now that D. mercatorum is the most common species in the three areas; tripunctata group—the flies belonging to this group were not identified to species level.

The species and number of flies collected at the two different traps in the three ecological situations at different times are presented in Table 1. The preference of the different species to the two kinds of traps was not the same in the three environments analyzed. In the cerrado situation, the following flies show a preference: (a) to ground baits—willistoni subgroup, D. nebulosa, D. latifasciaeformis, cardini group, D. guaramunu and tripunctata group; (b) to can baits—D. prosaltans, D. sturtevanti, D. simulans and repleta group; D. malerkotliana show no preference and the other flies were collected in small numbers. In the restinga situation we found: (a) preference for ground baits—willistoni subgroup, D. nebulosa and D. latifasciaeformis; (b) preference for can baits—D. prosaltans and D. sturtevanti; D. malerkotliana D. simulans, cardini group and repleta group show no preference. In the dunes situation: (a) ground—D. nebulosa and D. latifasciaeformis; (b) can—D. prosaltans and D. sturtevanti; no preference—subgroup willistoni, D. malerkotliana, D. simulans, cardini group and repleta group.

We know from previous studies (cited above) that different kinds of baits attract different species of flies. But in this study we show that the same kind of baits give different results depending on the way they are set. In previous personal observations we have detected that the age of the bait, set on the ground, affects the attraction of different species. The same observation was made by Beppu and Toda (1976). Although we have no systematic data to show this, we have some evidence which seems to indicate that the species that were attracted preferentially by old baits set on the ground are the same as those that are attracted preferentially to baits set in cans. Based on this observation we have the hypothesis that the differences between baits set on the ground and those set in cans are caused by differences in the fermentation process.

As we can see from the results, the influence of the way the baits were set was strong in the cerrado, where 10 "entities" show preference and one was indifferent; in the restinga the effect was less obvious as only five showed preference while four were indifferent; in the dunes we have the smallest effect with four showing preference and five being indifferent. A possible explanation is that in the dunes, the wind and the salty, dry situation affect the baits more strongly than in the cerrado, and interfere with the fermentation of the baits. Another hypothesis to explain the differences between the environments, that must be checked in the future, is that the species which have been grouped into what we have called the willistoni subgroup or cardini group could be different species in the cerrado and in the restinga or dunes (Dobzhansky and Pavan 1950), and instead of differences due to environmental situations we may have different species in each area. For the repleta group, we know for sure that the dominant species in the three environments was D. mercatorum. D. nebulosa shows a constant preference for ground baits in spite of the environmental situation; the same happens with tripunctata group species and D. latifasciaeformis. The flies of saltans group showed a strong preference for the can baits.

These data increase the problem of conducting a survey of the Drosophila fauna by using bait set in only one way for attracting the flies. For instance, the more extreme data found was the collection in the cerrado in January 1978. If we compare the collection made on the ground with the collection made in the can, we would be led to believe that they were made in two different environments and that the faunal composition of each were very different.

Anderson and McDonald (1980) have recently demonstrated that Drosophila exposed to an environment containing 2-propanol undergo (1) a post-translational conversion of their alcohol dehydrogenase, (2) a significant drop in ADH specific activity, (3) an increase in ADH in vivo stability, and (4) a consequent increase in in vivo levels of ADH. These authors suggest that this phenomena may have adaptive significance for Drosophila living in those environments abundant in secondary alcohols (e.g., Heed 1978) by preventing the production of highly toxic ketones. A second prediction which follows from these data is that Drosophila exposed to environmental 2-propanol should be more sensitive to the toxic effect of alcohols due to a decrease in ADH specific activity. In this note we present the results of a study designed to test this prediction.

The strains used in this study are F-2 and S-1 as described by McDonald et al., 1980. These flies are completely homozygous (McDonald and Ayala 1978) and are fixed for an ADH-fast (F-2) and ADH-slow (S-2) allele. The relative survivorship of flies pretreated with 2-propanol and non-pretreated were examined at 0, .125, .250, .500, 1.00, 3.00, 5.00 and 8.00% ethanol. For each experiment 6 vials (3 vials of females, 3 vials of males) each containing 10 flies (6-10 days post-eclosion) were set up for each strain and alcohol concentration tested. Flies were allowed to fully recover from very light etherization for a period of 1-2 hours before

![Graph](image-url)

Fig. 1. Mean longevities given in 1h(hr) for Fast strain exposed to increasing concentrations of ethanol. Closed circles are control flies and open circles are pretreated flies with 1% 2-propanol for 1 day.
The test was initiated. Initiation of a test consisted of adding to each vial a 2.00" x 2.00" filter paper tab (Watman #1) which had been saturated with 1 ml of either H2O (control) or a test alcohol-H2O solution of a specific concentration. Vials are immediately sealed with parafilm and placed in the incubator (25°C, constant humidity and lighting). The number of flies alive in each vial are observed and recorded (every 5 hours for high alcohol concentrations, every 10 hours for low alcohol concentrations). Mean % survival at each alcohol concentration is plotted vs. time. From these "primary plots", we graphically determined mean hrs to 50% mortality at each alcohol concentration and use this information to construct secondary plots (ln hrs to 50% mortality vs. alcohol concentration) as devised by Starmer et al. 25 hrs exposure of flies to 2-propanol pretreatment which consists of the addition to a food bottle of a Kimwipe absorbed with 1 ml of 1% 2-propanol solution. The results presented in Figs. 1 and 2 demonstrate that 2-propanol pretreated flies are in fact more sensitive to ethanol than non-pretreated flies. These results are analogous to the results recently reported by Papel et al. (1979) which demonstrate that pretreatment with acetone (the oxidized product of 2-propanol) also reduces the viability of Drosophila in alcohol stress environments.

Two strains of D. melanogaster were compared with respect to the diurnal rhythms of mating activity. Strains used are J5, a wild type laboratory strain, and Bw, a brown eye color strain. Flies were reared and aged in the LD cycle, which was set as follows: a light phase (200 lux), 7:00-17:00; a dark phase, 19:00-5:00. Dim light phases were set for two hours between the dark and the light phases both in the late afternoon and in the early morning. Observations of matings were carried out in the light (200 lux) and also in the red light. Fifteen 5- or 6-day-old males and ten 5- or 6-day-old females were introduced into an observation vial. The number of matings per 5 min. interval was scored during a 30-min. observation period. A mating index was calculated by the formula proposed by Spiess et al. (1966), on the basis of data of 3 to 6 runs.
The figure shows the change of the mating index depending on the time of day. The diurnal rhythmicity in mating was found for the bw strain, but not for the J5 strain. This tendency was not affected by the light condition under which observations were performed. However, mating indices obtained in the light are significantly larger than those measured in the red light, except that no difference in the value was found at 14:00 for the bw strain and at 0:00 and 12:00 for the J5 strain.

More careful experiments should be carried out to test whether or not the differences in the diurnal rhythmicity in mating between strains depend on the eye color of flies.

Reported Autosomal Breakpoint	Observed Autosomal Breakpoint
A87 | 40 | 38A-B
L138 | 39C | 39A
B190 | 40 | 39C
A107 | 40 | 39D-E
B209 | 40 | 39D-E
B251 | 40 | 39D-E
H54 | 40 | 39D-E
B199 | 40 | 40
H118* | 40 | 40
H131 | 40 | 40
H116 | 40 | 40

*May have free \(\text{B}^y\) element segregating in stock.

were examined to verify the reported breakpoints. Several discrepancies between the reported and observed breakpoints were found.

Table 1 lists the various \(T(Y;2)\) stocks examined, the autosomal breakpoints as reported in Lindsley and Sandler et al. (1972), and the observed breakpoints. All stocks with breakpoints reported to be distal to M(2)H carry euchromatic breaks, whereas those reported broken proximal to M(2)H bear heterochromatic breaks. It is of interest that several of the stocks examined are broken between 39D and 39E, the chromosomal region known to include the histone gene sequence (Pardue et al. 1977). Segmental aneuploids deficient for the region between the breakpoint of L138 and the breakpoints of H54, B251, and B209 do not show a Minute phenotype. However, deficiencies carrying more proximal euchromatic breaks are Minute (Wright et al. 1976). It is possible, therefore, that M(2)H may map to the proximal region of the histone gene cluster. My recent studies on irradiation-induced lethal mutants mapping to the histone gene locus also suggest that the M(2)H locus may coincide with a part of the histone gene locus.

Mutations producing the Minute phenotype in D. melanogaster occur in a number of genes on all four chromosomes. It has been proposed by Atwood (Ritossa et al. 1966) that alterations in DNA cistrons which code for transfer RNA are responsible for the characteristic mutations of the Minute class. Atwood argued that the slow rate of development in Minute bearing individuals was consistent with the reduced rate of protein synthesis expected from the decreased availability of a particular tRNA. Several investigators have tested this hypothesis using radioactively labeled tRNA and the method of in situ RNA-DNA hybridization to correlate sites of tRNA binding with genetically established positions of Minute loci (Steffensen and Wimber 1971; Grigliatti et al. 1974). The results, however, have been inconclusive. The present study involves a new preliminary test of the Atwood hypothesis, which utilizes a qualitative comparison of tRNA chromatographic elution profiles from both normal and Minute flies, thus
Labeling of RNA in Oregon R flies was accomplished by growing first instar Oregon R larvae on a low agar medium (0.3%) injected daily with a yeast-water suspension containing a total of 1 mCi (5-14C)-uridine (New England Nuclear Corp., 51.0 mCi/mole). M(2)S7 Minute RNA was labeled by permitting the first instar Minute larvae to feed on the low agar medium injected daily with a yeast-water suspension containing a total of 1 mCi (5-3H)-uridine (New England Nuclear Corp., 28.3 Ci/mole). Transfer RNA from Drosophila was prepared by the method of White et al. (1973). Whole labeled third instar M(2)S7 Minute and Oregon R larvae were homogenized together and the final tRNA preparation was applied to a DEAE-cellulose column for further purification. The chromatography of the labeled tRNA sample follows the general method of Gillam et al. (1967), utilizing BD-cellulose. The sample was applied to a 1 x 90 cm BD-cellulose column previously equilibrated with the starting buffer. The column was then prewashed with buffer and the labeled tRNA was subsequently eluted in 5 ml fractions using a linear NaCl gradient ranging from 0.3 M NaCl to 1.0 M NaCl. Once the gradient was completed, 7 M urea was added to the final NaCl solution. Two ml aliquots of each fraction were added to 15 ml of Biofluor and then assayed for radioactivity in a Packard Tri-Carb liquid scintillation spectrophotometer. Fractions 10-120 from the BD-cellulose column were taken to be the major tRNA fractions as they contained the peaks with the highest number of counts. To further resolve the profile these fractions were pooled, precipitated, and applied to a BD-cellulose column as before with a similar linear NaCl gradient. 2 ml aliquots of each fraction were added to 15 ml of Biofluor and again counted in the scintillation spectrophotometer.

Fig. 1 shows the elution profiles of both M(2)S7 Minute (3H)-tRNA and the wild type Oregon R (14C)-tRNA chromatographed simultaneously on a BD-cellulose column. The two curves indicate that the tRNA from both Minutes and wild type are qualitatively very similar. The differences in height are due to the lower specific activity of the 14C isotope. The major peaks in Fig. 1 occur simultaneously at fractions 30 and 55 and drop off at the same rate through fraction 120. tRNA's in fractions 120-138 are also similar with no major discrepancies and occur in much lesser quantities until the final peak representing the extraction by urea. If the relative peak heights of each profile are compared by dividing the counts per minute of each fraction by the height of peak A for each profile, no significant differences are found.

Fig. 2 shows the elution profile obtained from a rechromatographing of fractions 20-120 on a BD-cellulose column. Both curves exhibit a large peak at fractions 145 and 169 and two small shoulders at fractions 124 and 131. The tRNA constituting the sharp peak at fraction 30 in Fig. 1 is spread over the broad profile ranging from fractions 0-100 in Fig. 2. Thus only one broad peak is observed as opposed to the two sharp peaks seen in Fig. 1. Fig. 2 also shows a significant reduction in the number of radioactive counts detected as compared to the number of counts observed in Fig. 1. A small portion of the tRNA (500 ml) in Fig. 1 was spread over a volume of 2 liters in the latter graph. Thus a substantial loss of quantity is expected. A comparison of relative peak heights of the two profiles in Fig. 2 again shows no significant differences. Further resolution may be achieved by chromatographing the peak material on reverse phase columns as described by Pearson, Weiss and Kilmers (1971).

It was Morgan (1914) who reported for the first time the spontaneously arising gynandromorph in D. melanogaster. Subsequently, there have been a few reports on gynandromorphs in other species of Drosophila also, such as in D. simulans (Sturtevant 1921), D. virilis (Weinstein 1922) and D. funebris (Spencer 1927; Timofeeff-Ressovsky 1928). According to Sturtevant and Beadle in the insects hormonal control of sex and secondary sex characters apparently does not occur, but instead these are controlled by intracellular factors. This is shown in a very simple way in individuals in which part of the body is XX in constitution and the remainder XY or XO. Such individuals, known as gynandromorphs, are mosaic for sex characters. They result in two ways: (1) by elimination from one daughter cell at an early cleavage of one of the two X chromosomes (Morgan and Bridges), or (2) from double nucleus eggs (Doncaster). In the former, all descendents of the cell with a single X chromosome are genetically male while those from the sister XX cell are female. A double-nucleus egg may or may not give rise to a gynandromorph, depending on whether the two nuclei are fertilized by like (X and X or Y and Y) or different (X and Y) sperms. Regardless of origin, gynandromorphs in Drosophila usually show autonomy of development with regard to sex characters, i.e., each part develops (with few exceptions) according to its own genetic constitution and without regard to the genetic constitution of adjacent or associated tissues.

Recently extensive collections were carried out for Drosophilid fauna in the vicinity of Pundim (Goa) which yielded a large number of flies representing several species of the genus Drosophila. They are D. bipectinata, D. malerkotliana, D. jambulina, D. rajasekari, D. nasuta, D. orissaensis, D. eugracilis and D. meijerei. D. rajasekari is an indigenous species which seems to be quite common in certain parts of the Indian subcontinent. The male individual of the species can be easily distinguished from the female in having completely black terminal tergites, apical black patch on wings, metatarsal sex-comb of prothoracic legs. Altogether 50 flies represented this species during the collection. Of these flies, one was found to show the characteristics of a gynandromorph, with half of the body showing male and the other half female characters, especially with respect to wing patch and sex comb. However, this fly was found to be a female with respect to its external genitalia and the abdominal banding pattern (Fig. 1).

The authors wish to express their gratitude to Dr. J.P. Gupta for his guidance and to the University Grants Commission for financial assistance.

In relation to the frequency of C and H (Hoechst 33258) banding interchromosomal heterogeneity of heterochromatic regions have been demonstrated in third instar larvae neuroblasts. Both very different methods revealed practically the same results. Heterochromatin of sex chromosomes was stained differentially more frequently than these regions of autosomes (Table 1). Interstock differences have been demonstrated also for chromosome 2 heterochromatin of Canton-S and inbred stock LA (Smaragdov 1977, 1978; Patkin et al. 1978). In respect to specific decondensation heterogeneity of heterochromatin has been shown also by using Hoechst according to the method of Pimpinelli et al. (1975). Besides different intra- and interchromosomal sensitivity of heterochromatin the differences for male and female X chromosomes have been discovered (Table 2). Regarding the nature of interchromosomal heterogeneity of heterochromatin it is possible to imagine different levels of chromosomal DNA packing inside heterochromatin due to various timetables of mitotic condensation. True morphometric analysis revealed definite timetables of mitotic condensation for heterochromatin of LA and Canton-S.

Table 1. The frequency of differential staining in D. melanogaster heterochromatin (in percentage).

<table>
<thead>
<tr>
<th>Type of banding</th>
<th>Stock</th>
<th>X</th>
<th>Y</th>
<th>2L</th>
<th>3L</th>
<th>3R</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>H band</td>
<td>C-S</td>
<td>97±2</td>
<td>94±3</td>
<td>62±4</td>
<td>66±4</td>
<td>26±4</td>
<td>34±4</td>
</tr>
<tr>
<td></td>
<td>LA</td>
<td>96±1</td>
<td>95±2</td>
<td>47±3</td>
<td>64±3</td>
<td>16±3</td>
<td>29±3</td>
</tr>
<tr>
<td>C band</td>
<td>C-S</td>
<td>99±1</td>
<td>95±4</td>
<td>66±2</td>
<td>35±4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>LA</td>
<td>98±1</td>
<td>99±1</td>
<td>79±2</td>
<td>44±6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Specific decondensation of X chromosome heterochromatin (after 6 hrs Hoechst 33258 treatment, 80) (nl).

<table>
<thead>
<tr>
<th>Sex</th>
<th>n</th>
<th>Number of decondensed X</th>
<th>Length of decondensed heterochromatic regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>624</td>
<td>41 ± 2.8</td>
<td>0.354 ± 0.0049</td>
</tr>
<tr>
<td>¯</td>
<td>189</td>
<td>16 ± 2.5</td>
<td>0.287 ± 0.0021</td>
</tr>
</tbody>
</table>

Fig. 1. The length of heterochromatin and chromosome size in D. melanogaster mitotic chromosomes from neuroblasts.

--- C-S --- LA [For the Y chromosome H (LB) region has been measured.]
Sperlich, D. University of Tübingen, Germany. Lack of male recombination in D. subobscura.

Rare male recombination has been observed several times in D. melanogaster and other Drosophila species (for a review see Thompson and Woodruff 1978) including D. subobscura (Philip 1944). The phenomenon of male recombination (MR) is frequently accompanied by segregation distortion, mutator activity and sterility. The final cause for this MR syndrome is not yet clear but it might be due to DNA insertions analogous to IS elements of bacteriophages (Green, Golubowsky and others) or simply to hybrid dysgenesis (Sved, Thompson and others). Whatever the case might be the MR effect seems to become an important factor in population and evolutionary genetics.

Since D. subobscura is our favored species for population studies we have made a small experiment in order to investigate whether MR effects can be discovered in our otherwise studied populations. Two different mutant strains, "cn, ma" (most probably homologous to st and se of D. melanogaster, respectively) and "vg, pp" (vg = vg of D. melanogaster; pp = light red eyes, maybe cn of D. melanogaster). According to localization and linkage to a group of enzyme loci cn, ma must be on chromosome I of D. subobscura which corresponds to III L of D. melanogaster, whereas vg, pp must be on chromosome E of D. subobscura which is

<table>
<thead>
<tr>
<th>vg,pp/pp,pp x vg,pp/+,*</th>
<th>cn,ma/cn,ma x cn,ma/+,*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild Chr. No.</td>
<td>Phenotype of offspring</td>
</tr>
<tr>
<td>+ +</td>
<td>vg pp</td>
</tr>
<tr>
<td>2</td>
<td>117</td>
</tr>
<tr>
<td>10</td>
<td>173</td>
</tr>
<tr>
<td>13</td>
<td>222</td>
</tr>
<tr>
<td>14</td>
<td>275</td>
</tr>
<tr>
<td>22</td>
<td>70</td>
</tr>
<tr>
<td>24</td>
<td>237</td>
</tr>
<tr>
<td>29</td>
<td>105</td>
</tr>
<tr>
<td>31</td>
<td>55</td>
</tr>
<tr>
<td>34</td>
<td>138</td>
</tr>
<tr>
<td>42</td>
<td>105</td>
</tr>
<tr>
<td>46</td>
<td>157</td>
</tr>
<tr>
<td>47</td>
<td>96</td>
</tr>
<tr>
<td>50</td>
<td>146</td>
</tr>
<tr>
<td>186</td>
<td>242</td>
</tr>
<tr>
<td>188</td>
<td>48</td>
</tr>
<tr>
<td>189</td>
<td>293</td>
</tr>
<tr>
<td>191</td>
<td>128</td>
</tr>
<tr>
<td>203</td>
<td>157</td>
</tr>
<tr>
<td>310</td>
<td>262</td>
</tr>
<tr>
<td>n=20</td>
<td>3111</td>
</tr>
</tbody>
</table>

n=20
n=18
homologous to II R of D. melanogaster. A number of wild males from Cinisy (Sicily) were crossed individually to cn, ma or vg, pp females. From the offspring heterozygous single cn ma/+ or vg pp/+ males respectively were back-crossed to ten or more mutant females in order to get a big enough number of offspring flies to detect any male recombination with a rate higher than 0.5%. The results are shown in the table.

There was not a single male recombination in any of the various wild chromosomes and no segregation distortion could be observed. The predominance of ++ phenotype is due to the poor performance of the double mutant phenotypes. Segregation distortion, however, is expected to be effective against the ++ chromosomes. There is no evidence for such an effect in any of the cultures. The results can certainly not be taken as a general proof of absence of male recombination in D. subobscura but might be an indication that the phenomenon is not a general one for all crosses, for all populations and all chromosomes of the genome.

(The technical assistance of Mrs. Stögerer and Miss Kaipf is highly appreciated.)

Stamatis, N.D. University of Patras, Patras, Greece. Male recombination elements in a southern Greek D. melanogaster population.

Since 1971 (Hiraizumi), chromosomes associated with male recombination elements have been isolated from natural populations of D. melanogaster, covering almost all the world. During the autumn of 1971 and in the course of a study which aimed to detect recessive lethals in a natural population of southern Greece, one lethal second chromosome (symbol 31.1) was discovered to be associated with male recombination element(s) (Yannopoulos and Pelecanos 1977).

The aim of the present communication which constitutes a part of a much wider investigation is to ascertain whether male recombination elements are still present in the same population and to estimate their frequencies.

Wild flies were collected in June 1977. Captured females were transferred individually on fresh food (consisting of a standard cornmeal medium) and were allowed to lay eggs for five days. All cultures were kept in 25±0.5°C.

The progenies of each captured wild female were then crossed in a brother-sister mass mating; thus, a number of wild lines were established. Afterwards, strains Cy/+;Ubx130/+, bearing one second and one third chromosome from each wild line, were established by the following procedure:

\[
\begin{align*}
G_1: & \quad +/+;+/- x Cy/bw^{VT}; \text{Ubx}^{130}/Sb^* (1 \delta \times 3 \sigma) \\
G_2: & \quad Cy/+;\text{Ubx}^{130}/+ x Cy/bw^{VT};\text{Ubx}^{130}/Sp (1 \delta \times 3 \sigma) \\
G_3: & \quad Cy/+;\text{Ubx}^{130}/+ x Cy/+;\text{Ubx}^{130}/+ (1 \delta \times 1 \sigma) \\
\downarrow & \\
\text{strain Cy/+;Ubx}^{130}/+
\end{align*}
\]

In order to determine whether the wild chromosomes of these strains have the ability to induce male recombination along the second chromosome, males Cy/+;Ubx130/+ were mated with dp b cn bw;ve virgin females. The F1 +/dp b cn bw;+/ve and +/dp b cn bw;Ubx130/ve sons (at least ten for each case) were then separately selected and individually mated with dp b cn bw; ve virgin females (see Table 1; crosses A and B, respectively). The F2 progeny of both crosses were scored for recombinants until the 18th day after setting up the matings.

Among the 23 strains tested 13 (56.52%) have shown an association with MR elements, for they yielded male recombination frequencies higher than those of the control (see Table 1, line 14). Moreover, the spontaneous level of male recombination frequency is known to be 0–8/10,000 (Demerec 1965). For control, F1 Canton/dp b cn bw Canton/ve males derived from Canton (wild type stock) fathers were mated with dp b cn bw; ve virgin females and their progeny were scored for recombinants.

The results show that the presence of the wild third chromosome influences male recombination along the second chromosome.

Our data do not allow us to suggest that one or more of the MR elements are identical

*For description, see Lindsley and Grell (1968).
Table 1. Male recombination frequencies in +/dp b cn bw;+/ve (A) and +/dp b cn bw;Ubx130/ve (B) males. (+ stands for the whole second and third chromosomes.)

<table>
<thead>
<tr>
<th>Strain</th>
<th>Male recombination frequency (%)</th>
<th>No. of males which produced recombinants (%)</th>
<th>No. of progeny</th>
<th>Average K*</th>
<th>Male recombination frequency (%)</th>
<th>No. of males which produced recombinants (%)</th>
<th>No. of progeny</th>
<th>Average K*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.12</td>
<td>25.00</td>
<td>1844</td>
<td>0.53</td>
<td>0.13</td>
<td>6.67</td>
<td>1707</td>
<td>0.58</td>
</tr>
<tr>
<td>2</td>
<td>1.75</td>
<td>65.38</td>
<td>1660</td>
<td>0.46</td>
<td>0.08</td>
<td>6.67</td>
<td>1181</td>
<td>0.59</td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>0.47</td>
<td>20.00</td>
<td>1909</td>
<td>0.51</td>
</tr>
<tr>
<td>4</td>
<td>0.46</td>
<td>13.33</td>
<td>2161</td>
<td>0.49</td>
<td>0</td>
<td>0</td>
<td>1114</td>
<td>0.55</td>
</tr>
<tr>
<td>5</td>
<td>0.31</td>
<td>30.77</td>
<td>1923</td>
<td>0.51</td>
<td>0</td>
<td>0</td>
<td>825</td>
<td>0.53</td>
</tr>
<tr>
<td>6</td>
<td>0.28</td>
<td>14.29</td>
<td>717</td>
<td>0.57</td>
<td>0.21</td>
<td>8.33</td>
<td>1421</td>
<td>0.57</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1719</td>
<td>0.52</td>
<td>0.27</td>
<td>12.50</td>
<td>1100</td>
<td>0.54</td>
</tr>
<tr>
<td>8</td>
<td>0.05</td>
<td>6.67</td>
<td>1949</td>
<td>0.51</td>
<td>0.24</td>
<td>25.00</td>
<td>418</td>
<td>0.54</td>
</tr>
<tr>
<td>9</td>
<td>0.20</td>
<td>11.11</td>
<td>987</td>
<td>0.47</td>
<td>0</td>
<td>0</td>
<td>772</td>
<td>0.53</td>
</tr>
<tr>
<td>10</td>
<td>0.17</td>
<td>10.00</td>
<td>563</td>
<td>0.52</td>
<td>0</td>
<td>0</td>
<td>2250</td>
<td>0.59</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1665</td>
<td>0.53</td>
<td>0.16</td>
<td>5.88</td>
<td>1899</td>
<td>0.60</td>
</tr>
<tr>
<td>12</td>
<td>0.15</td>
<td>19.19</td>
<td>1370</td>
<td>0.53</td>
<td>0</td>
<td>0</td>
<td>1018</td>
<td>0.55</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1082</td>
<td>0.57</td>
<td>0.15</td>
<td>12.50</td>
<td>684</td>
<td>0.54</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>1835</td>
<td>0.55</td>
<td>0</td>
<td>0</td>
<td>2153</td>
<td>0.56</td>
</tr>
</tbody>
</table>

*Average K = the proportion of wild-type among total progeny (excluding crossovers).
with the 31.1 MRF, which was found in the same population. Moreover, it is still obscure whether the above mentioned population is polymorphic as regards the male recombination elements. New experiments are needed before jumping to conclusions. Our investigation is still in progress.

Stark, W.S., K.G. Hu and R.B. Srygley.
The Johns Hopkins University, Baltimore, Maryland. Comparisons of phototaxis properties in differing mazes.

The purpose of this communication is to dramatize the dependence of phototactic behavior in D. melanogaster upon the conditions of the experiment. Specifically, we have found flies to be photoneutral in a 10-outcome Hirsch-Hadler (Hadler 1964) classification maze at an illumination wavelength and intensity to which flies are highly phototactic in our straight and Y-shaped arenas (Hu and Stark 1977). The accompanying figure plots the outcome placements in the Hirsch-Hadler classification maze of white-eyed cn bw D. melanogaster (N = 339) under medium intensity (6.3 x 10^{13} quanta/cm^2 s) blue-violet light (from a GE ribbon filament bulb, 6V 18A, with Corning filters CS-5-57 and CS-3-75 transmitting from 400 to 500 nm). Outcome 10 is towards light. Under these conditions, unselected flies were photoneutral (median score = 5.51), consistent with a slight photonegativity greatly lessened by lack of eye color pigment (see Markow and Scavarda, 1977 recently). Even though the subject number, N = 339, is summed from 7 runs of 26 to 87 flies, the data show a slight flattening from the expected binomial distribution, perhaps due to crowding at early central decision points. On the other hand, the same Drosophila are highly positively phototactic in our straight (and Y) arenas: they go in increasing numbers to the brighter side in a choice. This is expressed as a high correlation coefficient (typically r = 0.9) in the function relating proportion of flies on one side with the log of the intensity on that side for 7 intensity levels spanning 2 log units. At these illumination levels, phototaxis was found to be dominated by compound eye receptor cells R 7/8 (see Hu and Stark 1977).

The discrepancies in phototactic behavior among different experimental situations are rarely discussed (except see Rockwell and Siegert 1973; Markow and Merriam 1977). Polygenic selection experiments using the classification maze find unselected flies photoneutral while in most studies emphasizing function of compound eye receptors, Drosophila are photopositive (Bertholf 1932; Schümpel 1973; Heisenberg and Buchner 1977; Hu and Stark 1977; Jacob et al. 1977). In this study, we compared the same fly strain under similar illumination conditions to reduce the number of variables which differ between most straight, Y or T arena vs. Hirsch-Hadler maze experiments. To this end, we used much dimmer monochromatic light, typical of the receptor input experiments conducted at specific receptor thresholds, rather than bright white fluorescent lighting used in genetic-selection experiments. Even so, flies were photoneutral. Lewontin (1959) has reported that agitation can increase phototaxis. This could account in part for the clear distinction of phototactic flies from nonphototactic mutants using Benzer's (1967) counter current device (see also Markow and Merriam 1977). Clearly, flies meandering through a classification maze overnight are unagitated. But in some of the receptor-input studies cited (Schümpel 1973; Heisenberg and Buchner 1977; Jacob et al. 1977) flies were also unagitated. Our experiments using straight or Y arenas, as well as the classification maze, would minimize the contribution of the predominant photoreceptor type R1-6, by

![Data and Binomial Plot](image-url)

The purpose of this communication is to dramatize the dependence of phototactic behavior in D. melanogaster upon the conditions of the experiment. Specifically, we have found flies to be photoneutral in a 10-outcome Hirsch-Hadler (Hadler 1964) classification maze at an illumination wavelength and intensity to which flies are highly phototactic in our straight and Y-shaped arenas (Hu and Stark 1977). The accompanying figure plots the outcome placements in the Hirsch-Hadler classification maze of white-eyed cn bw D. melanogaster (N = 339) under medium intensity (6.3 x 10^{13} quanta/cm^2 s) blue-violet light (from a GE ribbon filament bulb, 6V 18A, with Corning filters CS-5-57 and CS-3-75 transmitting from 400 to 500 nm). Outcome 10 is towards light. Under these conditions, unselected flies were photoneutral (median score = 5.51), consistent with a slight photonegativity greatly lessened by lack of eye color pigment (see Markow and Scavarda, 1977 recently). Even though the subject number, N = 339, is summed from 7 runs of 26 to 87 flies, the data show a slight flattening from the expected binomial distribution, perhaps due to crowding at early central decision points. On the other hand, the same Drosophila are highly positively phototactic in our straight (and Y) arenas: they go in increasing numbers to the brighter side in a choice. This is expressed as a high correlation coefficient (typically r = 0.9) in the function relating proportion of flies on one side with the log of the intensity on that side for 7 intensity levels spanning 2 log units. At these illumination levels, phototaxis was found to be dominated by compound eye receptor cells R 7/8 (see Hu and Stark 1977).

The discrepancies in phototactic behavior among different experimental situations are rarely discussed (except see Rockwell and Siegert 1973; Markow and Merriam 1977). Polygenic selection experiments using the classification maze find unselected flies photoneutral while in most studies emphasizing function of compound eye receptors, Drosophila are photopositive (Bertholf 1932; Schümpel 1973; Heisenberg and Buchner 1977; Hu and Stark 1977; Jacob et al. 1977). In this study, we compared the same fly strain under similar illumination conditions to reduce the number of variables which differ between most straight, Y or T arena vs. Hirsch-Hadler maze experiments. To this end, we used much dimmer monochromatic light, typical of the receptor input experiments conducted at specific receptor thresholds, rather than bright white fluorescent lighting used in genetic-selection experiments. Even so, flies were photoneutral. Lewontin (1959) has reported that agitation can increase phototaxis. This could account in part for the clear distinction of phototactic flies from nonphototactic mutants using Benzer's (1967) counter current device (see also Markow and Merriam 1977). Clearly, flies meandering through a classification maze overnight are unagitated. But in some of the receptor-input studies cited (Schümpel 1973; Heisenberg and Buchner 1977; Jacob et al. 1977) flies were also unagitated. Our experiments using straight or Y arenas, as well as the classification maze, would minimize the contribution of the predominant photoreceptor type R1-6, by
adaptation (see Hu and Stark 1977 for arguments), resulting in behavior dominated by R7/8. At lower intensities, selected to be near R1-6 electrophysiological and behavioral thresholds, flies are photoneutral in our straight or Y arena experiments. In these arenas, reasonably light-adapted flies are shaken and given 30 s for a choice. In experiments with less agitated, dark-adapted flies orienting to extremely dim lights at their leisure, flies show strong photo-positive phototaxis probably mediated by the sensitive R1-6 photoreceptor system (Schümpeleri 1973; Jacob et al. 1977). These differing conditions operationally define additional phototaxis variables, namely fast vs. slow phototaxis (see Heisenberg and Götz 1975). In straight, T or Y arenas, R1-6 may mediate positive slow phototaxis near R1-6 threshold while R7/8 mediates fast phototaxis at R7/8 threshold. Phototaxis in a Hirsch–Hadler maze is obviously different. Clearly, numerous variables affect phototaxis under the differing conditions of straight, T or Y arenas vs. Hirsch–Hadler mazes; we have shown that fly strain or illumination condition cannot completely account for these discrepancies.

Supported by NSF grant BNS-76-11921 and by Johns Hopkins University administered NIH Biomedical Sciences Research Support grants. We thank Dr. J. Grossfield for loan of the classification maze and K. Frayer for technical assistance.

Stark, W.S., R.B. Srygley and R.M. Greenberg. The Johns Hopkins University, Baltimore, Maryland. Analysis of a compound eye mosaic of outer rhabdomeres absent marked with cardinal.

Drosophila with mutant compound eye receptors have been investigated by developmental biologists and vision researchers. Harris, Stark and Walker (1976) introduced characterizations of 3 such mutants, frequently studied since. Two of these mutants, rdgB and sev (causing degeneration of retinula cells R1-6 and non-formation of R7 respectively) were shown to be cell autonomous by mosaic studies. The third mutant, ora'84, was not studied by mosaic means at that time because its third chromosome location (65.3) made mosaic induction and combination with autonomous markers more difficult. Outer rhabdomeres absent, ora, discovered and mapped by Koenig and Merriam (1977) causes non-formation of R1-6 Rhabdomeres, i.e., the microvillar photopigment-containing organelles. Here we present a mosaic study of ora.

An ora stock with eye color markers, bw; ora cd, was constructed with the aid of microscopic optical techniques and histology (see Harris, Stark and Walker 1976). Brown (bw) blocks and red drosopeterin synthesis while cardinal (cd) is an eye-autonomous mutant lowering brown ommochromes to about 15%; cd (3-75.7) is near ora on the right arm of chromosome 3 (see Lindsley and Grell 1968). The bw and bw; ora cd stocks were crossed to produce heterozygotes which were irradiated at 24 to 75 hours after egg laying (rearing at 24°C) with 1200 r of gamma rays (from 137Cs source, Gammator) to induce somatic crossing over. Several eyes mosaic for eye color were found. Heads were fixed shortly after eclosion with a hypertonic aldehyde fixative followed by osmium tetroxide (see Stark and Clark 1973) and embedded in Spur, a low viscosity epoxy. One large right eye mosaic was serial sectioned at 1 micron and examined (without staining to enhance eye color pigment contrast) for reconstruction.

The accompanying figure shows reconstruction of much of this large mosaic. The trapezoidally arranged R1-6 rhabdomeres were scored for their presence or absence. The central R7/8 rhabdomeres, not affected by ora, were always present and are thus always drawn in. Secondary pigment cells (SPC's), 6 of which surround an ommatidium and are shared between ommatidia, were scored for presence (dark) or absence (clear) of brown pigment granules. Primarily pigment cells (PPC's), 2 of which surround the distal light-focusing pseudocone in each ommatidium, were scored for the presence (dark) or absence (clear) of conspicuous large brown pigment granules. The mosaic patch is located at the eye's equator (shown by a line and arrows).
Basically, the ommatidia lacking R1-6 have unpigmented secondary pigment cells and primary pigment cells with large brown granules while ommatidia with normal receptors have pigmented secondary pigment cells and pale primary pigment cells. Most of the rest of the eye's ommatidia not drawn in this reconstruction show this same pattern of normal receptor cells. The apparent reversal from the expected primary pigment cell phenotype is caused by a previously undescribed property of cd; cd, which does not completely eliminate ommochromes, actually increases the size and visibility of primary pigment cell granules. It causes much greater ommochrome loss in secondary pigment cells. Thus, the primary pigment cells scored dark are actually cd phenotype (bw; ora cd genotype) and the paler ones (which do, in fact, have smaller brown granules) are actually phenotypically cd+ (bw; ora+ cd+). The large mosaic studied is thus a bw, ora cd patch in a phenotypically bw (otherwise wild-type) background. Such a mosaic should have a homozygous ora+ cd+ twin patch (undetected in the same phenotype heterozygous background) and would be expected from an early somatic crossover event between the centromere and the closely linked ora cd vs ora+ cd+ in the heterozygotes.

Near the borderline, ommatidia with mixed rhabdomere and pigment cell phenotype were found. The presence or absence of R1-6 rhabdomeres was not consistently correlated with whether nearly neighboring pigment cells were bw; ora cd or bw; ora+ cd+ phenotype. This mosaic thus suggests that ora and cd are cell autonomous, i.e., that the mutant phenotypes are determined by the cells themselves, not by any possible interaction between receptor and eye color pigment cells or circulating factors. The pattern of receptor cell autonomy is consistent with other receptor cell mutants (e.g., see Campos-Ortega and Hofbauer 1977).

Supported by NSF grant BNS-76-11921 and by Johns Hopkins University administered NIH Biomedical Sciences Research Support grants. We thank Allen Shearn, William Harris, Ellen Pentz and Harry Teitelbaum for advice, Kenneth Muller, Samuel Ward, David Olton and Allen Shearn for supportive facilities, Barbara Thomas and Elaine Phillips for histological sectioning, and Austina Ivanyshyn and Mark Chapin for technical assistance.

Steiner, Th. and F.E. Würgler. Institute of Toxicology, Swiss Federal Institute of Technology & University of Zürich, Schwerzenbach, Switzerland. Oocyte stages in newly hatched females of some mus and mei mutants.

A number of D. melanogaster stocks are known in which larvae exhibit increased sensitivity to chemical mutagens. Several X-chromosomal loci were identified which lead to mutagen sensitivity (mus). In addition to mutagen sensitivity some loci show strong meiotic effects (mei). It is a task for the near future to study the mutagen sensitivity of the germ cells of such stocks. In order to get comparable results with the different mutants it must be possible to treat and test comparable germ cell stages. Studies on oocytes cannot be ini-
Table 1. Strains from which females were analyzed.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Formula</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>mus101</td>
<td>w mus(1)101D1</td>
<td>Boyd et al. 1976</td>
</tr>
<tr>
<td>mus104</td>
<td>w mus(1)104D1</td>
<td>Boyd et al. 1976</td>
</tr>
<tr>
<td>mei-41</td>
<td>w mei-41D5</td>
<td>Boyd et al. 1976</td>
</tr>
<tr>
<td>mei-9</td>
<td>mei-9L1</td>
<td>Graf et al. 1979</td>
</tr>
<tr>
<td>mei-9/M5</td>
<td>mei-9L1/Basc</td>
<td>Graf et al. 1979</td>
</tr>
<tr>
<td>w</td>
<td></td>
<td>Boyd et al. 1976</td>
</tr>
<tr>
<td>B.w.</td>
<td>Berlin wild</td>
<td>Steiner & Würgler 1979</td>
</tr>
<tr>
<td>XX</td>
<td>C(1)RM, y2 su-wa wa bb/y</td>
<td>Steiner & Würgler 1979</td>
</tr>
</tbody>
</table>

name, and references which give further details concerning the particular mutants. The mutagen-sensitive mutants were chosen because they have known DNA repair defects: mei-9 is excision repair deficient (Nguyen and Boyd 1977), whereas mei-41, mus101, and mus104 are postreplication repair deficient (Boyd et al. 1976). The flies were cultured on our standard Drosophila medium (Würgler, Sobels and Vogel 1977) at 25°C and 60% rh under uncrowded conditions. Females 2.5 ± 1.5 h old were dissected and the ovaries analyzed as described by Bürki and Würgler (1972). Oocyte stages were classified according to King, Rubinson and Smith (1956). The results of our study are compiled in Table 2. The most advanced stages in all types of female are stage 8 oocytes (S8). Only in a few exceptions were stage 9 or even stage 10 oocytes found. Of the younger oocytes stage 7, stage 5/6 and stage 3/4 are found in slightly increasing frequencies. This unexpectedly good agreement of oocyte stages between females of such divergent genotypes indicates that the mus and mei mutants studied do not alter the kinetics of oogenesis. In addition, because the white stock is the ancestor of the mus101, mus104 and mei-41 females (Boyd et al. 1976), our results also indicate that the mutagenic treatment of germ cells of the white stock did not induce other mutations on the X-chromosome which modify the kinetics of oogenesis in these related mutagen-sensitive stocks. It is important to stress that comparable kinetics of oogenesis does not mean comparable "quality" of the oocytes studied. This is easily seen if we look at the last line of Table 2 in which we report the egg-to-adult survival observed with the oocytes obtained from the different types of females. In contrast to the kinetics of oogenesis these data on spontaneous lethality indicate profound strain differences which seem to be due to the mus and mei mutations.

Table 2. Analysis of ovarioles and oocyte stages in 2.5 ± 1.5 h old females of different D. melanogaster strains.

<table>
<thead>
<tr>
<th>Genotypes of females</th>
<th>mus101</th>
<th>mus104</th>
<th>mei-41</th>
<th>mei-9</th>
<th>mei-9/M5</th>
<th>w</th>
<th>B.w.</th>
<th>XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. flies analyzed</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>20</td>
</tr>
<tr>
<td>No. ovarioles analyzed</td>
<td>824</td>
<td>784</td>
<td>817</td>
<td>768</td>
<td>786</td>
<td>800</td>
<td>783</td>
<td>748</td>
</tr>
<tr>
<td>Mean numbers per female: ovarioles</td>
<td>41.2</td>
<td>39.2</td>
<td>40.8</td>
<td>38.4</td>
<td>39.3</td>
<td>40.0</td>
<td>43.5</td>
<td>37.4</td>
</tr>
<tr>
<td>S10</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>0.05</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>S9</td>
<td>--</td>
<td>--</td>
<td>0.2</td>
<td>0.6</td>
<td>--</td>
<td>0.4</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>S8</td>
<td>3.4</td>
<td>1.8</td>
<td>3.8</td>
<td>5.8</td>
<td>3.8</td>
<td>3.2</td>
<td>2.9</td>
<td>3.0</td>
</tr>
<tr>
<td>S7</td>
<td>19.6</td>
<td>17.5</td>
<td>20.2</td>
<td>16.4</td>
<td>17.6</td>
<td>18.6</td>
<td>20.5</td>
<td>11.0</td>
</tr>
<tr>
<td>S5-6</td>
<td>20.0</td>
<td>21.6</td>
<td>25.1</td>
<td>19.7</td>
<td>17.8</td>
<td>22.6</td>
<td>17.5</td>
<td>14.4</td>
</tr>
<tr>
<td>S3-4</td>
<td>27.1</td>
<td>26.6</td>
<td>28.7</td>
<td>24.7</td>
<td>23.0</td>
<td>27.5</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Class B oocytes</td>
<td>43.0</td>
<td>40.9</td>
<td>49.2</td>
<td>42.6</td>
<td>39.3</td>
<td>44.8</td>
<td>41.1</td>
<td>28.5</td>
</tr>
<tr>
<td>Egg to adult survival (%)</td>
<td>88.8</td>
<td>n.d.</td>
<td>34.9</td>
<td>23.8*</td>
<td>61.5*</td>
<td>88.1</td>
<td>92.1</td>
<td>33.6</td>
</tr>
</tbody>
</table>

n.d. = not determined *from Graf and Würgler 1978
This work was supported by the Swiss National Science Foundation, project No. 3.156-0.77.

Stevens, P.G. and E.A. Carlson. State University of New York, Stony Brook. Chromosomal mosaics were produced by inducing breakage of a ring-X chromosome. When this resulted in the loss of the ring chromosome during one of the early cleavage stages of the zygote, an XX/XO gynandromorph was formed. In some cases the chromosome was repaired or altered without breakage, resulting in a point mutation rather than chromosome loss. The markers w, m, f, and B were used so that the extent of mosaicism could be observed to distinguish point mutations from gynandromorphs.

Table 1. EMS-induced mosaics and their transmissibility.

<table>
<thead>
<tr>
<th>Transmissibility</th>
<th>Gynandromorphs</th>
<th>Point Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Died</td>
<td>1</td>
<td>1 + 1</td>
</tr>
<tr>
<td>Nontransmissible</td>
<td>0</td>
<td>4 + 1</td>
</tr>
<tr>
<td>Sterile</td>
<td>5</td>
<td>0 + 0</td>
</tr>
<tr>
<td>Transmissible</td>
<td>0</td>
<td>0 + 1</td>
</tr>
<tr>
<td>Lethal</td>
<td>0</td>
<td>2 + 0</td>
</tr>
<tr>
<td>Total</td>
<td>6</td>
<td>5 + 1</td>
</tr>
</tbody>
</table>

suggest that EMS produces more chemical alterations or repaired breaks on the ring-X chromosome, resulting in point mutations, than unrestituted breaks or aneucentric rings leading to loss and gynandromorphism.

In the second series Xc^2 y B males were exposed to X-rays (2500R) and then mated to w m f virgin females. As in the previous series, the progeny were examined for mosaics (see Table 2). The mosaics obtained from among 920 total progeny consisted of 5 gynandromorphs (0.5%) and 1 point mutation (0.1%). These X-ray results are consistent with the expectation that breakage of the ring-X chromosome is more likely to occur, producing gynandromorphs, than the induction of point mutations.

Table 2. X-ray induced mosaics and their transmissibility.

<table>
<thead>
<tr>
<th>Transmissibility</th>
<th>Gynandromorphs</th>
<th>Point Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nontransmissible</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Sterile</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

In the first series Xc^2 y B males were fed ethyl methane sulfonate (0.0125M EMS in 2% sucrose) for 24 hours. They were then mated to w m f virgin females and progeny were examined for mosaics (Table 1). The mosaics obtained from among 4787 total progeny consisted of 6 gynandromorphs (0.1%) and 11 point mutations (0.2%). The data suggested that EMS produces more chemical alterations or repaired breaks on the ring-X chromosome, resulting in point mutations, than unrestituted breaks or aneucentric rings leading to loss and gynandromorphism.

The distribution of the 11 gynandromorphs obtained is shown in Table 3. Note that in none of these 11 cases was there mosaicism for all five of the phenotypic characteristics used. Most of the gynandromorphs were genital male or female in phenotype and their sterility is probably due to incompatible head tissue of the opposite sex. The fertility of three gynandromorphs, one with an apparently male head and female genitalia, suggests that her head ganglial tissue was female or that males were successful in overcoming her behavioral barriers to reproduction. In two of the three fer-
tile gynandromorphs, only the w m f chromosome (male tissue) entered the gonads. In those two cases the genitalia of the gynandromorphs was male.

Table 3. Distribution of affected tissue in gynandromorphs

<table>
<thead>
<tr>
<th>mutagen used</th>
<th>fertile(F) or sterile(S)</th>
<th>eye color</th>
<th>bristles</th>
<th>wing</th>
<th>sex comb</th>
<th>abdomen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>R</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMS</td>
<td>S</td>
<td>B⁺ w⁺ mos</td>
<td>B⁺ w⁺</td>
<td>f⁺</td>
<td>m⁻</td>
<td>A⁻ A⁻</td>
</tr>
<tr>
<td></td>
<td>died</td>
<td>B⁺ w⁺ mos</td>
<td>B⁺ w⁺</td>
<td>f⁻ mos</td>
<td>m⁻ mos</td>
<td>P⁻ A⁻</td>
</tr>
<tr>
<td>EMS</td>
<td>S</td>
<td>B⁺ w⁺</td>
<td>B⁺ w⁺</td>
<td>f⁻ mos</td>
<td>m⁻ mos</td>
<td>P⁻ A⁻</td>
</tr>
<tr>
<td>EMS</td>
<td>S</td>
<td>B⁺ w⁺</td>
<td>B⁺ w⁺</td>
<td>f⁻ mos</td>
<td>m⁻ mos</td>
<td>A⁻ P⁻</td>
</tr>
<tr>
<td>EMS</td>
<td>S</td>
<td>B⁺ w⁺</td>
<td>B⁺ w⁺</td>
<td>f⁻</td>
<td>m⁻</td>
<td>A⁻ A⁻</td>
</tr>
<tr>
<td>X-ray</td>
<td>F⁺*</td>
<td>B⁺ w⁺</td>
<td>B⁺ w⁺</td>
<td>f⁻</td>
<td>m⁻</td>
<td>P⁻ P⁻</td>
</tr>
<tr>
<td>X-ray</td>
<td>F⁺*</td>
<td>B⁺ w⁺</td>
<td>B⁺ w⁺</td>
<td>f⁻</td>
<td>m⁻</td>
<td>P⁻ P⁻</td>
</tr>
<tr>
<td>X-ray</td>
<td>S</td>
<td>B⁺ w⁺ mos</td>
<td>B⁺ w⁺ mos</td>
<td>f⁻ mos</td>
<td>m⁻ mos</td>
<td>P⁻ A⁻</td>
</tr>
<tr>
<td>X-ray</td>
<td>S</td>
<td>B⁺ w⁺</td>
<td>B⁺ w⁺</td>
<td>f⁻</td>
<td>m⁻</td>
<td>P⁻ P⁻</td>
</tr>
<tr>
<td>X-ray</td>
<td>t⁺**</td>
<td>B⁺ w⁺ mos</td>
<td>B⁺ w⁺ mos</td>
<td>f⁻ mos</td>
<td>m⁻ mos</td>
<td>A⁻ A⁻</td>
</tr>
</tbody>
</table>

*=non-transmitted, only (w m f) progeny obtained

**=non-transmitted, (y B) and (w m f) progeny obtained

Supported by Biomedical Research Support Grant 31H-144H (USPHS) SUNY at Stony Brook.

Takamura, T., H. Hayashi*, A. Yokoyama* and I. Shimada*. Tokyo Metropolitan University and *Tohoku University, Japan. D. melanogaster can taste amino acids. Some progress has been made in the genetics of taste perception in Drosophila (Isono and Kikuchi 1974a; Falk and Atida 1975). Like other dipterans, the taste-bristle of Drosophila contains 4 chemosensory cells (Falk et al. 1976). One of these is the sugar receptor which reacts specifically with certain sugars. In larger flies such as fleshfly and blowfly, Shiraish and Kuwabara (1970) showed 6 of 19 L-type amino acids could electrophysiologically stimulate the sugar receptor of these flies but there have been no data on Drosophila. In this report we show that D. melanogaster can also taste certain amino acids dissolved in pH-adjusted phosphate buffer.

A petri dish with 4 glass rings in it was employed for behavioral assay (Isono and Kikuchi 1974b). Two of the 4 rings were filled with 5 x 10⁻²M amino acid dissolved in 1/15M phosphate buffer (pH 7.0), while the other 2 were filled with phosphate buffer only. Each solu-
tion contained 2% agar to set it in the ring. Six amino acids which can stimulate sugar receptor of larger flies were used (Shiraishi and Kuwabara 1970). About 100 D. melanogaster, 24–48 hours old, allowed to take only water for 24 hours before experiments, were introduced into the petri dish and the distribution of the flies on the rings was examined by photographing them 4 times at 30-minute intervals (for details see Isono and Kikuchi 1974b). Isogenic strain AA75-3 (Isono and Kikuchi 1974b) and wild-type laboratory stock derived from natural populations were used. The results are shown in Table 1.

Table 1. Response of D. melanogaster to six L-type amino acids presented at the concentration of t x 10⁻²M.

<table>
<thead>
<tr>
<th>Amino acid</th>
<th>Strain</th>
<th>Sex</th>
<th>Number of flies observed on the amino acid</th>
<th>Number of flies observed on the phosphate buffer</th>
<th>χ²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Leucine</td>
<td>AA75-3</td>
<td>female 103</td>
<td>82</td>
<td>2.38</td>
<td>>0.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>male 30</td>
<td>38</td>
<td>0.94</td>
<td>>0.7</td>
<td></td>
</tr>
<tr>
<td>L-Valine</td>
<td>AA75-3</td>
<td>female 139</td>
<td>45</td>
<td>48.02</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>male 93</td>
<td>61</td>
<td>6.65</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>L-Methionine</td>
<td>AA75-3</td>
<td>female 276</td>
<td>138</td>
<td>46.00</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>male 116</td>
<td>79</td>
<td>7.02</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>L-Phenylalanine</td>
<td>Wild</td>
<td>female 219</td>
<td>76</td>
<td>69.32</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>male 323</td>
<td>103</td>
<td>113.62</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>L-Isoleucine</td>
<td>AA75-3</td>
<td>female 230</td>
<td>92</td>
<td>59.14</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>male 119</td>
<td>59</td>
<td>20.22</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>L-Tryptophan</td>
<td>AA75-3</td>
<td>female 98</td>
<td>74</td>
<td>3.35</td>
<td>>0.05</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>male 37</td>
<td>38</td>
<td>0.01</td>
<td>>0.9</td>
<td></td>
</tr>
</tbody>
</table>

D. melanogaster could discriminate L-valine, L-methionine, L-phenylalanine, and L-isoleucine from the buffer control but they did not seem to taste L-leucine and L-tryptophan at the concentration tested. Because 5 x 10⁻²M is the concentration at which the magnitude of the electrophysiological responses of larger flies reached maximum and usually behavioral assay is more sensitive than electrophysiological assay, there must be a large difference in stimulating ability between the former four and the latter two amino acids. However, further study is necessary to conclude that D. melanogaster is not able to taste L-leucine and L-tryptophan at all. Shimada and Isono (1978) reported two of these six amino acids, L-phenylalanine and L-tryptophan, differed from the other four in such a manner that these two reacted with furanose site of the fleshfly. This classification, however, did not agree with our data here. It would be interesting to know the relationship of these six amino acids and the furanose site in D. melanogaster by electrophysiological technique.

Temin, R.G. and R. Kreber. University of Wisconsin, Madison, Wisconsin. A look at SD (Segregation Distorter) in the wild population in Madison, Wisconsin, more than 20 years after its initial discovery there. Flies were collected in the fall, 1979, for a study of how SD behaves in nature and to understand the factors determining its frequency. With the recent work on hybrid dysgenesis in our laboratory (Engels 1979–1980) and with the more detailed understanding of the substructure of the SD region (Hartl and Hiraizumi 1976; Ganetsky 1977), it became of interest to see what bearing these might have on the course of SD in wild populations.

There were two trapping sites in Madison, in woods near the homes of R.G. Temin and J.F. Crow. Since the observations, listed below, were similar in the two subpopulations, they have been combined:

1. SD is still present in Madison, in 20 chromosomes among 741 screened. This frequency of 3% is, in fact, the same as it was in 1956 (6/183) and must represent the equilibrium frequency. The average "k" value, representing the degree of distortion, was 0.95, from the...
ratio of 1603 + : 86 cn bw progeny from individual test crosses of +/cn bw♂, where + is derived from a wild-caught male.

2. Cytological analysis revealed that 19 of the 20 SD chromosomes contained the small pericentric inversion In(2LR) 39E1.4-5.8; 42A-B, as well as the large distal Nova Scotia inversion in the right arm. This set of inversions is of the SD-72 type, as designated for the original SD's. The remaining one of the 20 was of the SD-5 type, namely with In(2R)NS and a small proximal inversion also in the right arm, In(2R)45D2-B1; 49 A2-B1, but lacking the pericentric inversion. As controls, 23 SD+ lines had no second chromosome inversions and two SD+ lines had In(2R)NS only. (Two of the SD lines from Crow's collection, in addition to being SD-72, had a highly complex set of second chromosome inversions; the more complex of these also showed a reduced k value of 0.66 on further testing.)

Thus, nearly all the SD chromosomes are now SD-72, in contrast to 1956, when five of the six were SD-5 and one was SD-72. This difference in relative frequencies of SD-5 and SD-72 in the two collections was significant at p = 0.0005, by Fisher's Exact Test. The chromosome with the pericentric inversion has become predominant, maintaining the tight linkage between the SD and Rsp alleles in that region.

Even before the pericentric inversion was discovered by Lewis in 1962, Hiraizumi, Sandler and Crow (1960) predicted, from population cage studies, that SD-72 might replace SD-5. Finding that SD-72 (which was lethal-free) maintained a higher equilibrium frequency than SD-5 (lethal bearing) in cages, they suggested that in nature SD-72 had just arisen as a derivative of SD-5 but had not yet in 1956 had time to replace it. Studies are underway to determine the homozygous viabilities of the newly collected SD's.

3. Male recombination was also detected in the SD screening test crosses of the F1 +/cn bw dysgenic male, indicating that components of hybrid dysgenesis are present in these populations. Among 27,216 progeny of such heterozygous males, 82 were either cn or bw, a frequency of 0.3% recombinants. These occurred in SD lines as well as in SD+ lines, in the same approximate frequency. Recombinant progeny from heterozygous fathers continued to appear even in the F4. In the SD lines the ratio of bw to cn recombinants (67:10 among 14,536 progeny) was significantly greater than in the non-SD lines (44:33, among 25,523), with p = 0.00003. This supports the notion that segregation distortion and hybrid dysgenesis can occur simultaneously.

It is interesting to speculate whether male recombination was occurring in the SD screening of the Madison population in 1956. The original isolation of SD by Hiraizumi during a study of lethal heterozygotes (1960) was from +/cn males which would not have revealed this. However, other tests in our laboratory in that era (Mange 1961; Greenberg 1962) to screen wild populations for SD did use +/cn bw dysgenic F1 males, but recombinants were not reported. We do not know if they were too infrequent or were overlooked, or actually did not occur. However, this raises the question of whether the situation has changed since that time with regard to components of hybrid dysgenesis, either in the cn bw lab stock or in the wild flies themselves.

4. Previous studies have demonstrated suppressors of SD activity, on the X and on other autosomes, as well as on the second chromosome (non-allelic and at the Rsp locus itself). To estimate directly how active SD is in a wild genome, k values were measured for the 20 wild-caught males revealed to be harboring SD. This was done by testing a number of F1 sons (14-45) of each such line. If SD was fully operative in the F1 male (k = 1) then all of the F1 sons would have inherited SD and themselves have a high k value. If SD was completely suppressed in the F1 male (k = 1/2) then about half of the F1 sons would have a high k.

SD appeared to be fully active in only about 1/4 of the cases; in fact, there was a wide range of distortion in the wild males. Of the 20 lines, 8 showed no distortion in the F1 male (k less than 0.57), 5 showed high distortion (k = 0.87 or greater), 6 showed reduced distortion (k between 0.63 and 0.77), and one gave too few sons to test.

5. Another approach to the question of how much distortion occurs in nature was to screen SD+ chromosomes from Madison for sensitivity vs. insensitivity. A strongly distorting SD-5 bw recombinant, provided by Dr. Barry Ganetsky, was used to test 122 non-SD chromosomes, as +/- R(SD-5 bw), in the fourth generation after crossing to laboratory stocks, providing an opportunity for some of the unlinked modifiers to be crossed out. Of the 122, approximately 82 were sensitive to SD-5 action (k = 0.83 or greater), 24 had reduced sensitivity (k between 0.61 and 0.80), and 16 appeared to be in the range of insensitivity (k less than 0.60). Thus, the maximum frequency of insensitive chromosomes is about 13%; to establish these as having true Rspins alleles would require further special tests. This figure is substantially lower than the 45% found by Harl and Hartung (1971) in more specific and thorough testing. This variability among populations with regard to the non-SD chromosome bears further investigation.
It has in general been considered that most of the radiation-induced mutations are sooner or later eliminated from a population by the acts of natural selection of the irradiation is suspended. The purpose of this study is to see a recovery of genetic damages caused by the radiation-induced mutations by estimating the amounts of fertility load and the frequency of lethal second chromosomes in the populations with radiation histories. Experimental populations of D. melanogaster used in this study were identical with those reported by Murata and Tobari (1973). Three experimental populations, B, C and D, were derived from the irradiated population which had been successively exposed to 5,000 r of X-rays in every generation (Tobari and Murata 1970). The populations B, C and D have been subjected to the cumulative radiation exposures of 25,000 r, 50,000 r and 75,000 r, respectively. These populations were maintained for 75-77 generations without X-irradiation before the present experiment was carried out. The frequency of lethal second chromosomes was estimated by the Cy/Pm technique, using about 200 males taken from each of the experimental populations.

To estimate the fertility load the homozygous and heterozygous flies for wild-type second chromosomes were reconstituted. For each of approximately 100 chromosomes, in homozygous as well as heterozygous condition, 10 males and 10 females were tested. Each wild-type male (or female) was mated individually to three cn bw virgin females (or males). After one week all cultures were examined for evidence of fertility. A vial was classified as sterile (S) if there were no larvae or pupae present and the parents were alive. Cultures bearing progeny were classified as fertile (F). In some of the cultures which contained no progeny, the parent of interest was dead; this type was recorded as D.

The frequency of lethal second chromosomes in a non-irradiated (control) population was estimated to be 17.8 ± 1.9%, while it was 30.7 ± 3.7%, 32.7 ± 3.8%, and 32.5 ± 3.4%, respectively, in populations B, C and D. The difference in frequency between the control populations, A, and the experimental one is statistically significant.

The proportion of fertile cultures among the total fertile and sterile cultures was computed and these fertility ratios, F/(F+S), for males and females are given in Table 1. In all populations F = fertile, S = sterile, n = number of chromosomes tested.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Males:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterozygotes</td>
<td>n = 99</td>
<td>F/(F+S) = 0.934±0.016</td>
<td>0.957±0.012</td>
<td>0.868±0.021</td>
</tr>
<tr>
<td></td>
<td>n = 101</td>
<td>F/(F+S) = 0.866±0.020</td>
<td>0.892±0.025</td>
<td>0.789±0.032</td>
</tr>
<tr>
<td>Homozygotes excluding complete steriles</td>
<td>n = 99</td>
<td>F/(F+S) = 0.884±0.016</td>
<td>0.916±0.019</td>
<td>0.856±0.023</td>
</tr>
<tr>
<td>Females:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterozygotes</td>
<td>n = 105</td>
<td>F/(F+S) = 0.969±0.008</td>
<td>0.969±0.008</td>
<td>0.941±0.011</td>
</tr>
<tr>
<td>Homozygotes</td>
<td>n = 104</td>
<td>F/(F+S) = 0.909±0.019</td>
<td>0.871±0.028</td>
<td>0.842±0.026</td>
</tr>
<tr>
<td>Homozygotes excluding complete steriles</td>
<td>n = 102</td>
<td>F/(F+S) = 0.926±0.014</td>
<td>0.907±0.022</td>
<td>0.896±0.015</td>
</tr>
</tbody>
</table>

References:
Table 2. Total sterility load (T), partial sterility load (P) and complete sterility load (C) in the irradiated and control populations.

<table>
<thead>
<tr>
<th>Population</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>P:C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Males:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A: Control</td>
<td>0.0755±0.0288</td>
<td>0.0550±0.0250</td>
<td>0.0205±0.0295</td>
<td>2.7</td>
</tr>
<tr>
<td>B: 25KR-77G</td>
<td>0.0703±0.0320</td>
<td>0.0438±0.0253</td>
<td>0.0266±0.0352</td>
<td>1.6</td>
</tr>
<tr>
<td>C: 50KR-75G</td>
<td>0.0954±0.0465</td>
<td>0.0139±0.0361</td>
<td>0.0815±0.0487</td>
<td>0.2</td>
</tr>
<tr>
<td>D: 75KR-75G</td>
<td>0.1636±0.0493</td>
<td>0.0288±0.0282</td>
<td>0.1348±0.0520</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Females:

<table>
<thead>
<tr>
<th>Population</th>
<th>T</th>
<th>P</th>
<th>C</th>
<th>P:C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A: Control</td>
<td>0.0640±0.0108</td>
<td>0.0454±0.0177</td>
<td>0.0186±0.0168</td>
<td>2.4</td>
</tr>
<tr>
<td>B: 25KR-77G</td>
<td>0.1066±0.0332</td>
<td>0.0661±0.0256</td>
<td>0.0504±0.0405</td>
<td>1.6</td>
</tr>
<tr>
<td>C: 50KR-75G</td>
<td>0.1112±0.0326</td>
<td>0.0489±0.0205</td>
<td>0.0623±0.0349</td>
<td>0.8</td>
</tr>
<tr>
<td>D: 75KR-75G</td>
<td>0.1623±0.0355</td>
<td>0.0700±0.0234</td>
<td>0.0923±0.0437</td>
<td>0.8</td>
</tr>
</tbody>
</table>

The populations the fertility rates are higher for heterozygotes than for homozygotes. Furthermore, in populations C and D, which had been exposed to 50,000r and 75,000r of X-rays respectively, the fertility of both the homozygotes and the heterozygotes is lower than that in the control population. The loads have been computed from the mean fertility ratios by the same method as Temin's (1966). As seen in Table 2, the total load for males and females markedly increases as an accumulated dose of X-rays increases. In populations A and B, most of the total load for males and females is due to mutant genes leading to partial sterility. On the other hand, in populations C and D, the total load for males is mainly due to mutant genes causing complete sterility and for females the ratio of P:C is approximately 1:1.

The results described above indicate that some of the radiation-induced mutant genes with detrimental effects on viability or fertility are maintained for a number of generations in the populations with radiation histories, although these detrimental genes may partly be eliminated by natural selection in early generations after the irradiation is suspended.

The rapidly increasing interest in the development of methods for the detection of environmental mutagens has been accompanied by an interest in the statistical procedures to be employed by mutation researchers (see e.g., Armitage 1971; Berchtold 1975; Kastenbaum and Bowman 1970; Katz 1978, 1979; Traut, in press; Würgler et al. 1975). One of those procedures is the chi-square (χ^2) test. The following approximation to that test facilitates the computation of χ^2 considerably and yields nevertheless P values almost identical with those calculated in the usual way. (Note that by the help of Patau's (1942) graphs the P values belonging to the calculated χ^2 values can be obtained.) Although this approximation has already been described (Armitage 1971), it is, as far as I know, not employed to test the significance of the difference between mutation frequencies. The approximate procedure should be applied to low relative frequencies only, amounting to at most a few percent. This requirement, however, is generally complied with in mutation experiments carried out with D. melanogaster (main types of mutations studied: recessive sex-linked lethals, autosomal translocations and X-chromosomal aneuploidy). It is true that there are cases allowing the application of the following approximate formula also to high mutation frequencies (Traut, unpublished). However, it would be difficult to consider this possibility in practice and it seems, therefore, wise to use the approximate formula only when the mutation frequencies are small. As well formulae (1) to (4) presented below as the two examples illustrating the performance of the approximate test consider Yates' correction for continuity.

The following χ^2 formula is usually applied to test the significance between two mutation frequencies x_1/n_1 and x_2/n_2 ($x = \text{number of mutated units, e.g., cells, chromosomes, loci;}$ and $n = \text{number of units analyzed}$), where $x_1(x_2) = \text{number of mutated units and } y_1(y_2) = \text{number of non-mutated units of experiment 1 (experiment 2), and } N = x_1 + y_1 + x_2 + y_2$. For low mutation frequencies (see above), formula (1)
(2) \[\chi^2 = \frac{([x_1 - \bar{x}_1] - 0.5)^2}{\bar{x}_1} + \frac{([x_2 - \bar{x}_2] - 0.5)^2}{\bar{x}_2} \]
can be replaced by the simpler approximate formula (2), where \(\bar{x}_1 = n_1([x_1 + x_2]/N) \) and \(\bar{x}_2 = n_2([x_1 + x_2]/N) = x_1 + x_2 - x_1^\prime \) are the expected absolute frequencies belonging to \(x_1 \) and \(x_2 \), respectively. This approximation can be derived as follows. When the formula for \(\chi^2 \) is expressed in its extended version instead of by formula (1), we obtain:

(3) \[\chi^2 = \frac{([x_1 - \bar{x}_1] - 0.5)^2}{\bar{x}_1} + \frac{([x_2 - \bar{x}_2] - 0.5)^2}{\bar{x}_2} + \frac{([y_1 - \bar{y}_1] - 0.5)^2}{\bar{y}_1} + \frac{([y_2 - \bar{y}_2] - 0.5)^2}{\bar{y}_2} \]

where \(y_1 \) and \(y_2 \) are the expected absolute frequencies belonging to \(y_1 \) and \(y_2 \), respectively.

For low mutation frequencies the contribution to \(\chi^2 \) from the non-mutated units, \(y_1 \) and \(y_2 \), is so small when compared with the contribution from the mutated units, \(x_1 \) and \(x_2 \), that it can be neglected. It is this omission which transforms formula (3) to formula (2). In addition, the numerical computation carried out with formula (2) is facilitated by the fact that in formula (2), \(([x_1 - \bar{x}_1] - 0.5)^2 = ([x_2 - \bar{x}_2] - 0.5)^2 \), as can be shown by a simple consideration. Furthermore, when formula (2) but not when formula (1) is used, one automatically learns whether there is an expected absolute frequency (\(x_1 \)) smaller than 5, and, therefore, whether the application of the \(\chi^2 \) test is legitimate. Formula (2) could be expressed also in other ways; however, the numerical computations are carried out best when this formula is used as it stands.

Example illustrating the application of formula (2):

\[
x_1/n_1 = 100/1000 = 10.0\% \text{ (experiment 1)}
\]
\[
x_2/n_2 = 40/50 = 8.0\% \text{ (experiment 2)}
\]
\[
(a) \quad x_1^\prime = 1000([100 + 40]/1500) = 93.3
\]
\[
(b) \quad x_2^\prime = 100 + 40 - 93.3 = 46.7
\]
\[
(c) \quad ([x_1 - x_1^\prime] - 0.5)^2 = ([x_2 - x_2^\prime] - 0.5)^2 = 6.2 = 38.4
\]
\[
(d) \quad \chi^2 = 1.24 \text{ [The exact value, computed with formula (1) or (3), amounts to } \chi^2 = 1.36.]
\]

Example illustrating the application of formula (4):

\[
x_1/n_1 = 30/5000 = 0.600\% \text{ (treated sample)}
\]
\[
x_2/n_2 = 5/5000 = 0.100\% \text{ (control sample)}
\]
\[
\chi^2 = \frac{([30 - 5] - 1)^2}{30 + 5} = 16.46 \text{ (The exact value, computed with formula (1) or (3), amounts to } \chi^2 = 16.52.
\]

Triantaphyllidis, C.D. Aristotelian University of Thessaloniki, Greece. The esterase-A of D. auraria. In three laboratory strains of D. auraria, an enzyme polymorphism of esterase A (Est-A) could be detected by means of starch gel electrophoresis. There exist two variants of Est-A with different electrophoretic mobility, which were called Fast and Slow (Fig. 1). To analyze the genetic basis of these electrophoretic variants, homozygous stocks for each of them were constructed. Then single-pair matings in many combinations were performed. The hybrids resulting from these crosses as well as the progenies resulting from the backcrosses and from F1 x F1 crosses were analyzed electrophoretically. The results showed that the two esterase A variants were controlled by codominant alleles at an autosomal gene. Heterozygous individuals show two electrophoretic zones, and there is no indication for the formation of a hybrid enzyme. As far as substrate specificity is concerned the two Est-A variants showed an a-naphthyl acetate specificity in an a- sample mixture. Furthermore the Est-A zones show increased activity in the presence of 10 ml n-propanol in 100 ml...
α-β-naphthyl acetate staining mixture. Also it is interesting that the Est-A zones have greater activity in the females than in the males (Fig. 1, no. 3).

Acknowledgements: I would like to thank Mr. A. Svinios for his technical assistance.

Fig. 1. Electrophoretic variants for the Est-A locus in D. auraria.

It has been established earlier that the esterase-C (Est-C) and acid phosphatase (Acph) variants of D. auraria are under the control of autosomal loci (Triantaphyllidis and Kastritsis 1976; Triantaphyllidis 1978). These two genes as well as the white eyes gene are unplaced on the chromosomes of D. auraria. For this reason crosses were made for their chromosomal localization. The results of crosses w^x w x +w^y σ and w^x +w^y x w σ showed that the w allele is recessive and sex-linked. On the other hand, in order to find if the Est-C and Acph loci are independent or linked, homozygous females of the form Est-^{C8} Acph³⁻⁵ were crossed with homozygous males of the form Est-^{Cf} Acph¹⁻³. Then heterozygous males or females Est-^{C8} Acph³⁻⁵/Est-^{Cf} Acph¹⁻³ were backcrossed to Est-^{C8} Acph³⁻⁵ females or males respectively. In the progeny of the first backcross only flies of the phenotypes Est-^{C8} Acph³⁻⁵ and Est-^{Cf} Acph¹⁻³ were found. Thus, the Est-C and Acph loci are linked in the same autosomal chromosome. In the progeny of the second reciprocal backcross 101 out of 254 offspring were recombinants (39.8%). Hence, the Est-C locus is about 40 map units away from the Acph locus. The existence of similar gene-enzyme systems in D. melanogaster (O'Brien and MacIntyre 1971) located in the third chromosome (positions 49.0 and 101.1 respectively) is a good indication that the Est-C and Acph loci are probably located in the same chromosome in D. auraria and the genes retained their ancestral position during the phylogeny of the two species. The difference between the two species with respect to the relative distances between the similar genes may depend on many factors. Work is now in progress in order to map the position of the cistron which codes for other gene-enzyme systems in D. auraria.

Acknowledgements: I would like to thank Mr. A. Svinios for his technical assistance.

Tribe, J. and I.R. Bock. La Trobe University, Melbourne, Australia. Drosophila collections in southeastern Australia.

Collections were made during December 1979 at several wineries and orchard areas in inland southeastern Australia. The localities sampled are shown in Fig. 1; the numbers represent Mourquong orchard (1), flies swept over fresh fruit; Mildura winery (2), flies collected on old filters outside the winery; Mildara winery (3); Ettiwanda fruit juice factory (4), flies swept from orange skins; Sarnia fruit juice factory (5), flies swept from mixed fruit skins; Lake Boga winery (6); Best's winery (7); and Bridgewater winery (8). Flies collected at localities 3, 6, 7 and 8 were aspirated directly from fermentation vats. Ambient maximum temperatures on all collection days exceeded 30°C.

Results are given in Table 1. Only cosmopolitan species were found, and indeed only two of the eight cosmopolitan Drosophila species (ana-nassae and repleta) were not collected. D. ananassae occurs in Australia but is restricted to the Northern Territory and northern Queensland, while D. repleta, although known from southern localities, is very rare. The large numbers of melanogaster collected in the wineries are not surprising; the ability of this species to utilize ethanol is well known and widely documented.

Perhaps of greater interest is the collection of large numbers of hydei in one of the wineries (3) as well as at several other sites. D. funebris has previously only been recorded within Australia from Sydney.

Acknowledgments: The assistance of Ms. Lesley Anderson and the wine and fruit producers at the localities sampled is gratefully acknowledged.
Abundant evidence now exists to prove that differential gene arrangements have evolved in many species of Drosophila to meet the adaptive needs in a dynamic environment. Inasmuch as the adaptive values of different genomes differ considerably, the fitness of certain kinds of gene arrangements may, therefore, increase or decrease with fluctuation in environmental milieu. D. ananassae, a cosmopolitan domestic species, is known to exhibit nearly 50 different inversions in different natural populations. Of the several paracentric inversions, 3LA, 3RA and 2LA are common to all populations while the rest of the inversions are selectively restricted to these populations. From their studies on D. willistoni, da Cunha et al. (1950) postulate a close correlation of chromosomal polymorphism with environmental conditions. In an attempt to assess the correlation, if any, between the different inversions and the environmental temperature, the present study has been undertaken on the natural population of D. ananassae of Gola-bandha, situated at an altitude of 17.5 m and about 6 km to the south of the university campus, during the months of January through May, 1980. The temperature during these months was recorded as 24°C in January, 28°C in February and March, 32°C in April and 36°C in May.

Collections were made in the first week of every month and the naturally inseminated gravid females were isolated. Individual flies were transferred to independent vials with wheat cream agar medium. 100 larvae were used in studying the inversions every month. Table 1 lists the inversion frequency data during the different months of study.

The correlation graphs of the frequency of inversions, coextensive with the species, and the temperature fluctuation during these months are represented in Fig. 1. As can be seen there is no significant correlation between the frequency of these inversions and the environmental temperature in the investigated population of D. ananassae.

Trippa, G., A. Loverre and M. Lepore.
Università di Roma, Italy. Segregation distortion of second chromosomes by a wild third chromosome in D. melanogaster: modifier or Sd gene?

Samples of wild populations of D. melanogaster from southern Italy have shown a frequency of 1 to 10% of second SD chromosomes (Trippa et al. 1972) and about 70% of third chromosomes carrying a dominant Sd modifier (Trippa and Loverre 1975). The characterization of Italian natural populations as regards frequency of meiotic drive systems utilizes a cross scheme which makes it possible to follow the segregation of both second and third chromosomes. F1+/bw-5; +/st-S males from the cross between wild males and y; bw-5; st-S females are backcrossed with y; bw-5; st-S females to permit a first count of k1 and k2 at F2 (k1 for segregation of second chromosome = bw+ individuals/
total progeny; \(k_2 \) for segregation of third chromosomes = \(st^+ \) individuals/total progeny). A further count of \(k_1 \) and \(k_2 \) in the progeny of \(F_2 \) males makes it possible to evaluate the degree of distorted segregation of chromosomes 2 and 3 and their reciprocal effects on segregation.

A study on two wild populations collected in October 1978 in northern Italy (Mareno, Veneto) and in southern Italy (Nardô, Puglia) has led to the recovery of a third chromosome, III\(^{Nr} \) (III\(^{Nardô} \)) which alters the segregation of second chromosomes (Table 1). This chromosome normally segregates in III\(^{Nr} \)/st heterozygous males (\(n = 41; k = 0.53 \)). As things stand at present, two general hypotheses can be put forth to interpret the results obtained: (1) there may be an \(Sd \)-like factor acting like other \(Sd \) factors so far detected on the second chromosome but located on the third chromosome; (2) there may be on chromosome 3 an \(Sd \) modifier (enhancer?) acting on the \(II^+ \) Nardô chromosome (which is actually an \(Sd \) chromosome, despite the fact that in the +/bw-5; st-5/st-5 heterozygous males \(k = 0.51 \)) thus causing segregation distortion of second chromosomes. The frequency of genotypes with the \(Sd \) trait which is a consequence of the interaction of wild chromosomes II and III is in the Mareno population 0.00\% (0/137 chromosomes) and in the Nardô population about 0.03\% (3/108 chromosomes). In the Nardô population, besides #13, there are two examples of \(Sd \) with \(k \) value equal to 0.67 in +/bw-5; st-5/st-5 males and 1.00 in +/bw-5; +L/st-5 males. These data indicate that there is a significant difference (\(P >> 0.001 \)) in the \(k \) values of the two genotypes and that this difference depends on the presence of wild third chromosomes which enhance distortion by the wild second chromosome.

It is interesting to note that while the Nardô (South Italy) population shows an \(Sd \) frequency of about 3\% (a very similar value to those observed in wild populations from many parts of the world), the Mareno population (North Italy) shows no cases of \(Sd \). This is the second example of a wild population with no cases of \(Sd \), after that extensively examined in Austin, Texas (see Hartle and Hiraizumi 1976). If it is true that one of the mechanisms contrasting the spread of \(Sd \) in populations is the appearance and increase of normal chromosomes resistant to \(Sd \), it would be particularly stimulating to test the degree of sensitivity to distortion by \(Sd \) of the second chromosomes of these two populations.

Conditions were: (a) distance between the slide and the microphone, 6.0 cm; (b) sine waves; (c) frequency, 40,000 cps, first harmonic waves at 120,000 cps; (d) power, N = 0.3 watts; (e) time, 30 min; (f) temperature, 19°C.

After sonication each pair of salivary glands was placed on a slide containing a drop of staining solution. So, there were four slides produced from the control slide and four from the treated. After a 10 min. interval for staining, a cover slip was placed without applying pressure on top of each slide. The first observation then took place using a magnification of 100X. After this, the cover slide was pressed slightly until the point enabling magnification of 700X and another observation was made.

The above procedure was performed six times, so the total number of slides observed was 24 control and 24 treated. In every slide of treated glands a significant number of chromosomal breaks appeared as well as a significant alteration in the effectiveness of staining by orcein, whereas the control slides showed chromosomes without breaks and clear and sharp staining. Figs. 1 and 2 are presented as an example of these findings. The only difference between the two figures is that ultrasonication was applied to the glands in Fig. 2; all other conditions from dissection through the development of the photograph were the same.

Since ultrasonication is used to break the bodies of cells such as chloroplasts, it was probable that it also would produce chromosomal breaks in salivary chromosomes in vitro. This work gave evidence that this does occur. The unexpected finding was the alteration of staining after ultrasonication with the white bands taking on some color and the dark bands appearing more faint. This resulted in such a difference in the appearance of the chromosome as to render it virtually unidentifiable. If staining is the result of chemical reactions between orcein and chromosomal DNA, then after ultrasonication these reactions take place in
in a different way from the usual. One possible explanation for this could be that ultrasonication alters the chemical and/or physical properties of the chromosomal DNA structure or composition.

Although this work took place in vitro and salivary glands were used, these findings require further attention because ultrasonics are utilized in research and applied science such as obstetrical medicine.

Turner, M.E. University of Georgia, Athens, Georgia. A laboratory overwintering experiment with D. montana and D. pseudoobscura.

Drosophila which live at high elevations are subject to low temperature extremes during the winter months. At elevations 7000 ft. and above low temperatures and/or snow cover may last six months or longer. For these populations of Drosophila to persist either some stage (or stages) of the life cycle must overwinter or a new population must be founded each spring from lower elevation populations of the same species. D. montana and D. pseudoobscura were tested to determine their ability to endure cold temperatures for an extended period of time. D. montana were obtained from the University of Texas Stock Center (#1218.8d); this strain was originally captured from Ogden, Utah and has been in the laboratory since 1941. The D. pseudoobscura were collected from American Fork Canyon, Utah (elev. 7550) in 1976.

Flies were kept in half-pint milk bottles containing cornmeal-molasses medium. Approximately 50 adults were put in a bottle and allowed to reproduce at 15°C; when pupae appeared the bottles including the parents were put in an incubator at -2°C.

After eight days all D. pseudoobscura adults were dead. These bottles were moved to 15°C and no progeny from the original adults appeared; apparently the cold temperature had also killed eggs, larvae and pupae. D. pseudoobscura can be kept at 5°C for long periods of time with larvae, pupae and adults surviving.

After six months (184 days) the montana bottles (adults still alive) were removed from the incubator, adults were separated by sex and put in new bottles at 15°C. No flies had hatched from the original bottles after one month at 15°C and no living larvae were observed. The other life stages (eggs, larvae, and pupae) had been killed by the cold temperature. Additionally no larvae appeared in the bottles containing surviving females after one month at 15°C. The sexes were combined in a new bottle and larvae, and eventually adult progeny, appeared. The time at the cold temperature had despermizd the "overwintering" females, but had not, at least grossly, affected their fertility.

The ability of montana adults to survive this temperature (-2°C) for an extended period of time (6 months) would seem to imply that adults can and probably do overwinter. The death of the pseudoobscura individuals does not demonstrate that they do not overwinter, but only that they may overwinter where temperatures do not get this cold. In many forest environments at or above 7000 ft. elevation both montana and pseudoobscura live in the same area and are attracted to the same banana baits. The greater cold temperature tolerance of montana adults should allow them to survive in the more exposed and colder areas of this environment.

Present data were obtained in three days of collection from October to November 1978, in the locality of Estação Experimental Agronômica de Guabara, Guabara County, 40 km from Porto Alegre, the capital of the State of Rio Grande do Sul, Brasil. The studied place is a brushwood enclosed in a capon, with some watersheds. Five fermented banana baits were used besides natural available baits: fermented fruits fallen around the original plant, the native palm-tree Arecastrum romanzoffianum (Palmae), which fruit is commonly called "coquinho".
The collection methods were: (1) capture of adults with nets over the two types of baits; (2) collection of two samples of 100 fruits individually placed in tubes with cultural medium in a controlled temperature chamber at 25°C ± 1°C for 15 days until metamorphosis of the pre-adult forms from nature was completed. In each of these samples, only 19 and 15% of the fruits were not colonized by Drosophila species.

Table 1. Numbers and percentage of Drosophila species from Guaiaba.

<table>
<thead>
<tr>
<th>Species</th>
<th>Net (flying adults)</th>
<th>Rotting fruits (pre-adults)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Banana</td>
<td>"Coquinho"</td>
</tr>
<tr>
<td></td>
<td>N</td>
<td>%</td>
</tr>
<tr>
<td>D. willistoni</td>
<td>51</td>
<td>8.02</td>
</tr>
<tr>
<td>D. simulans</td>
<td>477</td>
<td>75.00</td>
</tr>
<tr>
<td>D. griseolineata</td>
<td>17</td>
<td>2.67</td>
</tr>
<tr>
<td>D. guaranumunu</td>
<td>14</td>
<td>2.20</td>
</tr>
<tr>
<td>D. polymorpha</td>
<td>34</td>
<td>5.35</td>
</tr>
<tr>
<td>repleta group</td>
<td>6</td>
<td>0.94</td>
</tr>
<tr>
<td>Others*</td>
<td>37</td>
<td>5.82</td>
</tr>
<tr>
<td>Total</td>
<td>636</td>
<td>2625</td>
</tr>
</tbody>
</table>

*These numbers are relative to species whose frequencies were less than 1% individually as: D. cardinoides, D. bandeirantorum, D. immigrans, D. nebulosa and D. fumipennis.

Table 1 shows the numbers and percentages of the different species of Drosophila found in the samples. It is interesting to note that D. simulans is by far the most abundant species, irrespective of the collection method, followed by D. willistoni. As for the repleta group, the high frequency found when rotting fruits were used illustrates clearly the difference between oviposition site and the feeding sites of adults.

In order to test the homogeneity of the species distribution of flying adults, two types of baits - banana and "coquinho" - a chi-square test was made. The differences between the two samples were highly significant, with a value of $\chi^2 = 110.88$ ($P < 0.001$); this was due mainly to the different attractiveness exerted by the two types of baits on D. willistoni, D. simulans and D. griseolineata, as far as food source is concerned.

Differences between fauna ecloded from "coquinho" and that captured with nets on the same trophic resource were compared by using the Kolmogorov–Smirnov test since there were null classes in the sample ecloded from "coquinho".

The maximum deviation between these two samples reached a value of 0.2837 which is highly significant ($P < 0.001$). This result points out that not all the females attracted by the fermentation of "coquinho" actually oviposit in the fruits, which can probably be attributed to genetic differences. Another explanation for this situation would be the occurrence of high selective pressures at the larval phase, the exploration of food resource being one of the more effective.

Table 2. Statistical significance of the differences in chromosomal rearrangements of D. willistoni among samples collected in banana baits, and those attracted and ecloded from Arecastrum romanzzofianum fruits ("coquinho").

<table>
<thead>
<tr>
<th>Samples</th>
<th>II L rearrangements</th>
<th>III rearrangements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>single complex</td>
<td>single complex</td>
</tr>
<tr>
<td>banana x "coquinho" (collected with nets)</td>
<td>N.S. <0.05</td>
<td>N.S. N.S.</td>
</tr>
<tr>
<td>"coquinho" x "coquinho" (ecloded from rotting fruits and attracted from the same fruit)</td>
<td>N.S. N.S.</td>
<td>N.S. <0.01</td>
</tr>
</tbody>
</table>

P = probability; N.S. = not significant
for the evaluation of genotypical differences through the chromosomal polymorphisms, as had already been described by Dobzhansky (1950), da Cunha (1957), Cordeiro (1954) and others. The progeny of each female captured in nature was analyzed in relation to the larval salivary gland chromosomal rearrangements, by the technique of Ashburner (1967); the same was applied to the progeny of females eclosed from "coquinho" fruits fecundated by males eclosed from the same fruit.

The analysis of 363 individuals showed that of the five chromosome arms, X L, X R and II R were homozygous. As for the left arm of the second chromosome (II L), the Kolmogorov-Smirnov test showed that the differences between the F₁ of females collected from banana and "coquinho" baits were significant (P < 0.05) for combined rearrangements (two to four inversions together). For the third chromosome (III) there were significant differences between the offspring of females captured with nets over the fruits of Arecastrum romanoffianum and the offspring of females eclosed from these fruits in the laboratory, when combined rearrangements were considered (two to three inversions).

The results of the statistical test to the chromosomal rearrangements are summarized in Table 2. The total number of rearrangements observed for II L chromosome was 17, 6 of which were single rearrangements (only one inversion) plus the homozygous; 11 were combined rearrangements (two to four inversions together), with a frequency different from those of each inversion separately, although most of these inversions being located far enough in the chromosome as to permit the occurrence of crossing over between them.

Four single rearrangements were found for the third chromosome, including the homozygous, as well as four complex rearrangements, representing two and three inversions. Among the combined rearrangements of II L, for example, whereas D, E, B/d, e, b reached a frequency of 54.1% in banana baits, it was not found in larvae of females eclosed in "coquinho" and attained 45.8% in larvae from females attracted by the fruit; F, D, E, B/f, d, e, b reached 77% in banana baits, 22% in the natural one as was not found in larvae of females eclosed from the native fruit.

Among the third chromosome complex rearrangements, J, B/j, b was 22.3% in larvae from females attracted by banana, 21.2% in larvae from flies eclosed from "coquinho" and 75.5% in larvae attracted by this same fruit; the B, C/b, c rearrangement reached 0%, 41.6% and 58.3%, respectively, in the offspring of the same samples and the J, B, C/j, b, c rearrangement was exclusive of larvae from flies eclosed from "coquinho" fruits. This indicates a clear association of certain types of rearrangements with the kind of explored trophic resource.

van Delden, W. and A. Kamping. University of Groningen, The Netherlands. Selection against an Adh null allele. Several null mutants of the alcohol dehydrogenase (Adh) locus in D. melanogaster are known. Homozygotes for these mutants, which lack detectable ADH activity, can be maintained as laboratory strains without culture problems when kept on regular food. On ethanol-supplemented medium, however, they lack detoxification ability and die quickly compared to Adh-positive flies. As we have found (van Delden et al. 1978) that selection occurs also on regular food in populations polymorphic for the naturally occurring Fast (F) and Slow (S) alleles we studied whether in populations polymorphic for a null mutant and either F or S alleles, selection would occur against the null allele. For this purpose the Adh-Al (0) mutant (Grell et al. 1968) was introduced into the background of the Groningen population, whereafter 0 x S and 0 x F crosses were made with S and F strains possessing the same background. The offspring of these crosses (F₁) were put in population cages at 25°C. The populations were continued in time and allele frequencies were determined at intervals beginning with the F₂ generation. Populations started both on regular and ethanol-supplemented food. Table 1 lists the observed null allele frequencies, populations indicated as 00 and 0F are polymorphic for the null allele and S and F alleles respectively. To study the importance of strain effects, five 00 and five 0F populations were started, both on regular and ethanol-supplemented food. Populations numbered up to four inclusive each contained two S or F lines which differed from the lines used in the other three populations; populations numbered five contained all eight lines S or F lines used in the other four populations of the same type.
Table 1. Frequencies of null-alleles in the course of time (initial frequency: 0.50).

<table>
<thead>
<tr>
<th>Populations</th>
<th>Regular food</th>
<th>Ethanol-supplemented food</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Time (weeks)</td>
<td>Time (weeks)</td>
</tr>
<tr>
<td></td>
<td>8 14 26 38 52</td>
<td>8 14 26</td>
</tr>
<tr>
<td>S0 1</td>
<td>0.50 0.45 0.44 0.37 0.35 0.22</td>
<td>0.23 0.06 0.01 0</td>
</tr>
<tr>
<td>S0 2</td>
<td>0.49 0.45 0.46 0.40 0.37 - 0.20 0.05 0.02 0</td>
<td></td>
</tr>
<tr>
<td>S0 3</td>
<td>0.49 0.44 0.38 0.36 0.33 0.31 0.18 0.05 0.01 0</td>
<td></td>
</tr>
<tr>
<td>S0 4</td>
<td>0.48 0.42 0.43 0.31 0.34 0.28 0.18 0.05 0.01 0</td>
<td></td>
</tr>
<tr>
<td>S0 5</td>
<td>0.49 0.46 0.40 0.33 0.28 0.24 0.23 0.05 0.01 0</td>
<td></td>
</tr>
<tr>
<td>S0</td>
<td>0.49 0.44 0.42 0.35 0.34 0.26 0.22 0.06 0.01 0</td>
<td></td>
</tr>
<tr>
<td>FO 1</td>
<td>0.46 0.42 0.42 0.33 0.33 0.30 0.26 0.01 0 0</td>
<td></td>
</tr>
<tr>
<td>FO 2</td>
<td>0.44 0.41 0.40 0.33 0.28 0.27 0.24 0.02 0 0</td>
<td></td>
</tr>
<tr>
<td>FO 3</td>
<td>0.49 0.44 0.41 0.38 0.36 0.23 0.23 0.03 0</td>
<td></td>
</tr>
<tr>
<td>FO 4</td>
<td>0.50 0.43 0.38 0.35 0.32 0.22 0.20 0.03 0 0</td>
<td></td>
</tr>
<tr>
<td>FO 5</td>
<td>0.50 0.42 0.37 0.24 0.28 0.28 0.20 0.01 0</td>
<td></td>
</tr>
<tr>
<td>FO</td>
<td>0.48 0.42 0.39 0.32 0.31 0.26 0.23 0.02 0 0</td>
<td></td>
</tr>
</tbody>
</table>

From Table 1 it is clear that, as has been expected, a rapid decrease in frequency of the 0 allele has occurred on ethanol food: frequency of the 0 allele had dropped to 0.01 after 14 weeks (approximately 4 generations) in the S0 populations and the 0 allele was even lost in the FO population. Also on regular food the frequency of the 0 allele decreased considerably: to 0.26 in 52 weeks (approximately 26 generations). It appears that the decline in 0 frequency is very similar in all populations of the same type: line effects are therefore small. We conclude that also on regular food the absence of ADH activity has detrimental effects and lowers the fitness of the homozygote for the null allele; whether the fitness of the heterozygotes is also lowered is the object of further study.

When measuring ADH-activity in larvae and flies of D. melanogaster it is important to take body weight into account. The parameter activity per mg is strongly positively correlated with body weight. The most likely explanation is the deposition of relatively large amounts of fat after reaching the critical weight. It is known (Ursprung et al. 1970) that fat bodies have a high ADH activity.

In this experiment done for the Groningen population (see Bijlsma-Meeles and Van Delden 1974) ADH activity was measured according to Van Delden et al. (1975) both in larvae showing the first signs of pupation and in 7-day-old male flies. Differences in individual weights were induced by varying the level of crowding. For ADH activity per mg (ΔE min⁻¹mg⁻¹) = y and body weight (mg) = x, the following relationships were found (see figures on following page):

Larvae ADHFF y = 0.1144 x -0.0829
" ADHSS y = 0.0355 x -0.0255
Flies ADHFF y = 0.3765 x +0.0181
" ADHSS y = 0.0776 x +0.0089

All regression coefficients were significant (P < 0.001).

The larger ADH activities of larvae when ethanol is present in their food can be completely explained by this relation: body weights increase with increasing ethanol concentration. Selection experiments for increase of ADH activity will lead to selection for body weight when no precautions are made to keep body weight at a constant value.
Our Drosophila cultures were kept at 25°C. At lower temperatures body weight increases. The described relationship with ADH activity does not hold in this case. ADH activity per mg is then even somewhat reduced with increasing body weight.

Rate of development and viability are the two parameters by which toxicity of a chemical is measured. Such parameters were used to test the effect of Dithane M-45 on D. melanogaster (Oregon-K). Eggs of the same age (±4 hours) were collected following the procedure of Delcour (1969). 35 eggs were then placed into each 3" x 1" vial containing chemical-supplemented media and normal medium and permitted to develop at a constant temperature of 23±1°C. Concentrations of 2, 5, 10, 15, 20, 25 and 30 mg of the chemical were thoroughly mixed in 100 ml wheat cream agar medium. The normal medium was used as control. The flies were scored each day from the time of emergence up to the end of eclosion. The pattern of emergence of flies in the control and in different concentrations of Dithane M-45 is depicted in Fig. 1 (see following page). It is clear from this graph that in the control the emergence of flies started on day 9 with a peak on day 11 and terminated on day 17. In contrast to this, the rate of development is prolonged in different concentrations of the chemical, thus affecting the time of emergence. In the lowest concentration (2 mg/100 ml food medium) eclosion commenced on day 11 and ended on day 22 with a peak on day 14. On the other hand, in the highest concentration (30 mg/100 ml) emergence began on day 19 and terminated on day 29. Here the peak of emergence was confined to day 25. The effect of Dithane M-45 on viability was measured by the number of flies emerged in each group. Thus the number of flies obtained in the control is 93.57%, while in the lowest concentration it is 82.14%; in the highest, 3.57%. From these results it is clear that Dithane M-45 has a significant toxic effect at higher concentrations.

Acknowledgements: The authors are grateful to Dr. M.R. Rajasekarasetty for his constant encouragement and valuable suggestions, and to the UGC for financial assistance.

Acetyl salicylic acid, marketed under the name "Aspirin", is well known for its antipyretic, analgesic and anti-inflammatory activity. It has been convincingly shown that aspirin produces drastic changes in experimental animals and plants. It is reported by Vasudev et al. (1978) that aspirin has a pronounced effect on the rate of development and viability in D. melanogaster. So far, there are no mutagenic reports of this drug. Hence, the authors tested the mutagenic property of this drug by scoring sex-linked recessive lethals in D. melanogaster.

Oregon-K and M-5 of D. melanogaster formed the materials for the present study. Aspirin was fed to D. melanogaster larvae in concentrations of 300 and 350 mg per 100 ml of food.
Fig. 1 Pattern of emergence of flies in control and in different concentrations of Dithane M-45.
medium. The procedure for scoring sex-linked recessive lethals is described in detail by Abrahamson and Lewis (1971). In the present experiments two-day-old treated males were used to test for the induction of sex-linked recessive lethals.

Table 1 incorporates the data on the frequencies of sex-linked recessive lethals in controls as well as in the chemical-treated series. From this it is clear that both the concentrations tested were unable to induce a significant percentage of lethals compared to controls. By this, it can be concluded that these concentrations of aspirin are non-mutagenic to D. melanogaster. Consistent with this non-mutagenic nature of the drug, Maner et al. (1970) have reported that aspirin is unable to induce chromosomal aberrations in human leukocytes. In contrast to these results, Jarvik and Kato (1968a,b) and Loughman (1971) in human leukocytes and Sen et al. (1975) in Allium cepa have shown significant chromosomal aberrations from aspirin and concluded it to be mutagenic. In the light of these highly contradicting results, more investigations on other animals and plants are necessary even though it is non-mutagenic in D. melanogaster.

Acknowledgements: The authors are grateful to Dr. M.R. Rajasekarasetty for his constant encouragement and valuable suggestions, and to the UGC for financial assistance.

Fig. 1. Pattern of emergence of flies in control and in different concentrations of cadmium chloride in *D. melanogaster*.

mg/100 ml food medium is found to be the LC50 and Vijayan 1978).

20 and 30 mg/100 ml food media represent the concentrations of the above chemical used to feed the larvae of Oregon-K strain of the said test system. Normal food medium was used as a control. Twenty virgin females and 20 bachelor males from each concentration were isolated, aged for five days and used for making crosses. The egg laying was calculated continuously for 10 days for each of the batches and compared with that of the control. All the experiments were carried out at 24 ± 1°C.

Table 1. Fecundity of chemical-treated and control D. melanogaster flies.

<table>
<thead>
<tr>
<th>Concentrations</th>
<th>Total number of eggs</th>
<th>Number of eggs/female/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>6910</td>
<td>34.55</td>
</tr>
<tr>
<td>20 mg</td>
<td>3666</td>
<td>18.33*</td>
</tr>
<tr>
<td>30 mg</td>
<td>2648</td>
<td>13.24*</td>
</tr>
</tbody>
</table>

*P < 0.05, by analysis of variance

The results are presented in Table 1 and the daily pattern of egg laying is graphically represented in Fig. 1. In control the total eggs laid were 6910, whereas in 20 and 30 mg concentrations the totals were 3666 and 2648 eggs, respectively. This shows significant decline in fecundity in both the concentrations employed compared to the control.

The life span and the fecundity of Drosophila are extremely sensitive to a great variety of environmental conditions like temperature, light, crowding, presence or absence of the opposite sex, and so on. Gruwez et al. (1971) have reported that photoperiodicity rhythm considerably influences the rate of eclosion in melanogaster. In our experiment all the above conditions were stable; the decline in oviposition must have been brought about by the chemical only. The effect may be in the number of ovariole production or in the speed of growth of the successive stages of the egg chambers. So here the authors opine that the chemical might have interfered and affected the oviposition and hence a reduction in fecundity. Higher concentration induced more damage to fecundity than lower concentration (Table 1). The nature of genetic damage that
2,4-dichloro-1-naphthol could cause is being analyzed. The authors are grateful to Dr. M.R. Rajasekara Setty for his constant encouragement and valuable suggestions. Financial aid by the Dept. of Atomic Energy, Government of India, is greatly acknowledged.

Villa, T.G. and W.T. Starmer*. University of Salamanca, Salamanca, Spain, and *Syracuse University, Syracuse, New York.

Most Drosophila species feed on yeasts, which supply vitamins, sterols, proteins and other nutritional requirements of the larvae and adults. Since yeasts are known to have a complex cell wall composed of glucans, mannans, chitin, protein and lipids (Pfaff 1971), it was of interest to assay Drosophila larvae for activity of carbohdrases which could function in degrading the yeast cell wall.

The larvae of an axenic strain of D. mojavensis were collected, washed and homogenized in 0.05 M sodium succinate buffer (pH 5.5) for 10 minutes (10 ml volume). The homogenate was centrifuged at 10,000 g for 15 minutes; the pellet was re-extracted and centrifuged in the same manner. Both supernatants were combined and brought down to 5 ml by ultrafiltration on an amicon ultrafiltration cell using PM-10 membranes. This solution of "soluble" enzymes was assayed for activity on the following carbohydrate substrates obtained from the carbohydrate collection of the Dept. of Food Science and Technology, University of California, Davis: laminarin, pustulan, xylan, α-(1-3)-glucan, CM-chitin, CM-cellulose and starch. The unit of enzyme activity was defined as the amount of enzyme which catalyzed the release of 1 nmol of D-glucose or equivalent reducing power (Villa et al. 1975) per minute at 30°C from each of the substrates given above. Total protein in the sample (4 ml) was determined by the Lowry method to be 20 mg.

Table 1 lists the enzyme activities for the various carbohydrases found in the axenic larvae. It is apparent that α-amylase accounts for most of the activity (68%) while xylanase, α-(1-3)-glucanase and chitinase together account for 27% of the activity. The remaining activity (5%) is due to the enzymes β-(1-3)-glucanase, β-(1-6)-glucanase and cellulase. These preliminary results indicate that the cell-free extracts of axenic larvae possess the enzymatic potential to partially hydrolyze the cell wall of yeasts found in the natural diet of the fly (Starmer et al. 1976). It is noteworthy that several hydrolases, xylanase, α-(1-3)-glucanase and chitinase are present in the larvae but the total enzyme complement necessary for the complete degradation of the yeast cell envelope is not present, otherwise the activities of β-(1-3) and β-(1-6)-glucanases would be higher since it is well established that these enzymes are directly related to yeast cell wall hydrolysis (Pfaff 1977). This may indicate that the larvae only "weaken" the wall, rendering the cell more susceptible to extraction of the necessary nutritional factors for the development of the fly. It is known that the fecal pellet of adult Drosophila contains "ghost" cells and the yeast cell wall is left at least partially intact (Shehata et al. 1951). The

<table>
<thead>
<tr>
<th>Substrate 1</th>
<th>Enzyme activity units/ml</th>
<th>Associated enzyme activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laminarin</td>
<td>3.1</td>
<td>β-(1-3)-Glucanase (EC 3.2.1.6)</td>
</tr>
<tr>
<td>Pustulan</td>
<td>4.1</td>
<td>β-(1-6)-Glucanase (EC 3.2.1.75)</td>
</tr>
<tr>
<td>Xylan</td>
<td>22.5</td>
<td>β-(1-4)-Xylanase (EC 3.2.1.32)</td>
</tr>
<tr>
<td>-(1-3)-Glucan</td>
<td>18.5</td>
<td>α-(1-3)-Glucanase (EC 3.2.1.59)</td>
</tr>
<tr>
<td>CM-Chitin</td>
<td>10.3</td>
<td>β-(1-4)-Chitinase (EC 3.2.1.14)</td>
</tr>
<tr>
<td>CM-Cellulose</td>
<td>2.3</td>
<td>β-(1-4)-Cellulase (EC 3.2.1.4)</td>
</tr>
<tr>
<td>Starch</td>
<td>131.2</td>
<td>α-(1-4)-Glucanase (EC 3.2.1.3)</td>
</tr>
</tbody>
</table>

1 All substrates were prepared at a final concentration of 0.5% in 0.05 M sodium succinate buffer (pH 5.5)
2 CM-Chitin = Carboxy-methyl chitin
3 CM-Cellulose = Carboxy-methyl cellulose
reason for the lack of total cell wall hydrolysis is not clear but it might be due to a biologically improbable adaptation or a coevolutionary condition of the yeast and the Drosophila.

Wheeler, M.R. University of Texas, Austin, Texas. Are the new species described in DIS validly published?

A number of new species of Drosophila and related genera have been described in DIS, but their validity and recognition in scientific nomenclature has never been clear. To be valid, new names must be "published" in accordance with the International Code of Zoological Nomenclature, as adopted by the International Congress of Zoology and administered by the International Commission on Zoological Nomenclature (ICZN).

The question of whether DIS is a publication has been debated often—see for example DIS 30: 6a, 33:7, 34:164, 36:8. Earlier issues of DIS, up to No. 29 of 1955, carried the front cover statement "This is not a publication." Beginning with No. 30 (1956) the statement was dropped. The current statement, "Material presented here should not be used in publications without the consent of the author", does nothing to help determine whether new names are validly published or not.

The question, then, is not whether the editor(s) of DIS consider it to be a publication, but whether it is a publication in the sense of the Code. To (hopefully) settle this matter, I quote opinions from E.B. Basden of Scotland, who has been very active in Drosophila systematics, Curtis Sabrosky of the Systematic Entomology Laboratory, USDA, a well known Dipterist and long-time member of the ICZN, and Richard Melville, permanent Secretary of the ICZN, at the British Museum (N.H.), London.

They are unanimous in their opinions, with which I concur: New taxa described in DIS since 1955 should be considered as having been validly published. Here are a few of their comments:

Basden: "I have always thought that it [DIS] was a publication according to the Rules, p. 7, Art. 8, and I think that it should be accepted as such, in spite of Recommendation 8A [i.e., it is best not to use mimeographing, etc., for a publication—MRW]. It's a regular scientific periodical."

Sabrosky: "...now that I have seen [DIS] I am inclined to agree with Melville that it is indeed a publication... It seems obvious that the editors also realized that when they dropped the statement 'This is not a publication.' And unless DIS is copyrighted, they might as well drop the requirement about getting the author's consent. ...I have no doubt that some of the research notes are mere progress reports, which some journals would not accept. But some notes seem pretty complete in themselves, such as pp. 71-72 in DIS 50, where types and paratypes are specified. One very unfortunate aspect of all this is that taxonomic papers in DIS will probably not be picked up by Zoological Record or Biological Abstracts. And ordinary libraries—museums for example—will not have DIS on their shelves."

Melville: "It seems clear that the production satisfies all the mandatory requirements of Art. 8: (a) it is produced in ink on paper in numerous identical copies—No. 38 was issued in 1100 copies, which far exceeds the edition of many learned journals whose status as publications is not questioned merely because their editions are small; (b) some of the material in it is clearly published for the purpose of permanent, public record in the science; (c) it is obtainable by purchase; (d) it is not reproduced by a forbidden method."

The number of new names is, fortunately, fairly small. Only one appeared before 1956: Nolte and Stoch, DIS 24:90 (1950) described a new Drosophila from Africa; it has since been named D. yakuba (Burka 1954). Following is a list of the new taxa described in DIS since 1955. I consider them to have been validly published, and I am sending a statement to this effect to Zoological Record.

Chymomyza pararufithorax Vaidya and Godbole 1973. DIS 50:71-72
Drosophila chamundiensis Sajjan and Krishnamurthy 1972. DIS 48:56-57
Drosophila charmadensis Gwoda and Krishnamurthy 1972. DIS 48:38
Drosophila ezoana Takada and Okada 1957. DIS 31:164*
Drosophila mojavensis baja Mettler 1961. DIS 38:57-58
Drosophila neonasuta Sajjan and Krishnamurthy 1972. DIS 48:56-57*
Leucophenga neoangusta Godbole and Vaidya 1977. DIS 52:24
Stegana subexcavata Vaidya and Godbole 1977. DIS 52:55-56

*Starred species were later described again in another journal.

In my opinion, Drosophila taxonomists should not publish new species descriptions in DIS--at least until it is formally recognized as a "publication". Further, it is not wise to include new names in articles of a non-taxonomic nature. The Code provides that a new name may be valid if accompanied by a "description"; but a complete, thorough description is not required--the simplest descriptive remark may be enough to validate a new name (e.g., describing the chromosomes, some electrophoretic patterns, etc.). Drosophila workers have a rather poor reputation in systematic circles, having used new, unpublished names without regard to the International Code.

Regrettfully, the writer is an expert on this subject, having made more than a few of such errors!

Wijsman, E.M. University of Wisconsin, Madison, Wisconsin. The effect of ether on mating behavior in D. simulans y w.

Table 1. Number of vials which were either fertile or sterile when parents were exposed to different types of anesthesia.

<table>
<thead>
<tr>
<th>Anesthesia</th>
<th>Fertile</th>
<th>Sterile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ether</td>
<td>4</td>
<td>56</td>
</tr>
<tr>
<td>CO₂</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>None</td>
<td>21</td>
<td>4</td>
</tr>
</tbody>
</table>

In setting up some experiments which involved matings between virgin females and their brothers in D. simulans y w, I encountered considerable difficulty with sterility. I decided to test the possibility that the ether that I was using as an anesthetic was causing this sterility.

I established pair matings using virgin females and their brothers separated by ether, CO₂, or aspirator (no anesthesia), and placed the vials at 25°C. Two weeks later I scored the vials as fertile or sterile. As can be seen in Table 1, ether had a very strong effect on fertility. The hypothesis that anesthesia had no effect on fertility was tested using a l-tailed Fisher's exact test. Comparison of ether and no anesthesia gave p < 0.000001. CO₂ vs. no anesthesia gave p = 0.18, which is not significant.

To determine which of the two sexes was sterilized I repeated the experiment using only one sex which had been exposed to ether. When only the male had been anesthetized high sterility resulted. Anesthetized females mated to non-anesthetized males were fertile.

To determine the cause of sterility I dissected the testes to check for motile sperm and watched the males court females. Males were isolated for 3-4 days after collection with either ether or an aspirator and then placed in empty vials with 3 aged virgin females. Those which had been collected without ether showed normal courtship behavior; those which had been exposed to ether showed virtually no courtship behavior. Dissection of the testes showed motile sperm. Thus in this strain of D. simulans, ether seems to produce almost complete, permanent, behavioral sterility in the males.

Williams, J.M. University of California, Santa Cruz, California. Tumorigenesis in D. melanogaster bearing the temperature-sensitive mutation shibiretsl.

The imaginal discs of Drosophila are single-layered secretory epithelia (Bodenstein 1950; Poodry and Schneiderman 1970) which resemble the ascinar units of vertebrate exocrine glands. This feature has been exploited along with the convenience of in vivo culturing methods (Hadorn 1963) to characterize the initial morphological and ultrastructural changes occurring in the eye-antenna imaginal disc of D. melanogaster.

A temperature-sensitive mutation, shibiretsl (Poodry et al. 1973) in D. melanogaster
was used to generate information concerning the timing of initiation of tumorous growth and the pattern of cellular proliferation in the neoplasm. Neoplasia in Drosophila is well documented (Gateff 1977, 1978); however, none of the previously defined neoplasms of genetic or epigenetic origin have yielded satisfactory data concerning the initial stages of tumorigenesis. The fact that the eye-antenna disc of shitsl is temperature sensitive, transplantable, displays autonomous growth and loss of differentiation capacity has augmented its usefulness in documenting patterns of neoplastic change.

Shitsl eye-antenna discs were dissected from mature third instar larvae and implanted into the hemocoel of mated 3-4 day old Ore-R female hosts (Ursprung 1967). Host flies were incubated at 29°C (the mutant restrictive temperature) in shell vials containing standard medium. In some experiments these flies were cultured for two weeks. After this time the eye disc had tumorized and began to fill or filled completely the abdominal cavity. The tumorous growth was dissected from the abdomens in buffered ringer solution, fragmented with tungsten needles and reimplanted for second generation growth (one generation = two weeks). Wild-type eye discs do not tumorize or behave similar to shitsl when treated in an identical fashion.

Other eye-antenna discs from shitsl third instar larvae were incubated in vivo for periods ranging from 16 to 22 days. These implants were cultured at 29°C for period between 2 and 10 days and then maintained at 22°C for the remainder of the incubation period. After dissection from the abdomens these implants were measured with a stage micrometer and examined for gross morphological features. Data summarized in Table 1 show that tumorigenesis is initiated within a 48 hour period in these tissues and that continued heat stimulation is not required to maintain tumorous growth. These data indicate that tumorigenesis in this tissue is irreversible. Furthermore, it is noted that the tumors grew to about the same size irrespective of the time cultured at 29°C. This indicates that a maximum pattern of proliferation was established concomitant to the initiation of tumorigenesis. Thus, the neoplasms behave autonomously. This expression is initiated via temperature sensitivity to yield information concerning regulation of gene expression in normal vs. tumorous tissue.

Table 1.

<table>
<thead>
<tr>
<th>Group I</th>
<th>Group II</th>
<th>Group III</th>
<th>Group IV</th>
<th>Group V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days at 29°C</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Days at 22°C</td>
<td>14</td>
<td>10</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Total days in culture</td>
<td>22</td>
<td>20</td>
<td>18</td>
<td>17</td>
</tr>
<tr>
<td>Size* in mm² x 10⁻³</td>
<td>1.2</td>
<td>1.08</td>
<td>1.138</td>
<td>1.21</td>
</tr>
</tbody>
</table>

*Size of control disc is ~0.85 mm² x 10⁻³.

Implants ranging from 6 hours to 4 weeks were used in histological and ultrastructural studies. The study of 1 μm sections and thin section electron micrographs reveal that structural changes occur in the disc epithelium within the first 6 hours of in vivo culture. Regions of the epithelium bulge in what appears to be a solid mass of cells. The arrangement of the monolayer becomes contorted resulting in irregular folds and projections. Some cells lose contact with the basement membrane in areas and aggregate in groups. The predominant columnar appearance of the epithelial cells seen in wild-type discs is not visualized in temperature-sensitive disc epithelia cultured for 6 hours. Instead they become more cuboidal and irregular in shape and show modification to the apical border. The microvilli become shortened and irregular with disorderly microtubular arrangement. Cell-to-cell contacts are interrupted by intercellular spaces and membrane-bound undersides appear intracellularly. The cytoplasm contains numerous ribosomes; many rough ER are present and possibly more mitochondria are present in these cells than in the controls.

Many of the initial morphological aberrations are detectable in implants cultured for longer periods and other abnormalities result as well. The basal lamina of these tumors often form pockets filled with amorphous material, vesiculate particles and dead cell debris. It is often thrown into irregular projections extending beyond the basal surface of the epithelial cells. Multiple cell layers are seen and membranes of juxtaposed cell layers often appear fused. Cells with piconotic nuclei increase in number with continued in vivo cultures as well as cells containing virus-like particles.
a. The cross section of third larval instar eye disc appears as a pseudostratified single layered epithelium with distinct microvillar and basal surfaces. PM, peripodal membrane; PC, peripodal cavity; dv, dividing cell; L, lumen; MC, macrophage-like cells. (1300X)

b. A section of eye-antenna disc tumors cultured for 6 hrs at 29°C. A mass of epithelial cells infiltrated with dead cells (dc) protrudes into the lumen of the disc. (1000X)

c. Epithelium with virus-like particles (vlp) present. Intercellular spaces and a cell elaborating microvilli on two opposite sites is seen. (10,000X)

d. The epithelium (ep) which makes up the cortex varies in thickness but seems to be single-layered. Aggregations of cells and cells organized in monolayers around a central lumen (arrows) are found in the medulla (M). (200X)

e. An aggregate of cells reminiscent of the ommatidial precursor clusters. No apical/basal distinction is apparent. (5000X)

f. The basement membrane (bm) is not in contact with the basal surface of the epithelial cells. A massive amount of mitochondria (arrows) and amorphous debris is present between them. Atypical cell morphology and large intercellular spaces (int) are evident. (3300X)
After one generation in vivo the monolayer of epithelial cells becomes rearranged. It appears sponge-like due to intercellular spaces; it also lacks cellular continuity in areas. The basal lamina is often the only structure maintaining the sac-like appearance. In these tumors the outer portion of termed the "cortex" and is comprised of a remnant population of epithelial cells. These cells surround a "medulla" region which is composed of cells arranged in sperical configurations. The cell number in these spheroids vary but are reminiscent of the omnitidial precursor cluster found in the developing eye disc of the wild-type (Waddington and Perry 1960). Thus, it is possible that tumorigenesis did not affect the determined state of this cell population, but did interfere with the differentiation process. A considerable amount of cell debris and amorphous material is found in the medulla.

Autoradiographic studies of tumors incubated with 3H-thymidine for 48 hours showed differential incorporation in areas of the tumor were masses of cells bulge in the epithelium. This indicates that proliferation continues in the epithelium (cortex region) as opposed to the medulla. These features are important in determining basic kinds of cellular interactions which occur in other tumors arising from secretory epithelia and are indicative of a certain pattern of neoplastic change.

This work was supported by NIH grants GM 20401 and RR08132.

In determining the lethal effect of calcium cyclamate on development, v w f females of the same age were mated individually with three males into five different series according to the concentrations of calcium cyclamate solution in the food media. It is assumed that, on the average, one female would lay the same number of eggs during the same period of time. It was found that in the treated series, the survival rates were decreasing with increasing concentrations of calcium cyclamate solution in the media, or in other words, the higher the concentration of calcium cyclamate in the medium causes the higher rate of lethality (Table 1). It clearly suggests that calcium cyclamate causes lethal effect on the early development of D. melanogaster.

Table 1. Average number of progeny, survival rate and lethality rate from a single female Drosophila in media with different concentrations of calcium cyclamate.

<table>
<thead>
<tr>
<th>Cyclamate media</th>
<th>Control</th>
<th>0.625%</th>
<th>1.25%</th>
<th>2.5%</th>
<th>5%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>46.3 ± 9.8</td>
<td>27.2 ± 4.3</td>
<td>27 ± 2.5</td>
<td>10.2 ± 11</td>
<td>0</td>
</tr>
<tr>
<td>Female</td>
<td>56.7 ± 4.3</td>
<td>37.2 ± 2.7</td>
<td>35.6 ± 13.2</td>
<td>15.8 ± 9.8</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>103 ± 14.1</td>
<td>64.4 ± 3.8</td>
<td>62.6 ± 13.0</td>
<td>28.6 ± 18.4</td>
<td>0</td>
</tr>
<tr>
<td>Survival rate</td>
<td>1.00</td>
<td>0.63</td>
<td>0.61</td>
<td>0.28</td>
<td>0</td>
</tr>
<tr>
<td>Lethality</td>
<td>0</td>
<td>0.37</td>
<td>0.39</td>
<td>0.72</td>
<td>1</td>
</tr>
</tbody>
</table>

white eyes; f= forked bristles; B²= Bar eyes of Stone, which is a marker on the long arm of the Y chromosome; y⁺= normal allele of yellow, which is attached to the tip of the short arm of the Y chromosome) were used in this study. Day-old males were collected and transferred to a treatment chamber in which medium mixed with 1.25% calcium cyclamate for about 2 days. Then, the treated males were mated individually with three virgin females of the composition ywf/B².Y.y⁺ (y⁺= yellow body; w= white eyes; f= forked bristles; B²= Bar eyes of Stone) with the appended y⁺ marker attached proximally and is recoverable as a phenotypically white, forked female (ywf. To estimate the chromosomal damage induced by calcium cyclamate, a doubly marked Y chromosome was used in the experiment. Males of the composition ywf/B².Y.y⁺ (y⁺= yellow body; w= white eyes; f= forked bristles; B²= Bar eyes of Stone) with the appended y⁺ marker attached proximally and is recoverable as a phenotypically white, forked female (ywf.
The reciprocal product is a centric fragment carrying the Bs marker, recovered as Bar, yellow, white, forked male (ywfrFR Y·Bs). An exchange between X and Ys (the short arm of the Y chromosome) proximal to the y+ marker generates an X chromosome with yL and the appended Bs marker attached proximally and is recoverable as a phenotypically Bar, white, forked female (ywfrBs·ywfrFR Y·yL). These exceptional males may also arise from the deletion of one of the two markers. From the recovery of both X and Y chromosomes following nondisjunction phenotypically Bar, white, forked females (ywfr/ywfr/BS.Y·yL) are obtained. The reciprocal product is recovered as a white, forked male (ywfr/FR Y·yL). Such a male may also arise from loss of both markers.

Table 2. Progeny from crosses of ywfr females, mated with ywfr/Bs·Y·y+ males. Treated (T) or not treated (C) with 1.25% calcium cyclamate medium (frequency x 10^-4).

<table>
<thead>
<tr>
<th>Series</th>
<th>Female</th>
<th>Male</th>
<th>Female</th>
<th>Male</th>
<th>Female</th>
<th>Male</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>10907</td>
<td>9022</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1±1)</td>
<td></td>
<td>(3.5±1.8)</td>
<td>(6.6±2.7)</td>
</tr>
<tr>
<td>T</td>
<td>39449</td>
<td>32172</td>
<td>1</td>
<td>6*</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(.25±.25)</td>
<td>(10±5.5)</td>
<td>(2.3±76)</td>
<td>(1.6±.7)</td>
</tr>
</tbody>
</table>

*In one vial there were 7 exceptional males; the event probably occurred in the spermatogonia stage. It was scored as a single event.

calcium cyclamate to the disjunction of X and Y chromosomes.

In line with the findings in the first experiment, these data suggest that the calcium cyclamate not only inhibits the early developmental stages to cause lethality, but also causes chromosomal breakage during spermatogenesis of D. melanogaster.

Among the different effects that disruptive selection can produce on a population, the increase in the phenotypic variability and consequently, the divergence between the extreme phenotypes is generally accepted. See Thoday (1972) for a review. However, there is not agreement about other effects that disruptive selection can produce, as well as the effectiveness of different mating systems used.

In order to check the effect that the different mating systems can produce on the divergence of extreme phenotypes we have carried out a disruptive selection experiment using two mating systems: quasi-random and mating-choice.

With the quasi-random mating the gene flow in any generation depends only on the probability that the "hybrid" individuals will be included in the selected sample. With mating-choice is also depends on the probability that "hybrid" matings will occur, and on their success relative to the "non-hybrid", that is, assortive matings that occur.

The experiment has been carried out during 15 generations and the trait selected has been the interocellar bristles in D. melanogaster. All the experiments were done at 25±1 °C with a selection intensity of 20%.

For each kind of mating two lines were set up. Figs. 1 and 2 show the divergence between extreme phenotypes in the two mating systems. From these figures we can conclude that while mating-choice mating does not produce divergence (neither MCh1 nor MCh2), in one line of quasi-random (QR1) there is a clear divergence (2.04% of overlap at 15 generations) although in the other the divergence is practically null.

These results seem to show that quasi-random mating is more effective; but something striking in these results is the resistance to divergence of this population, which con-
The number of bristles on abdominal sternites has been used as a model character in many experimental quantitative genetic studies. However, the functional role of the bristles and adaptive significance of the variation in number are not well understood, although this character was described as being peripheral to reproductive fitness (Robertson 1955), and of ancient phylogenetic origin (Robertson and Reeve 1952). Mather (1941) observed enormous variation in abdominal bristle number, particularly in the ratio of numbers in the two sexes, among 4 species of Drosophila, and suggested the action of selection for this character in the process of speciation.
With this background in mind, bristle numbers on the 4th abdominal sternite were scored in small samples (20-40 pairs) of 13 Drosophila species. These flies (except for D. repleta) were caught using banana baits in Sydney suburbs and cactus-infested areas of N.S.W., mostly in 1972-73. Wild-caught flies were bred on a dead yeast fortified medium, first under crowded conditions and then under "optimal" conditions, except for D. brunneipennis, which could not be cultured easily in the laboratory; wild-caught flies only were scored for the latter. The crowded culture conditions reduced bristle number in some species, but hardly influenced the sex dimorphism (SD) ratio, viz. male score to female score ratio. Hence, SD ratios are perhaps comparable under quite diverse conditions.

Mean bristle numbers under "optimal" conditions and SD ratios averaged over the two culture conditions are presented in Table 1. To indicate the extent of variation among different populations within a species, the mean and standard deviation of averages for 8 strains of D. melanogaster from literature (Reeve and Robertson 1954; Clayton et al. 1957; Sheldon 1963; Sheridan et al. 1968) and our observations were calculated as follows:

<table>
<thead>
<tr>
<th>Subgenus</th>
<th>Group</th>
<th>Species</th>
<th>Male</th>
<th>Female</th>
<th>SD Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sophophora</td>
<td>melanogaster</td>
<td>simulans</td>
<td>15.2 ± 0.4</td>
<td>19.5 ± 0.5</td>
<td>.770 ± 0.020</td>
</tr>
<tr>
<td></td>
<td>melanogaster</td>
<td></td>
<td>15.4 ± 0.3</td>
<td>19.6 ± 0.5</td>
<td>.782 ± 0.022</td>
</tr>
<tr>
<td></td>
<td>ananassae</td>
<td></td>
<td>20.6 ± 0.3</td>
<td>23.1 ± 0.4</td>
<td>.910 ± 0.017</td>
</tr>
<tr>
<td></td>
<td>serrata</td>
<td></td>
<td>16.7 ± 0.3</td>
<td>17.9 ± 0.3</td>
<td>.926 ± 0.020</td>
</tr>
<tr>
<td></td>
<td>obscura</td>
<td></td>
<td>15.4 ± 0.3</td>
<td>16.6 ± 0.3</td>
<td>.925 ± 0.024</td>
</tr>
<tr>
<td>Scaptodrosophila</td>
<td>latrivittata</td>
<td></td>
<td>22.4 ± 0.5</td>
<td>24.5 ± 0.5</td>
<td>.916 ± 0.029</td>
</tr>
<tr>
<td>Drosophila</td>
<td>immigrans</td>
<td></td>
<td>26.9 ± 0.7</td>
<td>29.1 ± 0.5</td>
<td>.924 ± 0.029</td>
</tr>
<tr>
<td></td>
<td>funebris</td>
<td></td>
<td>39.2 ± 0.9</td>
<td>31.8 ± 0.7</td>
<td>1.235 ± 0.026</td>
</tr>
<tr>
<td></td>
<td>repleta</td>
<td></td>
<td>45.4 ± 0.5</td>
<td>36.3 ± 0.6</td>
<td>1.251 ± 0.024</td>
</tr>
<tr>
<td></td>
<td>hydei</td>
<td></td>
<td>56.8 ± 0.8</td>
<td>42.1 ± 0.4</td>
<td>1.351 ± 0.023</td>
</tr>
<tr>
<td></td>
<td>repleta**</td>
<td></td>
<td>28.7 ± 0.5</td>
<td>26.0 ± 0.5</td>
<td>1.106 ± 0.028</td>
</tr>
<tr>
<td></td>
<td>aldrichi</td>
<td></td>
<td>42.5 ± 0.5</td>
<td>29.0 ± 0.3</td>
<td>1.466 ± 0.023</td>
</tr>
<tr>
<td></td>
<td>buzzatii</td>
<td></td>
<td>59.9 ± 0.8</td>
<td>34.9 ± 0.4</td>
<td>1.716 ± 0.032</td>
</tr>
<tr>
<td></td>
<td>virilis*</td>
<td></td>
<td>25.3 ± 0.6</td>
<td>17.0 ± 0.3</td>
<td>1.487 ± 0.033</td>
</tr>
</tbody>
</table>

*From Mather (1941)
**A laboratory stock from Texas, USA

The large variation in SD ratio among species (0.77-1.72), considering the extent of changes produced by artificial selection (Frankham 1968) and of within-species variation, might not have been possible without selective forces being involved. This, together with the general similarity among species within subgenera, suggests that abdominal bristle number was perhaps an adaptively important character in the phylogenetic history as previously conjectured.

This work was supported by a University of Sydney Studentship to BHY.
Knowledge of the microbial ecology of the necrotic tissues of columnar cacti, the breeding substrates of cactophilic Drosophila of the Sonoran Desert, is very important in elucidating the ecological niche of these Drosophila. The saprophytic yeast flora is probably important as a concentrated protein source and attractant for Drosophila (Starmer et al. 1976). However, very little is known about the bacterial flora; Erwinia carnegieana is believed to be the causal agent of the necrosis (Lieghtle et al. 1942), and at least eight genera of bacteria can be found in Pachycereus pringlei, cardon cactus, and Carnegiea gigantea, saguaro cactus (Graf 1965).

Gas chromatography studies have shown that several alcohols are present in necrotic cacti (Heed 1978). Anaerobic bacteria probably play an important role in alcohol production because the only two saprophytic yeasts which ferment, Torulopsis sonorensis and Candida tenuis, produce only ethanol and are not found in all necrotic samples containing alcohol. Knowledge of alcohol variability as a function of the microflora is necessary for an understanding of the variability at the ADH locus in D. mojavensis (Heed 1978). Here we report the results of a preliminary analysis of the distribution and alcohol production of the facultatively anaerobic bacteria inhabiting the soft rots of three species of giant cacti.

Samples of necrotic tissue of one Carnegiea gigantea (saguaro cactus), two Lamaireocereus thurberi (organ pipe cactus), and two Machaerocereus gummosus (agria cactus) were appropriately diluted and plated on the following three media: (1) 0.3% yeast extract, 0.3% Bacto peptone, 1.5% Bacto agar; (2) tryptic soy agar; (3) nutrient agar (all components and media were from Difco). One set of plates was incubated microaerophilically with CO₂ and another set aerobically at 24°C and 30°C for the initial isolation. Standard microbiological techniques were used for maintenance of the isolates. Identification was made with the aid of the API 20E System (Analtab Products), a miniaturized version of conventional procedures for bacteria identification, and other tests as indicated in Bergey's Manual (Buchanan and Gibson 1974). Although the API 20E System is designed for the identification of clinical isolates in the family Enterobacteriaceae, it can be very useful as a quick screening method in other studies where small, Gram-negative, facultatively anaerobic rods are present. The GasPak anaerobic system (BBL) was used to test for anaerobic growth. Gas chromatography

Table 1. The concentration of each bacteria species in the substrates and the amount of ethanol produced by each species in pure culture.

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>No. of isolates</th>
<th>Colony forming units/cc of sample*</th>
<th>EtOH Production No. tested</th>
<th>% EtOH**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus laterosporus</td>
<td>3</td>
<td>10⁵ (77-30) 10⁷ (77-31) 10⁷ (77-32) 10⁸ (77-33)</td>
<td>2 (77-30)</td>
<td>0-3 (77-33)</td>
</tr>
<tr>
<td>Citrobacter sp. A</td>
<td>2</td>
<td>10⁷ (77-31) 10⁷ (77-32) 10⁸ (77-33)</td>
<td>2 (77-31)</td>
<td>31-34 (77-33)</td>
</tr>
<tr>
<td>Citrobacter sp. B</td>
<td>5</td>
<td>10⁶ (77-31) 10⁶ (77-32) 10⁷ (77-33)</td>
<td>1 (77-31)</td>
<td>5 (77-33)</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>1</td>
<td>10⁶ (77-31) 10⁷ (77-32) 10⁸ (77-33)</td>
<td>1 (77-31)</td>
<td>29 (77-33)</td>
</tr>
<tr>
<td>Enterobacter agglomerans</td>
<td>1</td>
<td>10⁸ (77-31) 10⁹ (77-32) 10⁹ (77-33)</td>
<td>0 (77-31)</td>
<td>94 (77-33)</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>1</td>
<td><10² (77-31) 10³ (77-32) 10⁴ (77-33)</td>
<td>1 (77-31)</td>
<td>45-91 (77-33)</td>
</tr>
<tr>
<td>Erwinia carnegieana</td>
<td>2</td>
<td>10⁷ (77-31) 10⁷ (77-32) 10⁸ (77-33)</td>
<td>0 (77-31)</td>
<td>31-40 (77-33)</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>3</td>
<td>10⁷ (77-31) 10⁷ (77-32) 10⁷ (77-33)</td>
<td>2 (77-31)</td>
<td>9 (77-33)</td>
</tr>
<tr>
<td>Klebsiella ozaeae</td>
<td>2</td>
<td>10³ (77-31) 10⁴ (77-32) 10⁴ (77-33)</td>
<td>6 (77-31)</td>
<td>45-91 (77-33)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae</td>
<td>13</td>
<td>10⁷ (77-31) 10⁷ (77-32) 10⁷ (77-33)</td>
<td>2 (77-31)</td>
<td>2-3 (77-33)</td>
</tr>
<tr>
<td>Leuconostoc sp.</td>
<td>2</td>
<td>10⁷ (77-31) 10⁷ (77-32) 10⁷ (77-33)</td>
<td>4 (77-31)</td>
<td>0 (77-33)</td>
</tr>
<tr>
<td>Staphylococcus sp.</td>
<td>6</td>
<td>10⁰ (77-31) 10⁴ (77-32) 10⁴ (77-33)</td>
<td>4 (77-31)</td>
<td>2-3 (77-33)</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>1</td>
<td>10⁴ (77-31) 10⁴ (77-32) 10⁴ (77-33)</td>
<td>0 (77-31)</td>
<td>0 (77-33)</td>
</tr>
<tr>
<td>Unknown A</td>
<td>2</td>
<td>10⁴ (77-31) 10⁴ (77-32) 10⁴ (77-33)</td>
<td>0 (77-31)</td>
<td>0 (77-33)</td>
</tr>
<tr>
<td>Unknown B</td>
<td>1</td>
<td>10⁷ (77-31) 10⁷ (77-32) 10⁷ (77-33)</td>
<td>0 (77-31)</td>
<td>0 (77-33)</td>
</tr>
<tr>
<td>Unknown C</td>
<td>1</td>
<td>10⁸ (77-31) 10⁸ (77-32) 10⁸ (77-33)</td>
<td>0 (77-31)</td>
<td>0 (77-33)</td>
</tr>
</tbody>
</table>

*One saguaro sample, 77-30 (Arizona no.), and two organ pipe samples, 77-31 and 77-32, collected at Sil Nagya, Arizona in September 1977; and two agría samples, 77-33 and 77-34, collected at Punta Arenas in Sonora, Mexico in November 1977.

**Expressed as % ethanol (v/v) x 10³, minimum value-maximum value.
(1/8 inch x 5 foot stainless steel column packed with Poropac Q at 140°C and 170°C oven temperatures) was used to determine if methanol, ethanol, acetone, 2-propanol, and 1-propanol were produced both in the rot pockets and by the isolates (grown in 0.5% glucose fermentation broth for 3–4 days).

Forty-six isolates representing 9 genera, 13 species, and 3 unknowns were obtained from the 5 samples of necrotic cactus (Table 1). The majority are in the family Enterobacteriaceae and are true phytopathogens. Yersinia enterocolitica, Escherichia coli, and Klebsiella ozaenae are not true phytopathogens. Klebsiella pneumoniae, previously associated only with inflammations of the respiratory tract, has recently been found in the heartwood and sapwood of living redwood trees (Bagley et al. 1978). Enterobacter aerogenes, E. cloacae, and Erwinia carnea are the only species from our study that were isolated from saguaro and cardon by Graf (1965).

Of the volatiles tested, only ethanol was produced in detectable quantities by the bacterial isolates. This corroborates White and Starr (1971) who found that 65 of 71 strains of Enterobacteriaceae produced ethanol. The cacti contained not only ethanol but also the other four volatiles as well.

Three conclusions can be made. First, the diversity of genera is high when compared with the yeasts which are represented by only four genera (Starmer et al. 1976) in the cactus substrates. Given the small sample size of five reported here, this is a minimum estimate of the diversity. Secondly, there is less similarity within than among substrates, i.e., the two agria samples have no species in common but share three species with saguaro and organ pipe, and the two organ pipe samples have only one species in common and share five species with saguaro and agria. Thirdly, the facultative anaerobes contribute only to the ethanol content. Alcohols are also produced by bacteria (i.e., obligate anaerobes) not isolated in this study (unpublished data). This investigation is a first approximation of the facultative anaerobes and suggests a much higher diversity of these bacteria than yeasts.

For localizing cytologically the "cn" locus we have used the deficiencies induced by a wild lethal chromosome II (Symbol 23.5). The previously mentioned chromosome was isolated from a female captured in 1978 from the same natural population of Southern Greece (Peloponnesse–Patras) where the male recombination factor 31.1 MRF was found by Yannopoulos and Pelecanos (1977). Wherever heterozygous F_1 23.5/dp b cn bw sons of the cross $%\%$ dp b cn bw; ve x 23.5/CyL4 $%\%$ were individually mated with dp b cn bw; ve virgin females, high frequencies of cn individuals were observed, sometimes reaching up to 2.50%. Moreover, the 23.5 chromosome was found to induce sterility, male recombination, etc. (Stamatis, in preparation). Ten cn individuals derived from different F_1 23.5/dp b cn bw males were separately mated with dp b cn bw; ve virgin females. Salivary chromosomes from third instar larvae were then examined for deficiencies. Eight out of the ten males tested have shown detectable deficiencies in the 2R chromosome, namely: (1) Df(2R)43C;44C, (2) Df(2R)42E;43F, (3) Df(2R)43D;44A, (4) Df(2R)43B;44D, (5) Df(2R)43C;44C, (6) Df(2R)42E;44A, (7) Df(2R)43D;43E, (8) Df(2R)43E. The breakpoints were recognized on the basis of photograpic maps of Lefevre (1976).

An approximate estimation of the distribution of the breakpoints on the chromosome is presented in Fig. 1. The figure shows that all eight deficiencies include the region 43E3–E14. This finding strongly suggests that the "cn" locus is located in this region.

Zouros, E. Dalhousie University, Halifax, Nova Scotia, Canada. An autosome-Y chromosome combination that causes sterility in D. mojavensis x D. arizonensis hybrids. The sibling species D. arizonensis and D. mojavensis can be crossed and produce hybrids which, with the exception of males from the cross δ arizonensis \times mojavensis, are fertile. The two species show partial ethological isolation. To study the chromosomal basis of this isolation I established two stocks of arizonensis and two stocks of mojavensis each of which was homozygous for an electrophoretic marker at each of the four autosomes (no marker was available for the fifth dot-like autosome). The arizonensis markers had different electrophoretic mobilities than the mojavensis markers. The loci-markers are: ODH, ADH, PGM, and Amy. These four loci reside each at a different autosome. Using inversions as markers it was found that ODH is on chromosome II (chromosome designation of Wasserman 1962), and ADH is on chromosome III. PGM is either on chromosome IV, in which case Amy is on V, or on V, in which case Amy is on IV. The fact that the two species bear no cytological differences at these two chromosomes makes it impossible to distinguish between the two possibilities.

Table 1. Combinations of autosomes that show no sperm motility of Ya/Xm flies.

<table>
<thead>
<tr>
<th>Chromosome combination</th>
<th>Sperm motile</th>
<th>Sperm immotile</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIm/m</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>IIm/m</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>IIm/m</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>IIm/m</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>IIm/m</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>IIm/m</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

F_1 males from the cross δ mojavensis \times arizonensis were backcrossed to females mojavensis and the sperm motility of the resulting males was examined. It was found that half the males had immotile sperm and that this phenomenon has a single chromosomal basis. In Table 1 the chromosomal constitution of 24 males is shown together with the information about sperm motility. These males were not scored for Amy, so information about one autosome is missing. With regard to sex chromosomes all males were Ya/Xm (a = arizonensis origin, m = mojavensis origin). It is seen that PGMa/m males have motile sperm, whereas PGMm/m males have immotile sperm. Subsequent crosses have shown that this phenomenon is strain-independent. To establish that presence or absence of sperm motility in Ya/Xm males depends solely on the PGM-marked autosome, I derived a line through repeated backcrosses to mojavensis females in which all autosomes were m/m, except the PGM-marked autosomes for which males were either m/a or m/a. Of these, those of the first type had immotile sperm, those of the second type had motile sperm.

The observation is of some interest because it points to an interaction between an autosome and the Y chromosome: when the Y is of arizonensis origin then at least one PGM-autosome of arizonensis origin is required for sperm motility. It may be coincidental that the autoso-
some involved is the same one that in other species of Drosophila (e.g. pseudoobscura) has fused with the X arm to produce a metacentric X chromosome. If the same phenomenon were observed in pseudoobscura it would appear as an X/Y interaction.

Males of immotile sperm are capable of mating and transmitting sperm into female receptacles as the following experiment showed. Single pairs consisting of a mojavensis female and a Ya/Xm male were kept for 24 hours and the females were examined for presence of sperm. Out of 87 such pairs 40 showed sperm. Of these in 32 cases the male was PGMa/m, and in 8 cases it was PGMm/m; the latter are males with immotile sperm. Of the 47 females that showed no sperm 12 had been kept with PGMa/m males, and 35 with PGMm/m males. If presence or absence of sperm corresponds to copulation or no copulation, then these data suggest that PGMm/m males are only 30% as successful in mating as are PGMm/a. Females involved in such matings lay unfertilized eggs.

Drosophila Ramblings

It started with Mendel¹
 a horny old monk
 his un-natural relationships with pea-pods.
New mendels tap away on calculators
 learn about floppy disks²
 and hurry over to hear about meaningful relationships.
New mendels like to believe in choices
 thus oocytes appear to be non-binding.
 They watch the Drosophila
 hoping to see something good enough
 for an article
 and maybe a better college town
 like San Francisco, or Boston³.
We are watching the Drosophila Studios.
 We grade them by weight, color, sex, etc.
 We pick only the strongest and most fit
 for the very best paying Drosophila slots⁴.
We consider sex linked middle factors⁵,
 interrupted mitosis, anaphase mypths,
 metaphase farce, etc.
All these inputs are calculated and weighed
 until we determine which Drosophila Researcher
 is the most fit.
Those with the brownest noses have been
 traditionally chosen,
 Although ability to plagiarize has become
 a significant middle factor.
This could be a trend in Drosophilan Behavioral evolution.
 A recent journal article predicted that the next
 PRESIDENT will be a retired Drosophila freak,
 not from Georgia, but from Salsalito⁶.

Footnotes

1. Life With Mendel, Miss Sing Link, Jean Press, 1902, pp. 6.
2. IBID, pp. 964.
3. OPSTI, pp. 1148, V. 2.
4. BUF (Big Upfront Swingers), February 1979, pp. 40D.
5. Sex Linked Middle Factor Quarterly, Spring 1888, pp. 6.

-- W. Prop
To measure the oviposition rhythm in Drosophila, several devices have already been constructed. In these apparatuses the medium on which the flies lay their eggs is moved at a constant speed so that placement of the eggs corresponds to time of deposition. This was achieved either by sliding the medium under the flies (David and Fouillet 1973) or by shifting the cage with the flies over the medium (Jungen and Locher 1970). In both kinds of apparatuses, the food-bearing plates must be changed every day and this change acts as an external synchronizer. Free-running experiments, in which conditions must be kept absolutely constant, are thus impossible with these devices.

The apparatus which is described here allows free-running experiments since no handling of the flies is needed. The principle idea is to collect the eggs on small plates which are periodically changed automatically. Every hour a cup containing fresh medium is taken from a distributor, given to the flies for one hour and then put into storage in which the order corresponds to oviposition time.

Description: (Fig. 1) The cage containing the flies (200 cm3) is made of plastic (methylmethacrylate) which a circular hole through the floor (diameter 2 cm) adapted to the size of the cups containing the medium. The cups (C) are plastic, cylindrical plates (diameter 2 cm, height 0.5 cm, depth 0.4 cm). The surface of medium is 2 cm2. The transferring-disc (TD) is of duraluminium and is pierced by two holes (diameter 2 cm) in order to transfer the cups. Its thickness is the same as the height of the cups (0.5 cm). The tube-holder (TH) bears six store-tubes consisting of three distributors (D) and three alternated recuperators (R). Each tube can contain 35 stacked cups, this disposition preventing the dessication of the medium.

Functioning: Every hour an electric pulse given by the clock causes the change of the laying plate. This change is obtained by successive linked movements which occur in the following order:

1. A distributor-tube (D) being above the transferring-disc (TD), a downward movement of the lift (L) causes the lower cup to enter a hole of the transferring disc.

2. The transferring disc turns (180°) until the fresh plate reaches the hole at the bottom of the cage. Simultaneously the plate used by the flies during the previous hour is transferred by the same movement under the tube holder (TH).

3. The tube-holder turns 60° so that a recuperator-tube (R) comes above the lift.

4. The lift which was in the lower position is moved upward and pulls up the plate into the recuperator tube. The lift then stays in the upper position.
5. The tube-holder turns and stops when the next distributor tube is just above the lift (60°). The apparatus has then returned to starting position.

The onset of each movement is electrically dependent on the completion of the former one, making the apparatus more reliable. When the cup is transferred from the cage to the recuperator tube, glycerol (50%) is poured over the medium in order to avoid its dessication and to prevent embryo development. The autonomy of the apparatus is 4 days (about 100 cups) but longer experiments can be carried out since the tube-holder can be changed without disturbing the flies, even in darkness.

Results: Fig. 2 shows two examples of oviposition rhythms in D. melanogaster studied during 7 days in free-running conditions. In both cases the flies lived under a LD 12:12 photoperiod and then were transferred under constant darkness or constant light. Under LD 12:12 a peak of egg deposition occurs after the light-off (Allemand 1976a). Upon suppressing the light cycle, the oviposition pattern is modified: there are no more large peaks but only small peaks. A statistical analysis showed that in both cases a free-running rhythm remained with a period of about 25 hours (see autocorrelation functions, Fig. 2), a weak amplitude and a maximum during the virtual photophases. This oviposition rhythm in free-running conditions seems to correspond to endogenous ovarian rhythm of vitellogenesis (Allemand 1976b).

Two behavioral traits, wing waving and aggression, seem to pose obstacles to the maintenance of Chymomyza amoena in the laboratory in the manner traditional for Drosophila. Therefore, pint-sized canning jars have been employed, tipped sideways, and capped with kleenex secured by a rubber band. These are referred to as "minicages". Kerr canning jars work best since three of the four sides are clear glass. Each pint-sized jar will hold two media-filled stendor dishes (5 cm wide by 2.5 cm deep) or two or more apple quarters, which are inserted and removed with toothed forceps. Territorial defense in this species is very strong. A watercolor brush is useful for sweeping away the flies from the dishes or from the apple pieces. This method is useful for maintaining stocks, for collecting eggs, larvae or pupae and for doing feeding choice experiments.

Before media-filled stendor dishes are added, a freshly cut apple piece (skin still attached) is inserted into the media. Newly emerging flies have a prefertile period lasting about a week, so the initial dish(es) is (are) discarded, after which oviposition may be allowed to continue for another week in cages of 20-25 adults, then dishes removed, inserted into a clean jar to which is also added a piece of moist paper towel or kleenex. Desiccation is a problem but the paper also provides a pupation surface for those larvae that leave the medium to pupate. If undisturbed, most larvae pupate on the media surface or in the apple piece. Developmental time varies since egg hatchability, duration of the larval and pupal phases all vary. Minimum egg-eclosion time on the applesauce/protein/cream-of-wheat media devised for Michigan C. amoena seems to be 20 days.

Before media-filled stendor dishes are added, a freshly cut apple piece (skin still attached) is inserted into the media. Newly emerging flies have a prefertile period lasting about a week, so the initial dish(es) is (are) discarded, after which oviposition may be allowed to continue for another week in cages of 20-25 adults, then dishes removed, inserted into a clean jar to which is also added a piece of moist paper towel or kleenex. Desiccation is a problem but the paper also provides a pupation surface for those larvae that leave the medium to pupate. If undisturbed, most larvae pupate on the media surface or in the apple piece. Developmental time varies since egg hatchability, duration of the larval and pupal phases all vary. Minimum egg-eclosion time on the applesauce/protein/cream-of-wheat media devised for Michigan C. amoena seems to be 20 days.

The media has a tendency to mold. This may be cut away from the remaining surface or else larvae and pupae transferred to new dishes to continue development.

Band, H.T. Michigan State University, East Lansing, Michigan. A medium for growing Chymomyza amoena in the laboratory.

In Michigan, Chymomyza amoena adults and larvae have been found to be able to use apple as a food source. Maintenance in the laboratory on apple alone results in a decline in fertility after two generations. However, the feeding activity of the females tends to produce a wet surface which presents another hazard when depending on laboratory media to maintain the species.

A medium developed from that devised by Wheeler and Clayton (1965) for the Hawaiian Drosophila and the cream-of-wheat medium developed by Spassky (1943) has worked well. The following recipe yields just over a liter of food, enough for 34-36 stendor dishes (5 cm wide x 2.5 cm deep) for use in glass "minicages":

8 gms Bacto-agar 600 ml distilled water
15 gms Gerber's Hi-Pro 500 ml Spartan applesauce
15 gms Kretschmer's wheat germ (no corn products)
5 gms Kellogg's Concentrate 3 ml propionic acid
45 gms Quick Cream-of-Wheat 9 ml 95% ethyl alcohol

Blend the Hi-Pro, wheat germ, and Concentrate in a Waring blender for several minutes, add the applesauce and blend 5 min. more. Boil 400 ml water in a large pot, add agar, stir till dissolved. Add in the applesauce-protein mixture; rinse the blender with 100 ml water and add to the food mixture. Add the remaining 100 ml water to the cream-of-wheat and stir into the food mixture as it begins to boil. Reduce heat and stir until thickened, usually about 5 minutes. Remove from heat, stirring to cool. Add the ethyl alcohol and propionic acid. The medium can then be poured into a 500 ml beaker, 300 ml at a time, for filling the stendor dishes. These are then cooled, capped and refrigerated until ready to use. No yeast is added. This medium can also be used for D. melanogaster, yeasted or unyeasted.

The initiation of a series of experiments designed to cytologically localize the hexokinase loci in D. melanogaster necessitated the development of a satisfactory spectrophotometric assay for this system of enzymes. Published methods designed for use with various mammalian systems proved to be unreliable due to a lack of linearity attributable primarily to inappropriate substrate concentrations and pH optima. These problems have been overcome in our laboratory through the use of the assay procedure described below.

A. Preparation of extracts: Three to ten adult males or females aged 5±1 day post-emergence are ground in 2 ml glass microhomogenizers containing 0.05 ml of 0.03 M tris-HCl buffer at pH 8.5/fly. Homogenates thus prepared are centrifuged at 12,000 xg in the cold for 20 minutes, the supernatant fraction serving as a source of enzyme. Assays were performed within three hours of homogenization. Storage of extracts even at -70°C results in a total loss of activity after 48 hours.

B. Assay: 0.56 ml of a reaction mixture composed of 0.015 M glucose or fructose, 0.02 M MgCl₂·6H₂O, 0.00013 M NADP, 0.00001 M EDTA (disodium salt) and 0.12 units of glucose-6-phosphate dehydrogenase in 0.02 M tris-HCl at pH 8.5 is mixed with 0.02 ml of the above enzyme extract in a 0.75 ml Helma quartz cuvette and gently agitated. After 1 minute 0.02 ml of 0.03 M ATP is added to initiate the reaction. To assay fructose phosphorylating activity 0.12 units of phosphoglucose isomerase are added to an otherwise identical reaction mixture. Reference cuvettes contain reaction mixture, enzyme, and 0.02 ml of tris-HCl buffer in place of the ATP. The reduction of NADP is monitored at 340 NM, and under the above condition is proportional to enzyme concentration. This assay is linear for at least 30 minutes and has been successfully utilized for the cytological localization of two hexokinase loci. The results of these studies will be reported elsewhere.

A new olfactometer was developed in order to measure the behavioral response of flies to various odoriferous substances. The greatest concern was to allow flies to move and fly freely in a sufficient space during the experiment, to prevent the olfactory cue from interfering with other directional signals such as light, drafts or gravity, and to provide an accurate control of the composition and the concentration of the odor to be tested. The device has two main originalities: the use of a large, well aerated cage in which adults can fly and exhibit normal behavior towards an odoriferous source; the use of a gas mixing pump (Wösthoff) which mixes gases in definite ratios and delivers mixtures of reliable composition.

The cages (Fig. 1, 6) are made up of clear plastic boxes (23 x 17 x 10 cm) with large gauze panels arranged on the top and the walls. The traps (Fig. 1) are fitted on the sides of the cages and can be renewed at given intervals without disturbing the flies. Traps are fed with gas mixtures to be tested. The whole arrangement is drawn in Fig. 1: atmospheric air is compressed with a diaphragm pump (1) and dried on silica gel columns (2). It is divided into two flows respectively saturated with vapors of substances A and B in convenient saturators (3) before reaching the pump (4). The pump mixes flows (a) and (b) in the required ratios and delivers two mixing ratios M₁ and M₂ each of which feeds two traps. The flow in each line is regulated using a flowmeter (5) and a needle valve so as to provide 25 ml/min to each trap.

The reliability of the device was tested by measuring the response of a wild strain of D. melanogaster to various concentrations of ethanol. Flow (a) is first saturated with ethanol vapor by bubbling twice in 100% ethanol and then conveniently diluted with flow (b), which is kept pure. The pump delivers two concentrations of M₁ and M₂ of ethanol vapor which are expressed as a percentage of concentration in flow (a), which is considered as saturated. Standardized flies, 6 days old and starved for 24 hours on water + agar are put in lots of 500 (250 of each sex) in each cage. Each cage is fitted with only one trap, so that four tests are run simultaneously. The cages are 1.5 m below two 40 W fluorescent lamps, and are kept at 25° and 30% R.H.
Fig. 1. Connection of the olfactometer with the air-delivery system (see text).

Fig. 2 gives the kinetics for three concentrations of ethanol. Each curve corresponds to the mean of two parallel boxes and is based on 1000 flies. The different curves given for each concentration were obtained in different experiments. Their similarity demonstrates the reliability of the device. The curves fit well with an exponential model, thus indicating the constancy of individual response throughout the experiment. Each concentration can thus be simply characterized by the proportion of flies which enter the trap per unit of time. No decrease in ethanol attraction occurs at higher concentrations. This observation is opposite to previous results (Fuyama 1976; Carton 1977). This difference is likely to result from the quite different methods: our device allows the humidity to be kept constant (here: 0%) whatever the concentration of ethanol. The only effect to be measured is that of ethanol. Other methods

Fig. 2. Response of D.m. (wild strain) to various concentrations of ethanol vapor in dry air (1%, 10%, 67%).
lead necessarily to a simultaneous variation of ethanol and water contents in the tested air flow. Since in these experiments flies had to choose between this air flow and a control saturated with water, the authors actually measured some interaction between the response of flies towards ethanol and their response towards humidity. High concentrations of ethanol probably act as air dessicators, which could explain the observed repulsion.

Choice experiments can also be carried out with this olfactometer: by adjusting pump inputs and fitting two traps to each box, flies can be given a choice either between two different concentrations, or between two odor mixtures.

Routine rearings or experimental plans often require the daily destruction of large numbers of flies. A simple device was developed to prevent flies from escaping in the lab and to avoid disadvantages of traditional devices.

A weak electric motor (M), fitted with a plastic fan (F), hangs on the cover of a cylindrical plastic spice jar (1.5 liter). A 30 mm hole is pierced through the wall of the jar, 10 cm above the bottom. 100 ml water, added with a few drops of household detergent, are poured into the device.

By gentling drumming inverted vials or tubes above the upper hole, flies are allowed to be sucked down by the air swirl. They immediately sink to the bottom. None escape or float on the surface, thus allowing the quick drowning of next victims and making the capacity unlimited.

Once the daily holocaust is completed, the cover is removed, the jar is water rinsed and provided again with water + detergent. Years of daily use proved the device to be very efficient and suitable.

The common techniques of polysome and ribosome preparation are based on relatively complex methods in which tissue homogenates, gradient centrifugations, etc., are used. These preparative methodologies are characterized in subjecting the samples to drastic treatments which can alter the native stage of the traduction complex. Here, we propose a very simple analytic method, with mild conditions, and material proceeding from only one egg. It allows the study by electron microscopy of processes related to translation, with minimum interference between the experimental treatment and its visualization.

The method consists of dechorionizing one egg in the embryonic stage that is to be studied. The egg is disrupted in 50 µl of Na borate buffer µM pH 8.5, and left 10 min. at room temperature. 20 µl of the sample is placed on a carbon-coated grid (300 mesh), and
Note the length of some polysomes and the apparent ribosome disposition in doublets, or the polysome in helix.

The apparatus is simply a modified Dreschel bottle. Inlet tubes on Dreschel bottles now have scintered glass discs fused into them to facilitate dispersion of the incoming gas to the washing medium. This disc must be cut off. The only other modifications necessary are those which prevent the flies from escaping.

Containment could be done by plugging inlet and outlet tubes with cotton wool or, if preferred, glass fiber. Plugging in this way does impede the flow of gases or vapors through the apparatus. With certain atmospheric analytical techniques such impediment may cause problems (e.g., infrared absorption analysis). We have, therefore, elected to prevent fly escape by closing the inlet and outlet apertures with stainless steel mesh.

A disc of the mesh is cut so as to fit the outlet aperture. Into the middle of this disc is punched a hole which is the same diameter as the external diameter of the inlet tube. The smaller mesh disc punched from the large disc is used to cover the inlet tube aperture. These mesh discs are held in their correct positions by teflon sleeves (Fig. 1).

This simple device allows the flies to be observed during exposure to dynamic test atmospheres passing through the bottle at 3-5 l/min. Following exposure, the bottle may be flushed with air then the flies lightly anesthetized with carbon dioxide before they are re-
Temperature control, by immersion in a water bath, is also possible.

This work was supported by NIOSH Contract No. 210-78-0026.
Male Yellow males Wild type Total

<table>
<thead>
<tr>
<th>No.</th>
<th>cv v+</th>
<th>+ + B</th>
<th>cv v B</th>
<th>+ +</th>
<th>cv + B</th>
<th>+ v +</th>
<th>cv + +</th>
<th>+vB</th>
<th>XO-males (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ring-X males</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>127</td>
<td>167</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>17 (5.2)</td>
<td>328</td>
</tr>
<tr>
<td>2</td>
<td>147</td>
<td>163</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>17 (5.0)</td>
<td>340</td>
</tr>
<tr>
<td>3</td>
<td>86</td>
<td>113</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15 (6.8)</td>
<td>219</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>66</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>9 (6.1)</td>
<td>147</td>
</tr>
<tr>
<td>5</td>
<td>85</td>
<td>113</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>10 (4.7)</td>
<td>215</td>
</tr>
<tr>
<td>6</td>
<td>61</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>8 (6.5)</td>
<td>124</td>
</tr>
<tr>
<td>Sum</td>
<td>566</td>
<td>674</td>
<td>7</td>
<td>15</td>
<td>7</td>
<td>13</td>
<td>11</td>
<td>4</td>
<td>76 (5.5)</td>
<td>1373</td>
</tr>
</tbody>
</table>

Open ring-X males

<table>
<thead>
<tr>
<th>No.</th>
<th>cv v+</th>
<th>+ + B</th>
<th>cv v B</th>
<th>+ +</th>
<th>cv + B</th>
<th>+ v +</th>
<th>cv + +</th>
<th>+vB</th>
<th>XO-males (%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>91</td>
<td>72</td>
<td>18</td>
<td>21</td>
<td>22</td>
<td>28</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>254</td>
</tr>
<tr>
<td>8</td>
<td>120</td>
<td>132</td>
<td>15</td>
<td>28</td>
<td>35</td>
<td>38</td>
<td>1</td>
<td>5</td>
<td>1 (0.3)</td>
<td>375</td>
</tr>
<tr>
<td>9</td>
<td>77</td>
<td>96</td>
<td>18</td>
<td>20</td>
<td>26</td>
<td>27</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>266</td>
</tr>
<tr>
<td>10</td>
<td>114</td>
<td>114</td>
<td>31</td>
<td>35</td>
<td>32</td>
<td>46</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>377</td>
</tr>
<tr>
<td>11</td>
<td>76</td>
<td>76</td>
<td>21</td>
<td>17</td>
<td>23</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>232</td>
</tr>
<tr>
<td>Sum</td>
<td>478</td>
<td>490</td>
<td>103</td>
<td>121</td>
<td>138</td>
<td>154</td>
<td>5</td>
<td>14</td>
<td>1 (0.1)</td>
<td>1504</td>
</tr>
</tbody>
</table>

Gupta, A.P.† Harvard University, Cambridge, Massachusetts. [Present address: Cidade Universitaria UFRJ, Rio de Janeiro, Brazil.] A new technique for collecting Drosophila eggs.

Generally, Drosophila eggs are collected by having flies oviposit in bottles on spoons containing food medium or in petri dishes on colored food medium. The well fed adults are usually allowed to oviposit 24 to 48 hours to collect an adequate egg sample. It is difficult to collect eggs of sufficient sample size from a number of crosses or strains simultaneously. To facilitate collecting large egg samples from a number of crosses simultaneously over a short period of time, I modified the prevailing techniques with excellent results. The success of this technique depends upon starving the flies shortly before permitting them to oviposit.

25-30 pairs of newly emerged D. pseudoobscura were allowed to mate in vials for 5-10 days at 24°C under optimal rearing conditions. They were then transferred to empty half-pint milk bottles for 45-90 minutes at room temperature. The time of starvation is determined by noting when the activity of the flies diminishes. At this time, a teaspoon containing Carpenter's medium with food coloring and covered with a tin layer of dead or live Fleishmann's yeast suspension is put into the bottle. If dead yeast is used, prepare the solution 2-3 days before use. The thin layer of yeast suspension is allowed to dry before the spoon is put into the bottle. The back of the spoon must fit firmly against the side of the bottle to prevent females ovipositing between the spoon and the bottle. The spoons with large numbers of eggs are removed after 6-14 hours.

It would appear that the starved females retain their eggs until they once again are able to feed. At that time they lay their eggs in profusion. For a research project, I had to collect 1800 fertile eggs for each of two parental and two F1 classes, for a total of 7200 eggs, to be tested simultaneously. Using this technique, I had no trouble in collecting the required number of eggs in a short period of time. The technique was further tested using 25-30 pairs of D. melanogaster. Approximately 1000-2000 eggs were collected in 1-3 hours. Thus this method is probably useful for collecting large numbers of eggs in a number of species in a short period of time.

This work was supported by NIH Grant GM 21179 to R.C. Lewontin.

†In memory of Prof. Th. Dobzhansky
In 1971 we described in DIS a maze in which it is possible to regulate, observe and measure the phototaxic behavior of Drosophila flies in laboratory conditions. It was composed of five interconnected chambers each lighted by different light intensity. The phototaxic behavior of each individual was measured by the light intensity of the chamber in which that individual was at the end of the test. By using somewhat modified version of this maze, we succeeded in completing a very successful selection of D. subobscura individuals for preference of "low" (30-300 lux), "medium" (1300-3200 lux) and "high" (6500 lux) light intensities. In such a way we obtained three laboratory strains of D. subobscura which were very different regarding their distribution in this maze (Kekić and Marinković 1974). The modified maze which we want to describe now, although not basically different from the previous two, makes a study of phototaxic behavior faster and easier to a great extent.

The maze is composed of five 5 x 5 x 2 cm chambers, which are connected by 5 x 1 x 2 cm corridors (see diagram). In the middle of each corridor there is a movable partition by which we can permit or stop the free movement of Drosophila individuals between chambers. In each of the chambers there is an opening through which it is possible to manipulate flies in the chamber (to introduce, to etherize, etc.). This part of the maze is made out of wood. The maze is covered by an 0.5 cm glass plate, fastened by holders. As light sources, the 20 W neon tubes are used, and gradient of light intensity is realized by the paper cover of different thickness which is put on the glass plate.

As all students of phototaxic behavior of Drosophila well know, their behavior is always to a great extent a function of the experimental procedure. In our experiments, using the following procedure, we noticed a high percentage of repetition. At the beginning of the experiment we introduced about 100 individuals in the middle ("start") chamber of the maze. At that time the corridor partitions were closed. After 15 minutes the corridors were opened and in the following hour a free movement through the maze was permitted. After one hour the partitions between chambers were closed and the flies etherized and counted.

In Table 1 the distribution of several Drosophila species is shown, when the light intensity was the same in each chamber (0 or 300 lux).

It can be seen that at 300 lux the distribution of all individuals, regardless of species, is uniform, and that at 0 lux the distribution is normal, with more or less positive excess. [See table on following page.]
Table 1. The distribution of Drosophila species in a maze when the light intensity was the same in each chamber (300 or 0 lux).

<table>
<thead>
<tr>
<th>Species</th>
<th>Chamber</th>
<th>I</th>
<th>II</th>
<th>III</th>
<th>IV</th>
<th>V</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>300 lux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. funebris</td>
<td>36</td>
<td>38</td>
<td>46</td>
<td>42</td>
<td>38</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>D. testacea</td>
<td>36</td>
<td>40</td>
<td>50</td>
<td>44</td>
<td>30</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>D. kuntzei</td>
<td>32</td>
<td>42</td>
<td>42</td>
<td>48</td>
<td>36</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>34</td>
<td>46</td>
<td>40</td>
<td>38</td>
<td>42</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>D. subobscura</td>
<td>36</td>
<td>44</td>
<td>44</td>
<td>40</td>
<td>36</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 lux</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D. funebris</td>
<td>2</td>
<td>20</td>
<td>140</td>
<td>30</td>
<td>8</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>D. testacea</td>
<td>6</td>
<td>26</td>
<td>122</td>
<td>36</td>
<td>10</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>D. kuntzei</td>
<td>10</td>
<td>30</td>
<td>122</td>
<td>24</td>
<td>14</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>D. melanogaster</td>
<td>10</td>
<td>20</td>
<td>132</td>
<td>28</td>
<td>10</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>D. subobscura</td>
<td>14</td>
<td>24</td>
<td>116</td>
<td>28</td>
<td>18</td>
<td>200</td>
<td></td>
</tr>
</tbody>
</table>

McInnis, D.O. Screwworm Research Laboratory, Mission, Texas. Estimation of the attractive radius for a Drosophila collection trap.

A vital factor in some estimates of density and dispersal rate in field populations of Drosophila is the attractive radius of a standard trap containing a fairly fixed amount of bait. Each trap here consisted of a 2-gallon wax-paper bucket containing two fermenting bananas as bait.

Several experiments run at Schenck Forest, a pine forest in Raleigh, North Carolina, early in the summer of 1977, were directed toward estimating the attractiveness of individual traps used in a study of dispersal rate in Drosophila. The procedure involved marking and releasing flies at various distances (10 meter intervals out to 50 meters) from a central point, such that at each distance flies were marked with a differently colored dust (a micronized fluorescent pigment from Helecon Industries, U.S. Radium Corp.). An attempt was made to minimize overcrowding by releasing small numbers of flies at each of several points (at least four) around concentric circles at the specified distances (Fig. 1). Then, after one full day of elapsed time, flies were collected by swinging a net above a trap located at the center. After returning to the lab, marked flies were separated from unmarked flies after shining a U.V. lamp upon the samples. The proportion of released flies from a certain distance trapped at the center is illustrated in Fig. 2. A trap placed in a relatively sheltered site yielded a greater percentage of recaptured Drosophila at all distances compared to a trap placed in a more open area. For both traps the distances at which a trap's power to attract reaches zero (i.e., the attractive radius) is estimated to be approximately 60 meters from the best fitting lines of linear regression.

![Diagram](http://example.com/diagram.png)

Once instrumental learning has been demonstrated in individual Drosophila (Platt, Holliday and Drudge 1980), many questions concerning the parameters of the learning behavior can be investigated (e.g., what are the effects of delay of reinforcement; what is the duration of retention and memory) and the proposed components of learning might be teased apart by selective breeding and a behavior-genetic analysis. The apparatus we are currently using to attempt to selectively breed for learning is versatile, inexpensive and easily adaptable to various critical control procedures to insure that learning is, in fact, occurring and selection is being carried out on the behavior change (learning) and not upon some stereotyped or biased response pattern.

Our apparatus is constructed of modified Beral dropping pipets (Stock #B-75-100). Horizontal arms of the choice points were made by cutting the straight tubing section from the pipet and drilling a small hole in the center for receiving a pipet tip (the pipet tip was cut back about 1 cm to permit the fly to move through). In pipets to be used for the vertical alleyways, a hole was cut near the bottom to insert one arm of the T. A perforated cap cut from a pipet bulb was placed over the other arm of the T to form the cul-de-sac.

Recently we have made several useful refinements. A small ring of vinyl tubing is slid over each end of the horizontal arm. The outside diameter of the tubing ring matches the inside diameter of the cut bulb and cap. This prevents escape of the subjects and facilitates the rapid reversal of the choice point arms. About one-half of the bulb at the bottom of the vertical alley is cut off, perforated and inserted inverted. This prevents the occasional fly from descending into the bulb. We now use two different textures of white paper inside each arm of the choice points. Therefore, it is no longer possible for a fly to avoid exposure to the discriminative stimulus at the choice point. In addition, we now introduce each fly to a brief maze pre-exposure of choice points and vertical alleyways all leading to the first choice point with discriminative stimuli. The pre-exposure is thought to acclimate the subject to the apparatus and reduce excessive initial choice point exploration.

See cof, R.L. City of Hope National Medical Center, Duarte, California. An apparatus for rinsing Drosophila eggs.

A large quantity of eggs can be dechorionated conveniently in a beaker. The eggs can then be rinsed in a funnel with attached T connecting tube. This apparatus is small, so it can be used within a sterile hood, and the level of rinse fluid can be controlled easily so that the eggs do not dry.

Attach a funnel (Hirsch type with coarse fritted disc) to a T-shaped connecting tube (O.D., 1/4") by rubber tubing. Attach the opposite end of the connecting tube to a trap, using flexible tubing, and attach the trap to a vacuum source. Support the funnel with a ring-stand and clamp(s). Place the trap out of the working area.

Activate the vacuum. Pour the eggs into the funnel. Control the vacuum by touching a fingertip to the open end of the connecting tube. Follow with several rinses, controlling the vacuum so that eggs are not sucked dry. To prevent drainage over a long period of time, use a pinch clamp between the funnel and the connecting tube.

Partially supported by NSF Award No. PF78-09625 to R. See cof.

ACCUSED PROFESSOR CLONES DEFENDANT

PALO ALTO, Calif. (DIS) Officials in this university town are shocked and confused by the latest development in a trial that began in Recominit County Court Friday. Dr. Seamon Bullavard is accused of fabricating data on a research project. It is a felony in California to fabricate data on a state-funded project. Monday prosecutor Milford Delbert told the court that he believed that the defendant was a clone. Delbert said that Dr. Bullavard was actually working in her lab while her clone sat through boring courtroom sessions and faculty and Departmental meetings. DIS reporters swarmed around the alleged clone after Wednesday's session,
University of Göteborg, Dept. of Genetics, Stigbergsliden 14, S-414 63 Göteborg, Sweden.

Wild stocks

<table>
<thead>
<tr>
<th>Code</th>
<th>Stock Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W10</td>
<td>Canton S</td>
</tr>
<tr>
<td>W20</td>
<td>Karsnäs 51</td>
</tr>
<tr>
<td>W30</td>
<td>Oslo</td>
</tr>
<tr>
<td>W40</td>
<td>Sevelen</td>
</tr>
</tbody>
</table>

Chromosome 1 stocks

<table>
<thead>
<tr>
<th>Stock Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY/w mei-41 D5</td>
</tr>
<tr>
<td>Basc = Muller 5 = In(1)scS1L-sc8R+S, sc8 scsl wa B</td>
</tr>
<tr>
<td>C(1)DX, y f/y2 sc ec ct6 v f5</td>
</tr>
<tr>
<td>Dp(1;1)scVl, y2 y+ sc scVl ec ct6 v f5</td>
</tr>
<tr>
<td>Dp(1;1)scVl, y2 y+ sc scVl ec ct6 v f5/FM7c, y3ld sc8 wa snX1 v B (1)(TW-24)</td>
</tr>
<tr>
<td>Dp(1;1)scVl, y2 y+ sc scVl ec ct6 v mei-1B8 car/FM7c, y3ld sc8 wa snX1 v B (1)(TW-24)</td>
</tr>
<tr>
<td>Dp(1;1)scVl, y2 y+ sc scVl ec ct6 v mei-1B8 car/FM7c, y3ld sc8 wa snX1 v B (1)(TW-24)</td>
</tr>
<tr>
<td>FM7a = In(1)FM7, y3ld sc8 wa vOf B</td>
</tr>
<tr>
<td>FM7c, y3ld sc8 wa snX1 v B (1)(TW-24)</td>
</tr>
<tr>
<td>In(1)(1)d1-49, fano</td>
</tr>
<tr>
<td>w</td>
</tr>
<tr>
<td>w ct6 f</td>
</tr>
<tr>
<td>w ct6 m f</td>
</tr>
<tr>
<td>wa ct6</td>
</tr>
<tr>
<td>y</td>
</tr>
<tr>
<td>y ac v f su(f)</td>
</tr>
<tr>
<td>y cv</td>
</tr>
<tr>
<td>y v</td>
</tr>
<tr>
<td>y v g f</td>
</tr>
<tr>
<td>y v36 f</td>
</tr>
<tr>
<td>y w ct6 m f</td>
</tr>
<tr>
<td>y2 sc ec ec ct6 v f5 car</td>
</tr>
</tbody>
</table>

Chromosome 2 stocks

<table>
<thead>
<tr>
<th>Stock Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>al dp b pr c px sp/In(2L)Cy</td>
</tr>
<tr>
<td>In(2R)Cy, a12 Cy 1t3 cn2</td>
</tr>
<tr>
<td>1L4 sp2</td>
</tr>
<tr>
<td>bsD</td>
</tr>
<tr>
<td>C(2L)RM/C(2R)RM</td>
</tr>
<tr>
<td>C(2L)RM, j/C(2R)RM, px</td>
</tr>
<tr>
<td>cn bw</td>
</tr>
<tr>
<td>dp b</td>
</tr>
<tr>
<td>In(2L)Cy, a12 Cy/In(2LR)bwVl, ds33k dp b bwVl</td>
</tr>
<tr>
<td>In(2L)Cy, a12 ast3 b pr (Cy not present)</td>
</tr>
<tr>
<td>In(2L)Cy, a12 ast3 dp b pr (Cy not present)</td>
</tr>
</tbody>
</table>

Chromosome 3 stocks

<table>
<thead>
<tr>
<th>Stock Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In(2L)Cy In(2R)Cy, Cy pr cn2 sp/In(2LR)Gla, Gla</td>
</tr>
<tr>
<td>In(2L)Cy In(2R)Cy, S2 Cy pr B1 cn2 L4 bw sp2/In(2L)NS In(2R)NS, px sp</td>
</tr>
<tr>
<td>vg</td>
</tr>
</tbody>
</table>

Chromosome 4 stocks

<table>
<thead>
<tr>
<th>Stock Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(4)RM, ci eyR.gvl svn (no free 4)</td>
</tr>
<tr>
<td>ci eyR</td>
</tr>
</tbody>
</table>

Chromosome 1-2 stocks

<table>
<thead>
<tr>
<th>Stock Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1/BSYy31d; In(3LR)TM3, y+ ri pp</td>
</tr>
<tr>
<td>Dp(1;1)scVl, y2 y+ sc scVl ec ct6 v mei-1B8 car/FM6 (=In[1]FM6, y3ld sc8 dm B)</td>
</tr>
<tr>
<td>Dp(1;1)scVl, y2 y+ sc scVl ec ct6 v f5/FM7c, y3ld sc8 wa snX1 v B (1)(TW-24)</td>
</tr>
<tr>
<td>FM6 (=In[1]FM6, y3ld sc8 dm B)</td>
</tr>
<tr>
<td>Y mei-1B8; mei-1</td>
</tr>
<tr>
<td>wa ct6; mei-1</td>
</tr>
<tr>
<td>y; mei-1</td>
</tr>
<tr>
<td>y cv; mei-1</td>
</tr>
</tbody>
</table>

Chromosome 1-3 stocks

<table>
<thead>
<tr>
<th>Stock Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSY/C(1)DX, y f/y bw w; C(4)RM, spaPol (no free 4)</td>
</tr>
<tr>
<td>Basc (=In[1]scS1L-sc8R+S, sc8 scsl wa B)</td>
</tr>
<tr>
<td>Dp(1;1)scVl, y2 y+ sc scVl ec ct6 v mei-1B8 car/FM7c, y3ld sc8 wa snX1 v B (1)(TW-24)</td>
</tr>
<tr>
<td>FM7c, y3ld sc8 wa snX1 v B (1)(TW-24)</td>
</tr>
<tr>
<td>In(2L)Cy In(2R)Cy, a12 Cy 1t3 cn2 L4 sp2; T(2;3)bwVDe4, bwVDe4</td>
</tr>
<tr>
<td>bw; st</td>
</tr>
<tr>
<td>cn bw; el</td>
</tr>
<tr>
<td>In(2L)Cy In(2R)Cy, a12 Cy 1t3 cn2 L4 sp2; T(2;3)bwVDe4, bwVDe4</td>
</tr>
</tbody>
</table>

Chromosome 2-3 stocks

<table>
<thead>
<tr>
<th>Stock Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In(2L)Cy In(2R)Cy, a12 Cy 1t3 cn2 L4 sp2; T(2;3)bwVDe4, bwVDe4</td>
</tr>
</tbody>
</table>
Chromosome 2-3 stocks (cont'd.)
620 In(2L)Cy In(2R)Cy, a12 Cy lt3 cn2 sp2; TM2=In[3LR]Ub x130, Ub x130 es); T(2;3)apXa, apXa

Chromosome 1-2-3 stocks
630 Dp(1;1)scV1, y2 y+ sc scV1 ec ct6 v f5; +2/In(2L)Cy In(2R)Cy, a12 Cy lt3 cn2 sp2; mei-1

Universität Münster, Dr. H. Traut, Institut für Strahlenbiologie, Hittorfstrasse 17, 4400 Münster, West Germany.

Several distinctly new compound chromosomes have been synthesized over the past several years. They consist of entire chromosomes attached together: C(2)EN consists of two attached second chromosomes with the sequence 2R2L•2L2R; C(3)EN is 3R3L•3L3R; and C(2;3)EN is 2R2L•3L3R. Transmissibility of these chromosomes through the male is variable, ranging from a few percent to the theoretical 50%. Because of the difficulties involved in putting markers on the entire compounds and in adding markers to other chromosomes [C(2)EN and C(3)EN in particular are awkward to mark], we are listing a number of marked lines which should prove useful in certain kinds of experiments. Single arm derivatives of these chromosomes are also available.

University of Oregon, Dr. E. Novitski, Dept. of Genetics, Eugene, Oregon.

Wild stocks

<table>
<thead>
<tr>
<th>Wild stocks</th>
<th>Chromosome 1</th>
<th>Chromosome 2</th>
<th>Chromosome 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Hampton Hill</td>
<td>y</td>
<td>12. cn bw</td>
<td>Chromosome 4</td>
</tr>
<tr>
<td>3. Poringland</td>
<td>w</td>
<td>13. Cy</td>
<td>17. ey2</td>
</tr>
<tr>
<td>4. Samarkand</td>
<td>wa</td>
<td>14. vg</td>
<td>Multichromosomal</td>
</tr>
<tr>
<td>5. Wellington</td>
<td>w m B</td>
<td>15. vg bw</td>
<td>18. bw; e</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19. Cy L4/Pm; H/Sb</td>
</tr>
</tbody>
</table>
University of Swansea, Dept. of Genetics, Swansea, West Glamorgan, U.K.

Wild type stocks
Australia (5 strains)
Canary Islands
Groningen (Holland)
Marino (Italy)
New Jersey
Padua
Peramola (Spain)
Schio (Italy)
Votanikos (Greece)

Esterase-6 stocks
Groningen Est-6F
Groningen Est-6S
Schio Est-6VF

ADH stocks
Schio ADH-F
Schio ADH-S
Nazzano ADH-S

ADH stocks
Schio ADHF
Schio ADHS
Nazzano ADHS

ADH stocks
Schio ADHO

University of Santiago, Depto. de Genetica, Santiago de Compostela, Spain.

Mutant stocks
y
cn
w
cnrbr
b
st
vg
snqbr

Mutant stocks
sn34e

Wild-type stocks
sn36a

University of New England, Dept. of Animal Science.

Wild stocks
4 strains from N.S.W. & Victoria

Y chromosome
Y chromosome

Y chromosome

Y chromosome

Y chromosome

Y chromosome

Y chromosome

Y chromosome

Y chromosome

Y chromosome

Y chromosome

Y chromosome

STOCK LISTS - OTHER SPECIES

The College of Wooster, Dept. of Biology, Wooster, Ohio 44691.

D. ananassae
Wild types
Cristobal: In(2L)A/ +; Ins(3L+3R)A/ +
Majuro (Futcher's standard)
Texas-3: Ins(3L+3R)A
X chromosome (cont'd.)

9; In(3L+3R)A
In(1L)A; In(3L+3R)A/+
M(2)127/Ins(2L+2R)NG2
ma; Ins(3L+3R)A
pea uk by65
Pr; In(3L)A
Pu3 M(2)91 e65 pea, In(2L)A/
Ins(2L+2R)NG2
seA; Ins(3L+3R)A
T(2L;2R)Sh/M(2)91, In(2L)A

Chromosome 3

Bb2 stw/bri Rf mot, Ins(3L)
A,D + In(3R)A
bri
bri M(3)72/Tr ri, In(3L)A
bri pe stw pc px ru; In(2L)A
bri pe stw pc ru; In(2L)A
bri pe stw pc ru cy; In(2L)A
c3, In(3L)A; In(2L)A/+
In(3R)B
M(3)9/bri Rf mot, Ins(3L)A,D
+ In(3R)A
M(3)281/Tr ri, In(3L)A;
In(2L)A/+
mot
pc; In(2L)A
pc, In(3R)E; In(2L)A
pe vgN stw/Tr ri, In(3L)A;
In(2L)A
pr (Truk)
px; In(2L)A
ri; In(3L)A
stw

Chromosome 4

bt/M(4)7
Multichromosomal
ca; M(3)91 stw, Ins(3L+3R)A
ca; stw
rst w65; Ins(3L+3R)A; bb74
T(Y;2)A, ca
T(Y;2)B, ca
T(Y;2)C, ca
T(Y;2)D, ca
T(Y;2;3)A, ca M stw
T(Y;3)A, stw
T(2;3)A, ca stw/Ins(2L+2R)NG2
T(2;3)B, ca M stw/Ins(2L+2R)NG2
T(2;3)E, ca stw/Ins(2L+2R)NG2
T(2;3)H, ca stw/M(2)91, In(2L)A
T(2;3)J, ca Xa stw + In(3LR)A/
Ins(2L+2R)NG2
T(2;3)K, ca stw/M(2)C Pu3 e65
pea, In(2L)A
T(2;3)L, ca stw/Ins(2L+2R)NG2
T(2;3)N, ca stw/Pu3 M(2)91 e65
Pea, In(2L)A
T(2;3)O, ca stw/M(2)C Pu3 e65
pea, In(2L)A
T(2;3)P, ca stw/M(2)C Pu3 e65
pea, In(2L)A
T(2;3)Q, ca stw/M(2)C Pu3 e65
pea, In(2L)A

Descriptions and tentative mapping of all mutants and rearrangements in the above stocks can be found in Moriwaki and Tobari (1975, Handbook of Genetics 3:513-535), Hinton (1970, Genetics 66:663-676), Hinton and Downs (1975, J. Hered. 66:353-361) or in the New Mutants section of DIS 55.

In addition to newly reported mutants and aberrations this report includes new information on aberrations induced in other laboratories that we have had occasion to study cytologically and new cytogenetic mapping of some visible and lethal loci.

black 78.1D (b78.1D) [C. Detwiler]. Induced by feeding adult males 20mM diepoxyoctane. Typical black allele.

black 80c2 (b80c2) [P. Angel]. Induced by gamma-rays (4000R) in an adult male on a chromosome carrying Sco. Typical black allele. Associated with In(2L)b80c2 (see below).

cinnabar. Since Df(2R)pk78k is cn+ and this deficiency has its distal limit at 43C3 cn is probably in bands 43C4;43C6.

cinnabar 80c1 (cn80c1) [P. Angel]. Typical cn+ like allele, induced by gamma-rays (4000R) in adult male.

elbow 4 (el14) [G. Harrington]. Induced after feeding EMS to adult males. Associated with T(Y;2)el14 (see below).

frizzled. The cytology of fz3 and fz4 suggests that fz is in bands 70D6 or 70D7.

frizzled 3 (fz3) [V. Velissariou]. Gamma-ray induced in adult male (3800R). Associated with In(3L)fz (see below). Typical fz.

frizzled 4 (fz4) [V. Velissariou]. Gamma-ray induced in adult male (3800R). Associated with In(3L)fz (see below). Typical fz allele.

lethal (3)DTS-5 (DTS-5) [Holden and Suzuki 1973, Genetics 73:445]. The cytological location of DTS-5 can be refined to between 73A4 and 73B5.7 on the basis of the limits of two X-ray induced revertants of its dominant temperature sensitive phenotype that are deficiencies (i.e., Df(3L)DTS-5R+3 and Df(3L)DTS-5R+4, see below) and mapping with st- deficiencies. DTS-5 is viable when heterozygous with a deficiency that includes it at 18°C but the flies have thickened L2 wing veins.

M(3)h [see Lindsley and Grell]. This Minute maps within the region 69E2 to 69F based upon the facts that Df(3L)VW1 (see below) is M and that Lindsley et al. (1972, Genetics 71:157) place M(3)h distal to the breakpoint of T(Y;3)R7 (in 69F). M(3)h is not included in any of the vin- deficiencies of Akam et al. (1978, Cell 13:215) indicating that it is to the right of 69B4.5.

M(3)S34 [see Lindsley and Grell]. This Minute maps to bands 76A3 to 76B2 since Df(3L)VW3 (see below) is M and since M(3)S34 is proximal to the breakpoint of T(Y;3)L131 (Lindsley et al. 1972, Genetics 71:157) in 75D4.5 (see Ashburner et al. 1980, DIS 55:196).

M(3)S35 [see Lindsley and Grell]. There is some confusion as to the mapping of M(3)S35. Lindsley et al. (1972, Genetics 71:157) place M(3)S31 between 85E and 86A and M(3)S35 between 86B and 86F. We assume that this is simply a mistake since M(3)S31 is Df(3R) 86D1;86D4. The map positions (Lindsley and Grell) for M(3)S35 and M(3)S35f (3-64 and 3-62.4 respectively) would suggest a cytological location in region 90, i.e., near that of sr. Yet there is no haplo-insufficient M between 86F (i.e., M(3)S31) and 94E (i.e., M(3)w). We suggest that the M responsible for the haplo-insufficient phenotype found by Lindsley et al. for region 85E-86A is M(3)S35. There is certainly an M in this region since Df(3R)VW4, that lacks 85E11 to 85F11, is M. In summary we suggest that M(3)S35 is located between 85E11 and 85F11.

nocelli (noc). 2-50. Woodruff and Ashburner (1979, Genetics 92:117) remarked that certain genotypes heterozygous for different Adh- deficiencies were viable and lacked the ocelli and their associated bristles. Study of a much larger series of deficiencies than were then available confirms that there is a region just distal to Adh which, when
homogenously deficient, results in the absence of ocelli, of the ocellar and interocellar bristles and a reduction in the number of anterior postalar bristles. Some interocellar microchaetae may remain but, if so, their pattern is very disturbed. The postvertical bristles are also affected, there often being an adventitious pair of bristles between the normal pair of postverticals. Three alleles of this locus, here called noc, are described below. The expressivity of the noc phenotype is stronger in the late emerging flies of a culture than in those that emerge first and, moreover, the males are usually more strongly affected than females. All three known noc alleles enhance the expression of Sco; indeed Sco is noc-. Cytological analysis of noc- deficiencies place this locus in 35B2.3.

noc[2] [S. Tsubota]. Induced in an adult male with EMS. Expressivity much weaker than a noc- deficiency, three ocelli may be present though usually clearly smaller than normal. The ocelli may be present just as pigmented "ghosts". Anterior postalar bristles reduced in number and arrangement of interocellar microchaetae disturbed. Associated with In(2L)noc2 (see below).

noc[3] [S. Tsubota]. Gamma-ray (3800R) induced in an adult male together with Df(2R)ST1 (see below). Even weaker than noc2, the ocelli only rarely absent, most often just small. Like noc2, reduces the mean number of anterior postalar bristles and of the ocellar bristles. Disturbs pattern of interocellar microchaetae. No detectable chromosome aberration other than Df(2R)ST1, which is separable.

nocTE146 [G. Ising]. This noc allele is associated with the w+rst+ transposing element of G. Ising. TE146 was derived from TE47, an insertion of two w+rst+ elements into 60AB (Ising and Block, pers. comm.). Cytologically nocTE146 has about five bands inserted into 35B2.3, and we assume that it too is duplicated for the TE. Acts as a very strong noc allele, homozygotes have no ocelli, few interocellar microchaetae and reduced numbers of ocellar and anterior postalar bristles.

outspread (osp). 2-50. This locus was discovered by E.H. Grell who mapped it to Df(2L)64j. It appears to be the locus immediately proximal to Adh. Weak osp alleles have their wings held out from the body at an angle of about 45°. Strong alleles show, in addition, a tenting of the wings, so that the flies resemble homoygotes for arc. As with arc homozygous osp flies may have weakly upturned wings under crowded culture conditions. Maps cytologically to 35B2.3. The following osp alleles were induced with EMS by feeding adult males: osp[4] [G. Harrington], osp[6] [G. Harrington], osp[7] [S. Tsubota], osp[76e] [T. Littlewood], osp[77e] [T. Littlewood]. osp[80.1D] [C. Detwiler] was induced by feeding adult males 20mM diepoxyoctane.

pawnpawn. On the basis of its inclusion in Df(2R)pk[78k] and Df(2R)pk[78s] (see below) pawn is located in 42E3 to 43C3. Genetically pawn maps between pk and cn at 2-55.4.

pupal (pu). The following alleles of pu were EMS-induced by feeding adult males. With the exception of pu[5], which shows some wing expansion when heterozygous with pu[1], all are strong alleles at 25°C, the wings remaining as unexpanded pads: pu[2] [G. Harrington], pu[3] [G. Harrington], pu[4] [G. Harrington], pu[5] [G. Harrington] and pu[76e] [T. Littlewood].

prickleeprickle. Cytologically pk is in bands 42E3 to 43C3, based upon the limits of pk- deficiencies (see below). This does not agree with Lindsley and Grell.

scarlet. New st- deficiencies allow st to be placed in the 73A3.4 doublet.

spiny legs. Genetically this is on 2R (and not 2L as in Lindsley and Grell) at approxi-
mately 2-56, certainly between pk and cn. Included within both Df(2R)pk78k and Df(2R)
pk78s, i.e., maps to 42E3-43C3.

thread3 (th3) [V. Velissariou]. Gamma-ray (3800R) induced together with Df(3L)st3 (see
below). May be spontaneous existing in the base stock (gl2 e6) prior to mutagenesis.

transformer. Mapping tra with respect to new st- deficiencies places tra just proximal to
st in band 73A5.

vestigial79f [M. Ashburner]. Spontaneous strong vg allele on In(2L)C158.1.

Df(2L)b80e3 [S. Tsubota]. Gamma-ray (6000R) induced, adult male. Df(2L)34C3;35B1. In-
cludes b,j, and rk but not pu,el or Adh.

Df(2L)bL [Bruce Baker]. This Df is Df(2L)34D3;34E3.5 and includes b,j,rk but not pu,el or
Adh.

Df(2L)C75RL-C163.4IR [M. Ashburner]. Exchange product between In(2L)C163.41 and In(2L)C75RL
35B1.2. May be aneuploid (either Dp or Df) in 27D since the two 27D breakpoints are de-
rived from different events.

Df(2L)C158.1LScorR+1IR [V. Velissariou; see Velissariou and Ashburner 1980, Chromosoma 77:13].
An exchange product between In(2L)C158.1 and In(2L)ScorR+1 (see DIS 55:193). Is Df(2L)
35B3.5;35D1.4, including rd but neither Adh nor osp. See also Dp(2;2)C158.1LScorR+1IR.
New order: 21A-26D1.2/35B3.5-24D1.2/35D1.4-60.

Df(2L)dol [C. Detwiler]. Induced by feeding adult males 20mM diepoxyoctane. Is Df(2L)35B
1.2;35D1.2 including el, noc,Adh,osp and rd, but not pu.

Df(2L)e14DR15P [G. Harrington and M. Ashburner]. Synthesized from the Y2 element of T(Y;2)
e14 and the 2Y element of the "Lindsley-Sandler" T(Y;2)R15. Cytologically is Df for
35A2.4;35B10. Genetically includes pu,el,noc,Adh but not rd. Carries y+ac+ from the
R15 chromosome.

Df(2L)Scorrev7 [E.H. Grell; see O'Donnell et al. 1977, Genetics 86:553]. This X-ray induced
revertant of Sco is cytologically Df(2L)34D5;35D5.7. As O'Donnell et al. showed it is
deficient for b to rd.

Df(2L)ScorR+23. Aneuploid segregant from T(2;1)ScorR+23.

Df(2L)TE36-A [D. Gubb]. Induced by gamma-rays (3500R) as a w- rst- revertant of the w+
rst+ TE36 of G. Ising that is inserted in 1(2)br27 (see Woodruff and Ashburner 1979,
Genetics 92:133). The deficiency includes 1(2)br27 and two complementation groups
immediately distal, i.e., 1(2)br26 and 1(2)br27 [=Su(H)], but not rd (which is proximal

Df(2L)VV9 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(2L)30B3;30C9.

Df(2R)pk78k [D. Gubb]. X-ray (3000R) induced in adult male. Df(2R)42E3;43C3. Includes
pk, pwn, sple but not cn.

Df(2R)pk78s [D. Gubb]. X-ray (3000R) induced in adult male. Is Df(2R)42C1.7;43F5.8 asso-
ciated with In(2R)42C1.7;59F5.8 (i.e., In(2R)pk78s). Includes pk,pwn,sple and cn.

Df(2R)ST1 [S. Tsubota]. Gamma-ray (3800R) induced in adult male together with noc3. Df
(2R)43B3.5;43E18. Includes cn.

Df(3L)DTS-5R+3 [J. Faithfull]. An X-ray (3500R) induced revertant of the dominant tempera-
ture sensitive phenotype of DTS-5. Is Df(3L)72D3.6;73B3.6-C4. Includes DTS-5-st, asso-
ciated with a T(Y;3) broken at 90BC.
Df(3L)st2 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(3L)73A3;73A5 only. Includes st and tra.

Df(3L)st3 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(3L)72E5-F1;73A4.5. Also carries an independent allele of th (th^3). Includes st but neither DTS-5 nor tra.

Df(3L)st4 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(3L)72E5-F1;73B5-7. Includes st, tra and DTS-5.

Df(3L)th1 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(3L)71F3.5;72D6.8. Includes th. Lost.

Df(3L)th2 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(3L)70F1.3;72E3.5. Dominant female sterile. Lost.

Df(3L)VV8 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Df(3L)74B1.2;74F1.2. Lost.

Df(3L)VV11 [V. Walker]. Gamma-ray (3800R) induced in adult male. Df(3L)69E2-F1;70C1. Minute, presumably due to M(3)i.

Df(3L)VV3. Gamma-ray (3800R) induced in adult male. Df(3L)76A3;76B2. Minute, presumably due to M(3)i.

Df(3R)cu40 [J. Holden]. Cytologically Df(3R)86Cl.2;86D8.

Df(3R)VW4 [V. Walker]. Gamma-ray (3800R) induced in adult male. Df(3R)85E11;85F11. Minute, presumably due to M(3)i.

Dp(2;1)ScoR+23. Aneuploid segregant of T(2;1)ScoR+23.

Dp(2;2)C158.1LScoR+11R [V. Velissariou, see Velissariou and Ashburner 1980, Chromosoma 77: 13]. See Df(2L)C158.1LScoR+11R. Duplicated for 24D1.2;26D1.2. As expected suppresses M(2)zB. Carries two different alleles of Sgs-1 (see Velissariou and Ashburner, loc. cit.).

In(2L)b80c2 [P. Angel]. Gamma-ray (4000R) induced in adult male. In(2L)34C7;34D6.7. Associated with b^80c2. Viable with b^- deficiency (i.e., Df(2L)b75).

In(2L)nec2 [S. Tsubota]. EMS induced in adult male. Associated with noc^2. In(2L)35B1.2;36D3.

In(2R)pk78s [D. Gubb]. X-ray (3000R) induced in adult male. Associated with Df(2R)pk78s. In(2R)42C1.7;59F5.8.

In(3L)fz3 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Associated with fz^3. A complex of two overlapping inversions In(3L)70D6.7;75D3.8 + In(3L)73D3.5;80-81. An In(2L)21D;36F was induced in the same sperm.

In(3L)fz4 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Associated with fz^4. A complex of two overlapping inversions In(3L)70D6.7;80-81 + In(3LR)79F;87DE. Also induced in the same sperm was a T(2;3)42F;100F.

In(3L)st5 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. Associated with st^5. In(3L)73A2.3;80C.

In(3L)VV11 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. In(3L)64C4.8;69F3.7.

In(3LR)P3 [E. B. Lewis]. = In(3LR)75B12.13;85D18.27.
In(3R)cu5J [J. Holden]. In(3R)84Fl.12;86D1.E2. Associated with cu5J.

In(3R)VV10 [V. Velissariou]. Gamma-ray (3800R) induced in adult male. In(3R)94C;99F.

T(Y;2)e14 [G. Harrington]. Induced by adult male feeding EMS as an allele of elbow. e14/e11 like e11 homozygotes and clearly far less extreme in phenotype than e11/e11. We conclude that e14 is mutant, but not deficient, for elbow. Cytologically broken at 35A2.4, Y arm not determined.

T(1;3)N264-6. Larry Marsh and Rolf Nothiger have prompted two of us (VW and MA) to restudy the chromosomes of this translocation. Although we can say that the published description (in Lindsley and Grell) is incorrect we are not fully satisfied with all aspects of our interpretation. The "third" chromosome has the order ?/73B1.2-73F1.4/61F5.8-71B7.8/61F5.8-61A. There is clearly, as previously described, a long In(3L) but the third chromosome is also Df(3L)71B;73B. The order of the fragment 73B1.2-73F1.4 cannot be determined with certainty. It will not escape notice that this element appears to be acentric. We suspect that it is capped by the X centromere, i.e., has the order .20/73A5.11-71B7.8/73F1.4-81/3C-20/3C-1A, but have no idea what "caps" at 73A5.11.

It is puzzling that this translocation should be said to variergate for pb since this gene is in 84A (Kaufman 1978, Genetics 90:579). We hope that this revised cytology will help those trying to clone tra and urge that further genetic studies of this translocation's nature are needed; these studies we are disinclined to do.

T(2;1)ScoR+23 [T. Littlewood]. An X-ray (3500R) revertant of Sco. Approximately 35A1.2 to 35C1.2 has been translocated to X-base where it can be seen, in polytene nuclei, as a free fragment usually "floating" within the nucleolus. The Dp(2;1)ScoR+23 and Df(2) ScoR+23 segregants can be separately recovered. The duplication is homozygous female viable and fertile and male viable and fertile and covers at least from el+ through Adh+ to rd+.

T(2;3)dp [Lindsley and Grell, see Woodruff and Ashburner 1979, Genetics 92:113]. A restudy of this aberration shows that the description by Bridges requires revision. This is a very complex aberration and our best estimate of its new order is: 21-27E1.2/32E2.3-34D7.E1/41-34D7.E1(?)/48A1-60; 61-80/(41-45A/27E2-32E2/45A-48A1)/81-100. Genetically T(2;3)dp is deficient for b and some nearby lethals, but not for j or rk. Our stock (from Bowling Green) is not mutant for dp, and is almost lethal with In(2LR)O,Cy dp1vl AdhD pr cn2 and some other Cy balancers (but viable with SM1).

T(2;3)HR30 [Ashburner DIS 49:34]. Revised cytology: T(2;3)34El.3;70Cl.2.

T(2;3)Mpe [Hughes and Shelton DIS 55:204]. Revised cytology: T(2;3)35B2.3;86Cl.2. Since ops is very near the 2L breakpoint of this translocation the Mpe phenotype may be due to a dominant ops allele.

T(2;3)pb3 [Kaufman 1978, Genetics 90:579]. Revised cytology: T(2;3)35B3;83E2.8 + T(2;3) 50Cl4;80 + In(3R)83E2.8;89A9.10. New order: 21-35B3/83E2.8-89A9.10/83E2.8-80/50Cl4-60; 61-80/50Cl4-35B3/89A9.10-100F. The 35B breakpoint has produced a viable recessive osp mutant allele.
T(2;3)TE94V1 [D. Gubb]. A gamma-ray (3500R) induced partial revertant of the \(w^{rst+} \) TE94 that is inserted into 2L at 34D1.2. Variegates for white. Cytologically T(2;3)34D1.2; 80-81.

T(2;3)VW2 [V. Walker]. A gamma-ray (3800R) induced T(2;3)49E-50A4; 80C. Phenotypically Minute (?M(3)LS4).

Report of Elisabeth Gateff
University of Freiburg 1. Br., F.R.G.

bgcn: benign gonial cell neoplasm. On chromosome 2, between dumpy and black. EMS-induced. Homozygous females as well as males are sterile. Pole cell differentiation is normal. The ovaries of freshly eclosed females appear to consist only of germlia. The vitellaria are present, but are obscure because they are devoid of young follicles. The germaria begin with a terminal filament. The anterior and middle portion of the germarium contains large numbers of oogonia. No clusters of cystocytes are present. Profollicle cells can, in some instances, be observed at the posterior end of the germarium.

As the flies age, oogonia from the germlia enter into the vitellaria, where they continue to divide. In older flies (7 days and above), approximately 0.1% of the cells contain two, rarely three nuclei, which have the appearance of young cystocytes. Each ovariole takes the shape of a sausage in which hundred-thousands of oogonia are tightly packed. The epithelial sheath and the tunica propria appear normal. The muscle sheath is also functional, since the ovarioles perform strong peristaltic movements.

The testes of newly eclosed, as well as of older males, are smaller than wild-type testes and in some cases lack pigmentation. They are filled with spermatogonia, which closely resemble the oogonia in the mutant ovaries. At the anterior tip of the testes, the spermatogonia are in single array, while further down they can be observed sometimes in clusters of several hundreds. There is no trace of primary spermatocyte differentiation. The neoplastic growth of oogonia and spermatogonia in situ is not lethal to the mutant animals.

Young adult ovaries and testes, transplanted into the body cavity of wild-type female flies, grow autonomously in a similar, non-lethal fashion as in situ. Thus, the bgcn gene mutation prevents the female and male primordial germ cells from differentiation into cystocytes and spermatocytes respectively, and thus, causes the development of benign gonial cell neoplasms in the ovaries and the testes.

Report of M. Kotarski, S. Pickert and R.J. MacIntyre
Cornell University, Ithaca, New York

In(2LR)O, Cy dp1VI c13 pr cn2 : CyO cl3. Two new alleles of clot (cl: 2-16.5) were recovered following EMS mutagenesis (Lewis and Bacher 1968, DIS 43:193) of the CyO balancer chromosome.

\[\frac{\text{CyO}}{\text{Df(2L)GdhA}} \times \frac{\text{CyO}}{\text{Df(2L)GdhA}} \xrightarrow{EMS} \text{CyO*} \]

The mutagenesis produced seven independently Curly, mosaic clot eyed F_1 flies (n \(\geq \) 13,500), only two of which were fertile and produced F_1's that displayed a recessive eye color allelic to clot. Flies carrying cl3 as CyO cl3/Df(2L)GdhA (a deficiency for clot provided by Dr. E.H. Grell) show low viability. The second isolate, In(2LR)O, Cy dp1VI c13 pr cn2, shows much better viability when heterozygous with this deficiency. Stocks containing both chromosomes will be sent to the stock centers.
Report of S. Kulkarni and P. Babu
Tata Institute of Fundamental Research, Bombay, India

Sht: Shrunken thorax; 2-54.7. EMS-induced on second chromosome of Canton-S stock. Located 2.8 ± 0.4 map units to the left of cn. The phenotype of this dominant mutation is an indentation across the dorsal mesothorax giving the appearance of shrunken thorax. Typically a groove runs across the thorax in a V shape. There is some variability in the expressivity; a small fraction of flies have only a marginal phenotype. But the penetrance is nearly complete. Newly emerged flies do not often show the phenotype or have only a faint line on the thorax; the groove becomes visible as the cuticle hardens. The mutant flies have good viability and fertility. Sht is homozygous lethal (or is closely linked to a recessive lethal).

Report of D.L. Woods and D.T. Kuhn
University of Central Florida, Orlando, Florida

iab-2: infra-abdominal-2 (3-58.8). Spontaneous mutation with bx^9_. Recovered in a single female from a cross between females tuh-1; tuh-3 with males sbd^2 bx3 pbx/TM1. Homoeotic mutation of second abdominal segment towards first abdominal segment. Mutation occurred in the tumorous-head 3B chromosome which carries a recessive lethal presumably associated with In(3L)P, st. Observations made on flies deficient for the iab-2 gene. Cytologically iab-2 is localized to region 89E3-5 by deficiency mapping. It is not uncovered by Df(3R)bx100 which suggests a position right of bxd, but is uncovered by Df(3R)P10 which indicates that it is to the left of iab-8. Viability good.

bx^9: bithorax^9 (3-58.8). Spontaneous mutation found with iab-2. Anterior half of metasthorax transformed towards mesothorax. A recessive mutant gene with complete penetrance, and somewhat variable expression. It deficiency maps to the left side of the Bithorax complex at 89E1,2 and is uncovered by Df(3R)P9 and Df(3R)bx100. Viability is good.

Institute of Cytology and Genetics, Novosibirsk, 630090, USSR, and *Sylvius laboratoria Rijksuniversiteit, Leiden, The Netherlands

* have not been mapped to the left of ras.
Df(1)sbrK9 (4.5kR) D = 9A2-4; P = middle of 10A1-2 (mapped with EM), includes ras− to 1(1)BP4.

Df(1)sbrK10 (5kR) D = 9A2-4; P = interband 9F13/10A1-2 - left part of the 10A1-2 (mapped with EM), includes ras− to 1(1)BP3.

Lefevre's series (Lefevre 1971):

Df(1)v64f29 D = 9E7-8; P = right part of the 10A1-2 band (mapped with EM), includes 1(1)S12 to 1(1)BP4.

Df(1)v65b D = interband 9F12/9F13 - left part of the band 9F13; P = 11A8-9 (mapped with EM), includes 1(1)BP3 to dsh− (not mapped further to the right).

Df(1)vL1 D = right part of the band 9F13 - interband 9F13/10A1-2; P = 10A4-5 (mapped with EM), includes v− to 1(1)BP5.

Df(1)vL2 D = interband 9F12/9F13 - band 9F13; P = middle of the 10A1-2 (mapped with EM), includes 1(1)BP3 to 1(1)BP4.

Df(1)vL3 D = interband 9F10-11/9F12 - band 9F12; P = band 10A7 - interband 10A6-7/10A8-9 (mapped with EM), includes fliG− to 1(1)BP7.

Df(1)vL4 D = band 9F5-6; P = middle of the 10A1-2 (mapped with EM), includes sbr− to 1(1)BP4.

Df(1)vL7 Includes ras− to 1(1)BP4.

Df(1)vL11 Includes ras− to 1(1)BP4.

Df(1)vL15 Includes ras− to 1(1)BP4.

X-ray induced series of Kotchneva:

Df(1)vM1 (3.5kR) D = 9D3; P = middle of the 10A1-2 band, includes ras− to 1(1)BP4.

Df(1)vM5 (3.5kR) D = right part of 9F13 band - interband 9F13/10A1-2; P = middle of 10A1-2 (mapped with EM), includes v− and 1(1)BP4.

Df(1)vM6 (3.5kR) D = interband 9F10-11/9F12 - left part of 9F12; P = middle of the 10A1-2 band (mapped with EM), includes 1(1)BP3 to 1(1)BP4.

Df(1)vK7 (3.5kR) D = 9D3, P = middle of the 10A1-2 band, includes ras− to 1(1)BP4.

Df(1)vP5 X-rays (3.5kR) [Patzevich]. D = 9D1-2; P = middle of the 10A1-2 band, includes ras− to 1(1)BP4.

Df(1)ras-v17Cc8 [Lindsley, Grell 1968]. D = 9D1-2; P = right part of the 10A1-2 band - left part of interband 10A1-2/10A3 (mapped with EM), includes ras− to sev−.

Lefevre's deficiencies (Craymer, Roy 1980):

Df(1)HC133 Includes ras− to 1(1)HM25.

Df(1)RA37 Includes 1(1)BP8 to dsh−.

Df(1)KA7 Includes dsh− (not mapped further to the right).

Df(1)N71 Includes dsh− (not mapped further to the right).

*have not been mapped to the left of ras.
Dp+Y3i [Lefevre 1971]. Cover ras to 1(1)L1, not cover fs(1)M43 and dsh.

T(1;Y)B149 [Stewart, Meriam 1973]. X-chromosome breakpoint in the left part of the 10A1-2 band, genetically to the left of v.

T(1;2)1-v219 [Lindsley, Grell 1968]. X-chromosome breakpoint in the right part of the 10A1-2 band.

ras 32.35 [Lefevre 1971]. Cytologically - broad (B): right part of 9F1-2 band - 9E7-8, narrow (N): 9E3-4; included in Df(1)vFL14 but not in Df(1)v64f29.

l(1)HM25 Hydrokante methane sulfonate (HMS) [Kramers], mapping between 32.53 and 32.67, cytologically - B: 9F4 - 9F5-6, N: 9F5-6; covered by Dpv+Yy+ but not included in Df(1)vl4.

sbr Between 32.53 and 32.67. (33.4 according to Lindsley and Grell 1968), cytologically - B: 9F5-6 - 9F10-11, N: 9F7 - 9F10-11 (Zhimulev and Ilyina 1980).

Lethal alleles:
sbrts403 = 1(1)ts403 (Arking 1975), lethal at 29°C, semi-lethal at 25°C, escapers have small body.

1HM424 HMS (Kramers).

124/45A Male recombination factor MRe12 (Eeken), induced in y mei-98; mei 41D5.

X-ray induced recombination series of Kotchneva:

<table>
<thead>
<tr>
<th>1k2 (4kR)</th>
<th>1k6 (4.5kR)</th>
<th>1k11 (5.0kR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1k3 (4kR)</td>
<td>1k7 (4.5kR)</td>
<td>1k2</td>
</tr>
<tr>
<td>1k4 (4.5kR)</td>
<td>1k11 (5.0kR)</td>
<td></td>
</tr>
</tbody>
</table>

sbr'/1 - phenotypically = sbr'/Df (see Zhimulev, Ilyina 1980), 1/1 = lethal, lts403/sbr (30°C) - viable, sbr+. See complementation map above.

f11G 32.67. Cytologically - B: interband 9F10-9F12 - band 9F12, N: interband 9F10-11/9F12; included in Df(1)vl3 but not in Df(1)vM6. Reduced ability to fly (Homyk, Sheppard 1977; Homyk et al. 1980), male fertility 10% of normal, reduced sex combs. Alleles: 1 (Homyk et al. 1980); 2 (Homyk, Sheppard 1977); B186, EMS (Belyaeva) semi-lethal at 18°C; dp224, EMS (Belyaeva) induced in Dpv+Yy+, lethal at 18°C.

l(1)BP1 32.78. Cytologically - B: interband 9F10-11/9F12 - band 9F12, N: interband 9F10-11/9F12; included in Df(1)vl3 but not in Df(1)vM6. Non-lethal allele: bir336, EMS (Fomina); in homozygotes normal and viable, against exposing deficiencies results in missing about 50% of humeral bristles, other bristles missed with frequency about 1%. The same phenotype against noncomplementing lethals. No crossovers with Q54 in 54,000 males. Lethal alleles: Q54 = 1(1)Q54 (Lefevre 1971); 191, EMS (Belyaeva); G98, EMS (Pokholkova); 171, EMS (Pokholkova); G101, EMS (Pokholkova); dp115, EMS (Belyaeva) induced in Dpv+Yy+, EA86. See complementation map.
(1)BP3 32.96

Cytologically - B: interband 9F12/9F13 - band 9F13, N: right part of the 9F13 band; included in Df(1)vL2 but not in Df(1)vM5. Lethal alleles: 163, EMS (Pokholkova); 167, EMS (Belyaeva); 183, EMS (Pokholkova); dsP22, EMS (Bgatov) induced in Dp v^+Yy^+.

v 33.00 (Lindsley, Grell 1968; Lefevre 1971)

Cytologically - left part of the 10A1-2 band between T(1;Y)B149 breakpoint and proximal break of Df(1)v^L^4.

EMS-induced series of Pokholkova: G57, G64, G73, G90, G100, G117, G121, G126, dpG1 (induced in Dp+v^+Yy^+).

EMS-induced series of Zhimulev: BN, DK, NK, NN, OS.

EMS-induced series of Khudyakov: J9, J25.

EMS-induced series of Belyaeva (induced in Dp+v^+Yy^+): dpZ1, dpZ2, dpZ7.

05, 06, EMS (Fomina).

AM1, EMS (Aizenzon).

(1)BP4 33.05

Cytologically: left part of the 10A1-2 band between T(1;4)B149 breakpoint and proximal break of Df(1)v^L^4. Probably allele of 1(1)L68 (Lefevre, Wiedenheft 1974).

Semi-lethal alleles: 166 and 162, EMS (Belyaeva), induced in y, viability reduced at 29°C stronger than at 25°C, escapers phenotypically normal.

sev 33.38 (33.2 according to Harris et al. 1977)

Cytologically - B: right edge of the band 10A1-2 - left part of the interband 10A1-2/10A3, N: right part of the 10A1-2 band; included in Df(1)v^L^1, Df(1)ras-vL7Cc8 but not in Df(1)v^6A^f29 or Df(1)sbr^R^8.

ms(1)BP6

Cytologically: right part of the 10A1-2 band - band 10A4-5; included in Df(1)v^L^3, Df(1)v^L^4 but not in Df(1)v^M^6, Df(1)v^M^5, Df(1)v^L^2, Df(1)v^L^4 and Df(1)RA37.

Allele: dpS53, EMS (Bgatov) induced in Dp+v^+Yy^+.

Males phenotypically normal, but 100% sterile in heterozygotes with exposing deficiencies.

slm 33.50 (33.7 according to Lindsley, Grell 1968)

Cytologically: bands 10A3 - 10A4-5; included in Df(1)v^L^1 but not in Df(1)RA37 or Df(1)ras-v^17Cc^8.

All alleles including slm^1 (Lindsley, Grell) delay imago eclosion for about 1-2 days.

New alleles: G94, G102, EMS (Pokholkova); E136, E138, E148, E149, EMS (Belyaeva).

(1)BP5 33.51 (33.49 according to Lefevre 1971)

Cytologically: bands 10A3 - 10A4-5, included in Df(1)v^L^1 but not in Df(1)RA37 or Df(1)ras-v^17Cc^8.

Compounds J21/164, J21/E54, E54/164 are viable both at 29°C and 25°C; J21/G96 viable at 25°C but lethal at 29°C; G76/E54 viable at 29°C and 25°C but lethal at 18°C; viability of compounds J21/G76, E54/G96 and L12/E54 normal at 25°C decreases at 29°C.

Complementation map at 25°C below.

<table>
<thead>
<tr>
<th>dp025</th>
<th>E112</th>
</tr>
</thead>
<tbody>
<tr>
<td>dpZ4</td>
<td>G105</td>
</tr>
<tr>
<td>dpS145</td>
<td>G95</td>
</tr>
<tr>
<td>193</td>
<td>G93</td>
</tr>
<tr>
<td>187</td>
<td>G67</td>
</tr>
<tr>
<td>169</td>
<td>G62</td>
</tr>
<tr>
<td>G139</td>
<td>L12</td>
</tr>
<tr>
<td>E120</td>
<td>164</td>
</tr>
<tr>
<td>E114</td>
<td>J21</td>
</tr>
<tr>
<td></td>
<td>G96</td>
</tr>
<tr>
<td></td>
<td>G76</td>
</tr>
<tr>
<td></td>
<td>E54</td>
</tr>
</tbody>
</table>
1(1)BP8 33.55 (33.57 according to Lefevre 1971). Cytologically: bands 10A6-10A7, included in both Df(1)vL3 and Df(1)RA37, but not in Df(1)vL1.

1(1)BP7 33.56 (33.55 according to Lefevre 1971). Cytologically: bands 10A6-10A7, included in both Df(1)vL3 and Df(1)RA37 but not in Df(1)vL1.

1(1)L1 33.68 (33.64 according to Lefevre 1971). Cytologically: bands 10A8-9 – 10A10-11, included in Df(1)RA37 but not in Df(1)vL3 or Df(1)KA7.
New allele: D40, male recombination factor Mrh12 (Eeken).

hfs (haplo female sterile) (See also Lefevre 1969). The locus that, if present in single dose, results in female sterility. Cytologically: bands 10A8-9 – 10A10-11, between proximal end of Df(1)vL3 and distal Df(1)KA7.

dsh 34.05 (33.7 according to Lindsley, Grell 1968). Cytologically: bands 10B3-10B17, included in Df(1)RA37, Df(1)N71 and covered by Dpv+Yy⁺. New information: viability and fertility of males reduced sharply.

fs(1)M43 Cytologically in the region 1OB1-2 – 10B17, included in Df(1)RA37 but not covered by Dpv+63i.
Allele: 14-31, female sterile (Mohler 1977), fertility of males reduced sharply, lethal against Df(1)RA37.

LINKAGE DATA

Report of C.A. Strommen and R. Falk
University of Oregon, Eugene, Oregon

The following recombination values between the scJ⁴ translocated to the tip of chromosome 3L and the genes mwh and ru were determined: y⁺ - mwh 1.854% (N=7550), y⁺ - ru 2.570% (N=9106). The distance mwh-jv was found to be 16.330% (N=4954). These values are somewhat higher than those obtained by D.B. Roberts and S. Evans-Roberts (1979, Genetics 93:674) but quite lower than Muller's observations (1934, DIS 2:60).
BIBLIOGRAPHY

ON

DROSOPHILA

PART SEVEN

Irwin H. Herskowitz
INTRODUCTION

Bibliography on Drosophila Part VII covers the literature for the period from 1973 through 1978. It contains some titles appearing before 1973 that were not listed in earlier parts of this series. As in the earlier parts, although most of the titles deal with the genetics of Drosophila, all other references to Drosophila are also included. Drosophila continues to increase in usefulness as a research organism. Whereas the average number of references per year was 964 in Part VI, it has grown to 1114 in Part VII.

The 6684 new references included in Part VII are in six sections: D.I.S., Nos. 51: 159-193 (1974); 52: 176-226 (1977); 53:219-244 (1978); 55: 218-237 and 239-262 (1980); and this issue. In each of these sections titles are arranged alphabetically according to author. For the sake of accuracy, references were checked whenever possible with either the original paper, or a copy prepared by its author. This was true for 81 per cent of the titles numbered consecutively.

For indexing, references in the first section (D.I.S., No. 51) are referred to by their page and entry: for example, 163:12 refers to the 12th entry on page 163. References in the remaining sections have been given consecutive numbers, starting with 1 in D.I.S., No. 52, and continuing through 5829 in this issue. The bibliography section in this issue is followed by a Coauthor Index and a Title Index. These indexes cover the references in all of the sections comprising Part VII.

The Title Index is divided into three parts: Part I is a general index, listing various subject headings alphabetically, concluding with headings for the X, Y, II, III, and IV chromosomes. All titles have been indexed under at least one heading. An asterisk preceding a number indicates a reference dealing with a species other than D. melanogaster, as determined from the title. Methods and names of mutants are, in almost all cases, listed alphabetically under the headings "methods" and "mutants"; Part II is a geographical listing; and Part III is a systematic index for Drosophilidae and Drosophila species.

Subscribers may find it helpful to combine the various sections from D.I.S., Nos. 51, 52, 53, and 55 with this section, to make one compact volume of Part VII.

Supported by Grant No. GM 20705 from the U.S. Public Health Service.
BIBLIOGRAPHY

D. = Drosophila
D. m. = Drosophila melanogaster

A period following the code number indicates that the reference was not checked with either the original paper or a copy prepared by its author.

BARJATI, I. 1978. Genetic changes during the ageing process in D. m. Genetika, Beograd, 10: 139-150. (Yugoslavian with English summary.)

BAKJARAT, I. 1978. Genetic changes during the ageing process in D. m. Genetika, Beograd, 10: 139-150. (Yugoslavian with English summary.)

BAKJARAT, I. 1978. Genetic changes during the ageing process in D. m. Genetika, Beograd, 10: 139-150. (Yugoslavian with English summary.)

BAKJARAT, I. 1978. Genetic changes during the ageing process in D. m. Genetika, Beograd, 10: 139-150. (Yugoslavian with English summary.)

BIBLIOGRAPHY

1978. From the genome to phenotypes. La Recherche, 9: 453-454. (In French.)

(3): 252-360.

5485. DENNIHOFER, L., and MÜLLER, P. 1978. The puff patterns of salivary gland chromosomes from larvae and prepupae of D. m. in vitro. Genetica, 49 (2): 117-128. (German with English summary.)

5650. MEZZANOTTE, R. 1978. Differential banding induced in polytene chromosomes of D. m. stained with acridine orange.

Bibliography

Bibliography

March 1981 Coauthor Index DIS 56 - 213
<table>
<thead>
<tr>
<th>Page</th>
<th>Matched lines</th>
</tr>
</thead>
<tbody>
<tr>
<td>234</td>
<td>genetic, activity & ch stirring</td>
</tr>
<tr>
<td>194</td>
<td>gene action</td>
</tr>
<tr>
<td>128</td>
<td>gene action</td>
</tr>
<tr>
<td>183</td>
<td>gene action</td>
</tr>
<tr>
<td>139</td>
<td>genetic variance</td>
</tr>
<tr>
<td>124</td>
<td>genetic variance</td>
</tr>
<tr>
<td>121</td>
<td>genetic variance</td>
</tr>
<tr>
<td>117</td>
<td>genetic variance</td>
</tr>
<tr>
<td>112</td>
<td>genetic variance</td>
</tr>
<tr>
<td>109</td>
<td>genetic variance</td>
</tr>
<tr>
<td>103</td>
<td>genetic variance</td>
</tr>
<tr>
<td>102</td>
<td>genetic variance</td>
</tr>
<tr>
<td>97</td>
<td>genetic variance</td>
</tr>
<tr>
<td>93</td>
<td>genetic variance</td>
</tr>
<tr>
<td>91</td>
<td>genetic variance</td>
</tr>
<tr>
<td>89</td>
<td>genetic variance</td>
</tr>
<tr>
<td>87</td>
<td>genetic variance</td>
</tr>
<tr>
<td>85</td>
<td>genetic variance</td>
</tr>
<tr>
<td>80</td>
<td>genetic variance</td>
</tr>
<tr>
<td>80</td>
<td>genetic variance</td>
</tr>
<tr>
<td>78</td>
<td>genetic variance</td>
</tr>
<tr>
<td>77</td>
<td>genetic variance</td>
</tr>
<tr>
<td>77</td>
<td>genetic variance</td>
</tr>
<tr>
<td>76</td>
<td>genetic variance</td>
</tr>
<tr>
<td>75</td>
<td>genetic variance</td>
</tr>
<tr>
<td>73</td>
<td>genetic variance</td>
</tr>
<tr>
<td>71</td>
<td>genetic variance</td>
</tr>
<tr>
<td>70</td>
<td>genetic variance</td>
</tr>
<tr>
<td>69</td>
<td>genetic variance</td>
</tr>
<tr>
<td>67</td>
<td>genetic variance</td>
</tr>
<tr>
<td>65</td>
<td>genetic variance</td>
</tr>
<tr>
<td>63</td>
<td>genetic variance</td>
</tr>
<tr>
<td>62</td>
<td>genetic variance</td>
</tr>
<tr>
<td>61</td>
<td>genetic variance</td>
</tr>
<tr>
<td>59</td>
<td>genetic variance</td>
</tr>
<tr>
<td>58</td>
<td>genetic variance</td>
</tr>
<tr>
<td>57</td>
<td>genetic variance</td>
</tr>
<tr>
<td>56</td>
<td>genetic variance</td>
</tr>
<tr>
<td>55</td>
<td>genetic variance</td>
</tr>
<tr>
<td>54</td>
<td>genetic variance</td>
</tr>
<tr>
<td>53</td>
<td>genetic variance</td>
</tr>
<tr>
<td>52</td>
<td>genetic variance</td>
</tr>
<tr>
<td>51</td>
<td>genetic variance</td>
</tr>
<tr>
<td>50</td>
<td>genetic variance</td>
</tr>
<tr>
<td>49</td>
<td>genetic variance</td>
</tr>
<tr>
<td>48</td>
<td>genetic variance</td>
</tr>
<tr>
<td>47</td>
<td>genetic variance</td>
</tr>
<tr>
<td>46</td>
<td>genetic variance</td>
</tr>
<tr>
<td>45</td>
<td>genetic variance</td>
</tr>
<tr>
<td>44</td>
<td>genetic variance</td>
</tr>
<tr>
<td>43</td>
<td>genetic variance</td>
</tr>
<tr>
<td>42</td>
<td>genetic variance</td>
</tr>
<tr>
<td>41</td>
<td>genetic variance</td>
</tr>
<tr>
<td>40</td>
<td>genetic variance</td>
</tr>
<tr>
<td>39</td>
<td>genetic variance</td>
</tr>
<tr>
<td>38</td>
<td>genetic variance</td>
</tr>
<tr>
<td>37</td>
<td>genetic variance</td>
</tr>
<tr>
<td>36</td>
<td>genetic variance</td>
</tr>
<tr>
<td>35</td>
<td>genetic variance</td>
</tr>
<tr>
<td>34</td>
<td>genetic variance</td>
</tr>
<tr>
<td>33</td>
<td>genetic variance</td>
</tr>
<tr>
<td>32</td>
<td>genetic variance</td>
</tr>
<tr>
<td>31</td>
<td>genetic variance</td>
</tr>
<tr>
<td>30</td>
<td>genetic variance</td>
</tr>
<tr>
<td>29</td>
<td>genetic variance</td>
</tr>
<tr>
<td>28</td>
<td>genetic variance</td>
</tr>
<tr>
<td>27</td>
<td>genetic variance</td>
</tr>
<tr>
<td>26</td>
<td>genetic variance</td>
</tr>
<tr>
<td>25</td>
<td>genetic variance</td>
</tr>
<tr>
<td>24</td>
<td>genetic variance</td>
</tr>
<tr>
<td>23</td>
<td>genetic variance</td>
</tr>
<tr>
<td>22</td>
<td>genetic variance</td>
</tr>
<tr>
<td>21</td>
<td>genetic variance</td>
</tr>
<tr>
<td>20</td>
<td>genetic variance</td>
</tr>
<tr>
<td>19</td>
<td>genetic variance</td>
</tr>
<tr>
<td>18</td>
<td>genetic variance</td>
</tr>
<tr>
<td>17</td>
<td>genetic variance</td>
</tr>
<tr>
<td>16</td>
<td>genetic variance</td>
</tr>
<tr>
<td>15</td>
<td>genetic variance</td>
</tr>
<tr>
<td>14</td>
<td>genetic variance</td>
</tr>
<tr>
<td>13</td>
<td>genetic variance</td>
</tr>
<tr>
<td>12</td>
<td>genetic variance</td>
</tr>
<tr>
<td>11</td>
<td>genetic variance</td>
</tr>
<tr>
<td>10</td>
<td>genetic variance</td>
</tr>
<tr>
<td>9</td>
<td>genetic variance</td>
</tr>
<tr>
<td>8</td>
<td>genetic variance</td>
</tr>
<tr>
<td>7</td>
<td>genetic variance</td>
</tr>
<tr>
<td>6</td>
<td>genetic variance</td>
</tr>
<tr>
<td>5</td>
<td>genetic variance</td>
</tr>
<tr>
<td>4</td>
<td>genetic variance</td>
</tr>
<tr>
<td>3</td>
<td>genetic variance</td>
</tr>
<tr>
<td>2</td>
<td>genetic variance</td>
</tr>
<tr>
<td>1</td>
<td>genetic variance</td>
</tr>
</tbody>
</table>
mutation--cont.

& calf thymus DNA 2664
& caput 173:25 934
& carboxygenase 171:16 1129 1129
1441 4568 4899 5254

cell-autonomous 2989
& cell-, & lymphome 3414
& cell, differentiation 337
& marker 536

chemosensitive 2595 2596 2597
1405 4105 4106
& chemotaxis 372 4103
& chloramphenicol 1290
& forintox phenoxyacetic acid 4923
& chloromequat 935
& chlorothricnactrides 4732
& chlorophylls 217
& choline & nicotinic acid 2402

chromatid, X rays & colchicine

chromosome, & radiation 187:23

X rays, in sibling species 5593
& chronic gamma rays 3765
& chronic X rays 1821 1822
& circadian rhythm 917
& Circa-S 5 & 2631
& clock 2181
& clove, & caffeine 3414
& cytosine 908 909 1887
& cycloheximide 1627:13 1627:14
& cyclamate 908 909 1887
& cyclodextrins 1627:13 1627:14
& cyclodopa 1284 1284
& cytoplasm 2294 2321 4430
& cysteine 908 909 1887
& cytochrome P450 3414
& d attacks 1627:13 1627:14
& d agonists 1627:13 1627:14
& D-glucose 2444
& D-glucose-6-phosphate 2444
& D-32P consumption 1985 1986
& D-galactose 3614
& D-galactose 1531
& D-galactose 3614
& D-galactose-1-phosphate 2363
& D-galactose-1-phosphate 2363
& D-galactose 3614
& D-galactose 1531
& D-galactose 3614
& D-galacto...
March 1981

Title Index

Q-containing tRNA 5297 5298 5299

Analysis of differentiation 4065

Quinucildinyl benzilate 4454

Quinoxidine 5739

Quantum bumps 3832 resistance 168:24 168:26 179:22

Race 177:6 3441 4070

Quantitative, allele

Q-containing tRNA 5297 5298 5300 & meiotic autosomes 4548

of male or female 83 1159 1160 receptivity

Lv, high background 191:25 *936 rape 419

replication, DNA, r-const.
*3718 intermediate, also 4520 late *3584 & 3555 & 3556 & 4777 & 3999 & morphology of rearranged chr 3119 & nuclear membrane 574 pattern 43 44 3520 poly dA and poly rA 4342 post-, repair 2170 preferential 5474 rate 2064 *2809 & 2810 repair 202 2170 2831 4250 subunit 3397 synchrony in sister salivary glands *5097 & transcription 2324 2742 & transcription control 2366 4000 5670 under-, of satellite DNA 4168 unit 1689 repli...
Drosophila simulans—cont.
fertility compared 180:26
food & oviposition 609
& geography 4150 4151
N factor 1170
hybrid, with D. mu 189:2
171:19 13 626 1150 1465
1829 1890 2097 2056 2496
2690 2750 2912 2941 3151
4153 4475 4476 5274
with D. mauritiana 3440
inbreeding & viability 3710
interspecific hybrid 355
inv plm 2091
island pop 1723 4972
isolation from D. mu 3858
4613
iv morphology 14
oviposition & ethanol 2602
photopreference 4701
phototaxis 1371 2717
pop, adults 160:19
iz plm 5267
radioresistance 1368 3749
ribosomes 3183
rRNA & cycloheximide 181.8
sex comb & beh 4406
sexual isolation 460
spontaneous male recombin-
tion 4170
temp & pop 4814 4960
vinyages 147
X-ray mu 5816
X mos 4706
& yeast 3138.39
subobsoleta 130 503 2129 2139
5156 5704
aldehydeoxidase & ethanol 4116
alloyase 4758 4988 5601
breeding site 3671
chr plm 1669 360 1457
3544 4575 5703
daytime oviposition 1656
dot chr 2870
effective pop size 3344
enzyme, detection methods 1062
plm 171.13
epistasis, co, & inv 1703
feeding & breeding sites 5264
gene variation in pops 186:22
genetic, load & viability in central & marginal pops 5155
plm & phylogeny 5638
grandchildless 6699
heritability 1061
benoxinase 4073
interchr arrangement 3450
inv 159:23 1487 4988
iz plm 1704
keyzyotic distance 184:23
184:24
lab pop density 1450
light, dependence 1398
& mating 1913
& mating 1459
& selection 859
linkage disequilibrium 193:24
[2330
lv niche 4035
Mdh 2962
null–XDH 3466
O chr 5499
phototaxis 5568
pop, esterase 5619
density 4280
distances 1438
genetics: 176:1 1063
plm 184:20 122
size fluctuations 5668
sterility genes 3455
7Q selection for phototaxis
179:19
Swiss 120
variation in rat pops 2036
X replication 701
yeasts 129
sulfurinterrupter 1116 1118 2728
3132
szuidi 3506
[2636
salmoi 5707
5800
texana 164:2 923 929 2345 2346
transversa 4096
tumidifacies 3129 5747 5748
virilia 176:24 4880
amylase 1397 2648 2649 4008
5939
association of nonhomologs
183:29
band & satellite DNA
replication 4199
[2680
chrom 3987 3938
chr configuation 465 2344
chromatin 2562
competing with D. pseudo-
obscura 1305
[2493
[2616
DNA, adaptation 4714
[2621
r 942 3322 3559
replicative 390
replication 594 640 2625
3266
satellite 161:21 458 531
616 1596 2095 3051 4159
5262 5380 5429 5574
underreplicated 1493
4094
ecdysone & transcription
4737
[2613
[2623
[2619
[2618
[2615
[2617
[2616
[2615
[2614
[2613
[2612
[2611
[2610
[2609
[2608
[2607
[2606
[2605
[2604
[2603
[2602
[2601
[2600
[2599
[2598
[2597
[2596
[2595
[2594
[2593
[2592
[2591
[2590
[2589
[2588
[2587
[2586
[2585
[2584
[2583
[2582
[2581
[2580
[2579
[2578
[2577
[2576
[2575
[2574
[2573
[2572
[2571
[2570
[2569
[2568
[2567
[2566
[2565
[2564
[2563
[2562
[2561
[2560
[2559
[2558
[2557
[2556
[2555
[2554
[2553
[2552
[2551
[2550
[2549
[2548
[2547
[2546
[2545
[2544
[2543
[2542
[2541
[2540
[2539
[2538
[2537
[2536
[2535
[2534
[2533
[2532
[2531
[2530
[2529
[2528
[2527
[2526
[2525
[2524
[2523
[2522
[2521
[2520
[2519
[2518
[2517
[2516
[2515
[2514
[2513
[2512
[2511
[2510
[2509
[2508
[2507
[2506
[2505
[2504
[2503
[2502
[2501
[2500
[2499
[2498
[2497
[2496
[2495
[2494
[2493
[2492
[2491
[2490
[2489
[2488
[2487
[2486
[2485
[2484
[2483
[2482
[2481
[2480
[2479
[2478
[2477
[2476
[2475
[2474
[2473
[2472
[2471
[2470
[2469
[2468
[2467
[2466
[2465
[2464
[2463
[2462
[2461
[2460
[2459
[2458
[2457
[2456
[2455
[2454
[2453
[2452
[2451
[2450
[2449
[2448
[2447
[2446
[2445
[2444
[2443
[2442
[2441
[2440
[2439
[2438
[2437
[2436
[2435
[2434
[2433
[2432
[2431
[2430
[2429
[2428
[2427
[2426
[2425
[2424
[2423
[2422
[2421
[2420
[2419
[2418
[2417
[2416
[2415
[2414
[2413
[2412
[2411
[2410
[2409
[2408
[2407
[2406
[2405
[2404
[2403
[2402
[2401
[2400
[2399
[2398
[2397
[2396
[2395
[2394
[2393
[2392
[2391
[2390
[2389
[2388
[2387
[2386
[2385
[2384
[2383
[2382
[2381
[2380
[2379
[2378
[2377
[2376
[2375
[2374
[2373
[2372
[2371
[2370
[2369
[2368
[2367]

"Systematic Index March 1981"
Aaron, C.S. Leiden, Netherlands
Aaselstadt, H. Philadelphia, Pennsylvania
Abdalla, M.H. Assuit, Egypt
Abou-Youssef, A.M. Alexandria, Egypt
Abraham, I. Atlanta, Georgia
Abrahamson, S. Madison, Wisconsin
Adler, P.N. Charlottesville, Illinois
Agnew, J.D. Johannesburg, South Africa
 Aguadé, M. Barcelona, Spain
Ahearn, J.N. Honolulu, Hawaii
Akboshi, E. Storrs, Connecticut
Alahiotis, S. Patras, Greece
Albornoz, J. Oviedo, Spain
Aldinger-v Kleist, R. Tubigen, West Germany
Alexander, M.L. San Marcos, Texas
Alfini, A. Padova, Italy
Allemand, R. Villeurbanne, France
Alonso, C. Madrid, Spain
Altorfer, N. Brussels, Belgium
Alvarez, G. Santiago, Spain
Amitaba, I.B. Bangkok, Thailand
Anderson, W.W. Athens, Georgia
Andjelković, M. Belgrade, Yugoslavia
Angel, P. Cambridge, Great Britain
Angus, B. Newcastle, Australia
Antonovics, J. Duham, North Carolina
Anxolabéhere, D. Paris, France
Aotsuka, T. Tokyo, Japan
Apostolakas, D. Tempe, Arizona
Appels, R. Canberra, Australia
Applebaum, B. Pittsburgh, Pennsylvania
Arantes, P.C. Rio de Janeiro, Brazil
Arking, R. Detroit, Michigan
Artavanis, S. Basel, Switzerland
Ash, W.J. Canton, New York
Ashburner, M. Cambridge, Great Britain
Aslund, S-E. Umeå, Sweden
Atherton, J. Brighton, Great Britain
Atkinson, W. Leeds, Great Britain
Auerbach, C. Edinburgh, Great Britain
Averhoff, W.W. Austin, Texas
Ayaki, T. Nagasaki, Japan
Ayala, F.J. Davis, California
Bächli, G. Zürich, Switzerland
Bahn, E. Copenhagen, Denmark
Baimai, V. Bangkok, Thailand
Baird, M.B. Utica, New York
Bajraktari, I. Belgrade, Yugoslavia
Baker, B. LaJolla, California
Baker, E.P. Sydney, Australia
Baker, S. Jerusalem, Israel
Baker, W.K. Salt Lake City, Utah
Balwin, G. Brisbane, Australia
Band, H. East Lansing, Michigan
Bando, K. Sakado, Japan
Baran, A. Haifa, Israel
Bargiello, T. New York, New York
Barigozzi, C. Milan, Italy
Barker, J.S.F. Armidale, Australia
Barnes, B.W. Birmingham, Great Britain
Barr, L. Davis, California
Baselga, M. Valencia, Spain
Battaglia, B. Padova, Italy
Bauer, G. Düsseldorf, W. Germany
Baxa, H. Vienna, Austria
Beardmore, J.A. Swansea, Great Britain
Beck, H. Geneva, Switzerland
Beck, M.A. Newcastle, Great Britain
Beck-Kurz, A. Tübingen, W.Germany
Beckendorf, S.K. Berkeley, California
Becker, G.L. München, W.Germany
Becker, J.H. München, W.Germany
Beckman, C. Montreal, Canada
Beermann, W. Tübingen, W.Germany
Beimont, C. Lyon, France
Bell, A.E. West Lafayette, Indiana
Bell, J.B. Edmonton, Canada
Belote, T. LaJolla, California
Bender, H.A. Notre Dame, Indiana
Benedik, J.K. Brno, Czechoslovakia
Bengston, R. Northridge, California
Benner, D.B. Johnson City, Indiana
Bennett, C.J. DeKalb, Illinois
Benson, S. Baton Rouge, Louisiana
Benzer, S. Pasadena, California
Berg, R. Madison, Wisconsin
Bernard, J. Gir-sur-Yvette, France
Bernhard, H.P. Basel, Switzerland
Bewley, G.C. Raleigh, North Carolina
Bhat, P.M. Izatnagar, India
Bhatia, N. Calcutta, India
Bicudo, H.E.M. Sao José, Brazil
Biederich, U. München, W.Germany
Bijlsma-Meeles, E. Haren, Netherlands
Birley, A.J. Birmingham, Great Britain
Bischoff, W.L. Toledo, Ohio
Bishop, J.A. Liverpool, Great Britain
Bishop, J.O. Edinburgh, Great Britain
Blanco, G. Oviedo, Spain
Blijleven, W.G.H. Leiden, Netherlands
Bock, I.R. Bundooora, Australia
Bodmer, M. Cambridge, Great Britain
Boender, P.J. Nijmegen, Netherlands
Boer, M.H. Utrecht, Netherlands
Boerema, A.C. Haren, Netherlands
Bonner, J. Bloomington, Indiana
Borack, L.I. Newark, New Jersey
Borner, P. Zürich, Switzerland
Boss, M. Haren, Netherlands
Bouletreau-Merle, J. Villeurbanne, France
Bourgeois, M. Louvain-La-Neuve, Belgium
Bournias-Vardibasis, N. Duarte, California
Bowman, J.T. Logan, Utah
Bowes, M. Colchester, Great Britain
Boyce, J.T. Bronx, New York
Boyd, J.B. Davis, California
Bozczuk, A.N. Ankara, Turkey
Brachet, J. Brussels, Belgium
Bradley, B.P. Catonsville, Maryland
Re, F. Gir-sur-Yvette, France
Braver, G. Norman, Oklahoma
Bregliano, J.C. Clermont-Ferrand, France
Breugel, F.M.A. van Leiden, Netherlands
Brink, N.C. Adelaide, Australia
Brittnacher, J. Maddison, Wisconsin
Brncic, D. Santiago, Chile
Brown, E.H. Urbana, Illinois
Brown, W.P. Marietta, Ohio
<table>
<thead>
<tr>
<th>Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brun, G.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Bryant, ML.</td>
<td>Macomb, Illinois</td>
</tr>
<tr>
<td>Bryant, S.H.</td>
<td>Macomb, Illinois</td>
</tr>
<tr>
<td>Bucheton, A.</td>
<td>Clermont-Ferrand, France</td>
</tr>
<tr>
<td>Budnik, M.</td>
<td>Santiago, Chile</td>
</tr>
<tr>
<td>Bull, A.L.</td>
<td>Roanoke, Virginia</td>
</tr>
<tr>
<td>Bünemann, H.</td>
<td>Düsseldorf, W.Germany</td>
</tr>
<tr>
<td>Burdette, W.J.</td>
<td>Houston, Texas</td>
</tr>
<tr>
<td>Burdick, A.B.</td>
<td>Columbia, Missouri</td>
</tr>
<tr>
<td>Burke, J.F.</td>
<td>London, Great Britain</td>
</tr>
<tr>
<td>Burnet, B.</td>
<td>Sheffield, Great Britain</td>
</tr>
<tr>
<td>Burton, W.G.</td>
<td>Notre Dame, Indiana</td>
</tr>
<tr>
<td>Butterworth, F.M.</td>
<td>Rochester, Michigan</td>
</tr>
<tr>
<td>Buzin, C.M.</td>
<td>Duarte, California</td>
</tr>
<tr>
<td>Cabré, O.</td>
<td>Bellaterra, Spain</td>
</tr>
<tr>
<td>Caligari, P.D.S.</td>
<td>Birmingham, Great Britain</td>
</tr>
<tr>
<td>Calvez, C.</td>
<td>Lyon, France</td>
</tr>
<tr>
<td>Camfield, R.G.</td>
<td>Clayton, Australia</td>
</tr>
<tr>
<td>Cann, L.</td>
<td>Adelaide, Australia</td>
</tr>
<tr>
<td>Carfagna, M.</td>
<td>Naples, Italy</td>
</tr>
<tr>
<td>Carlson, E.A.</td>
<td>Stony Brook, New York</td>
</tr>
<tr>
<td>Carmody, G.R.</td>
<td>Ottawa, Canada</td>
</tr>
<tr>
<td>Carpenter, A.T.C.</td>
<td>LaJolla, California</td>
</tr>
<tr>
<td>Carpenter, J.M.</td>
<td>Lexington, Kentucky</td>
</tr>
<tr>
<td>Carpenter, R.</td>
<td>Norwich, Great Britain</td>
</tr>
<tr>
<td>Carracedo, M.C.</td>
<td>Oviedo, Spain</td>
</tr>
<tr>
<td>Carson, G.</td>
<td>La Jolla, California</td>
</tr>
<tr>
<td>Carson, H.L.</td>
<td>Honolulu, Hawaii</td>
</tr>
<tr>
<td>Carton, Y.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Casares, P.</td>
<td>Oviedo, Spain</td>
</tr>
<tr>
<td>Castro, L.E.</td>
<td>Bogota, Colombia</td>
</tr>
<tr>
<td>Caten, C.E.</td>
<td>Birmingham, Great Britain</td>
</tr>
<tr>
<td>Celto, I.</td>
<td>Brno, Czechoslovakia</td>
</tr>
<tr>
<td>Cha, M.S.</td>
<td>Seoul, Korea</td>
</tr>
<tr>
<td>Chapko, W.</td>
<td>Regina, Canada</td>
</tr>
<tr>
<td>Charlesworth, B.</td>
<td>Brighton, Great Britain</td>
</tr>
<tr>
<td>Charlesworth, D.</td>
<td>Brighton, Great Britain</td>
</tr>
<tr>
<td>Charton-Strunk, U.</td>
<td>Bochum, W.Germany</td>
</tr>
<tr>
<td>Chassagnard, M.T.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Chatterjee, C.</td>
<td>Calcutta, India</td>
</tr>
<tr>
<td>Chen, P.S.</td>
<td>Zürich, Switzerland</td>
</tr>
<tr>
<td>Chen, T.</td>
<td>Kingston, Canada</td>
</tr>
<tr>
<td>Chia, B.</td>
<td>Cambridge, Great Britain</td>
</tr>
<tr>
<td>Chigusa, S.I.</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>Chihara, C.J.</td>
<td>San Francisco, California</td>
</tr>
<tr>
<td>Chikushi, H.</td>
<td>Fukuoka, Japan</td>
</tr>
<tr>
<td>Chinnici, J.P.</td>
<td>Richmond, Virginia</td>
</tr>
<tr>
<td>Choi, Y.</td>
<td>Seoul, Korea</td>
</tr>
<tr>
<td>Choo, J.K.</td>
<td>Seoul, Korea</td>
</tr>
<tr>
<td>Chooi, Y.</td>
<td>Bloomington, Indiana</td>
</tr>
<tr>
<td>Chopra, V.L.</td>
<td>New Delhi, India</td>
</tr>
<tr>
<td>Chovnick, A.</td>
<td>Storrs, Connecticut</td>
</tr>
<tr>
<td>Christopoulos, A.</td>
<td>Patras, Greece</td>
</tr>
<tr>
<td>Chun, S.B.</td>
<td>Kwangju, Korea</td>
</tr>
<tr>
<td>Chung, C.U.</td>
<td>Kwangju, Korea</td>
</tr>
<tr>
<td>Chung, Y.J.</td>
<td>Seoul, Korea</td>
</tr>
<tr>
<td>Chung, Y.R.</td>
<td>Seoul, Korea</td>
</tr>
<tr>
<td>Church, K.K.</td>
<td>Tempe, Arizona</td>
</tr>
<tr>
<td>Clark, A.M.</td>
<td>Adelaide, Australia</td>
</tr>
<tr>
<td>Clark, A.M.</td>
<td>Newark, Delaware</td>
</tr>
<tr>
<td>Clark, B.</td>
<td>Eugene, Oregon</td>
</tr>
<tr>
<td>Clark, S.</td>
<td>Storrs, Connecticut</td>
</tr>
<tr>
<td>Claxton, J.H.</td>
<td>Armidale, Australia</td>
</tr>
<tr>
<td>Clayton, F.E.</td>
<td>Fayetteville, Arkansas</td>
</tr>
<tr>
<td>Clise, R.L.</td>
<td>Cleveland, Ohio</td>
</tr>
<tr>
<td>Clyde, M.M.</td>
<td>West Malaysia,</td>
</tr>
<tr>
<td>Cochrane, B.</td>
<td>Chapel Hill, North Carolina</td>
</tr>
<tr>
<td>Coe, E.H., Jr.</td>
<td>Columbia, Missouri</td>
</tr>
<tr>
<td>Coggshall, J.</td>
<td>New Haven, Connecticut</td>
</tr>
<tr>
<td>Cohan, F.</td>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>Cohen, E.H.</td>
<td>Princeton, New Jersey</td>
</tr>
<tr>
<td>Cohen, L.</td>
<td>Philadelphia, Pennsylvania</td>
</tr>
<tr>
<td>Cohet, Y.</td>
<td>Villeurbanne, France</td>
</tr>
<tr>
<td>Cole, T.A.</td>
<td>Crawfordsville, Indiana</td>
</tr>
<tr>
<td>Collet, J.</td>
<td>Brighton, Great Britain</td>
</tr>
<tr>
<td>Comendador, M.A.</td>
<td>Oviedo, Spain</td>
</tr>
<tr>
<td>Connolly, K.</td>
<td>Sheffield, Great Britain</td>
</tr>
<tr>
<td>Contamine, D.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Cooke, J.</td>
<td>Cambridge, Great Britain</td>
</tr>
<tr>
<td>Cordeiro, A.R.</td>
<td>Porto Alegre, Brazil</td>
</tr>
<tr>
<td>Cornejo, P.</td>
<td>Valencia, Spain</td>
</tr>
<tr>
<td>Corwin, H.O.</td>
<td>Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td>Costa, R.</td>
<td>Padova, Italy</td>
</tr>
<tr>
<td>Coulon, P.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Counce, S.J.</td>
<td>Durham, North Carolina</td>
</tr>
<tr>
<td>Coyne, J.</td>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>Craddock, E.M.</td>
<td>New York, New York</td>
</tr>
<tr>
<td>Craig, G.B.</td>
<td>Notre Dame, Indiana</td>
</tr>
<tr>
<td>Craymer, L.</td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>Crespi, S.</td>
<td>Bellaterra, Spain</td>
</tr>
<tr>
<td>Cresus, A.</td>
<td>Bellaterra, Spain</td>
</tr>
<tr>
<td>Cross, D.</td>
<td>Vancouver, Canada</td>
</tr>
<tr>
<td>Crossley, S.A.</td>
<td>Clayton, Australia</td>
</tr>
<tr>
<td>Crow, J.F.</td>
<td>Madison, Wisconsin</td>
</tr>
<tr>
<td>Cummings, M.R.</td>
<td>Chicago, Illinois</td>
</tr>
<tr>
<td>Cunha, A.B.</td>
<td>Sao Paulo, Brazil</td>
</tr>
<tr>
<td>Daggard, G.</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Danielli, G.A.</td>
<td>Padova, Italy</td>
</tr>
<tr>
<td>Dapples, C.C.</td>
<td>Billings, Montana</td>
</tr>
<tr>
<td>Das, A.K.</td>
<td>Calcutta, India</td>
</tr>
<tr>
<td>David, J.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Davidson, N.</td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>Davis, B.</td>
<td>Blacksburg, Virginia</td>
</tr>
<tr>
<td>Davis, D.G.</td>
<td>Tuscaloosa, Alabama</td>
</tr>
<tr>
<td>Davis, E.A.</td>
<td>Chapel Hill, North Carolina</td>
</tr>
<tr>
<td>Dawood, M.M.</td>
<td>Alexandria, Egypt</td>
</tr>
<tr>
<td>Dawson, P.</td>
<td>Corvallis, Oregon</td>
</tr>
<tr>
<td>Day, A.</td>
<td>Calcutta, India</td>
</tr>
<tr>
<td>Day, J.W.</td>
<td>Holland, Michigan</td>
</tr>
<tr>
<td>De la Rosa, M.E.</td>
<td>Mexico City, Mexico</td>
</tr>
<tr>
<td>Déak, I.</td>
<td>Zürich, Switzerland</td>
</tr>
<tr>
<td>Debouzie, D.</td>
<td>Lyon, France</td>
</tr>
<tr>
<td>DeGaray, A.L.</td>
<td>Mexico City, Mexico</td>
</tr>
<tr>
<td>DeJongh, C.</td>
<td>Madison, Wisconsin</td>
</tr>
<tr>
<td>Del Solar, E.</td>
<td>Valdivia, Chile</td>
</tr>
<tr>
<td>Delcour, J.</td>
<td>Namur, Belgium</td>
</tr>
<tr>
<td>Deltombe-Lietaert, M.C.</td>
<td>Namur, Belgium</td>
</tr>
<tr>
<td>DeMarco, A.</td>
<td>Rome, Italy</td>
</tr>
<tr>
<td>DeMarinis, F.</td>
<td>Cleveland, Ohio</td>
</tr>
<tr>
<td>Denell, R.</td>
<td>La Jolla, California</td>
</tr>
<tr>
<td>Denell, R.</td>
<td>Manhattan, Kansas</td>
</tr>
<tr>
<td>Deneubourg, A.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Dennis, E.S.</td>
<td>Canberra, Australia</td>
</tr>
<tr>
<td>Detwiler, C.</td>
<td>Cambridge, Great Britain</td>
</tr>
<tr>
<td>Dezelee, S.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Dickerman, R.C.</td>
<td>Cleveland, Ohio</td>
</tr>
<tr>
<td>Dickinson, W.J.</td>
<td>Honolulu, Hawaii</td>
</tr>
<tr>
<td>Dickinson, W.J.</td>
<td>Salt Lake City, Utah</td>
</tr>
<tr>
<td>Name</td>
<td>Location</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Dimopoulos, N.</td>
<td>Patras, Greece</td>
</tr>
<tr>
<td>Divelbiss, J.</td>
<td>LeMars, Iowa</td>
</tr>
<tr>
<td>Doane, W.W.</td>
<td>Tempe, Arizona</td>
</tr>
<tr>
<td>Dodd, C.K.</td>
<td>Knoxville, Tennessee</td>
</tr>
<tr>
<td>Doira, H.</td>
<td>Fukuoka, Japan</td>
</tr>
<tr>
<td>Dominguez, A.</td>
<td>Oviedo, Spain</td>
</tr>
<tr>
<td>Dominguez, M.</td>
<td>Santiago, Spain</td>
</tr>
<tr>
<td>Donady, J.J.</td>
<td>Middletown, Connecticut</td>
</tr>
<tr>
<td>Dover, G.</td>
<td>Cambridge, Great Britain</td>
</tr>
<tr>
<td>Downes, S.</td>
<td>Cambridge, Great Britain</td>
</tr>
<tr>
<td>Dratz, F.L.</td>
<td>Porto Alegre, Brazil</td>
</tr>
<tr>
<td>Druger, M.</td>
<td>Syracuse, New York</td>
</tr>
<tr>
<td>Dübendorfer, A.</td>
<td>Zürich, Switzerland</td>
</tr>
<tr>
<td>Duncan, I.</td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>Duyan, A.</td>
<td>Leiden, Netherlands</td>
</tr>
<tr>
<td>Dwivedi, Y.N.</td>
<td>Varanasi, India</td>
</tr>
<tr>
<td>Dyer, K.F.</td>
<td>Clayton, Australia</td>
</tr>
<tr>
<td>Eanes, W.</td>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>East, P.D.</td>
<td>Armidale, Australia</td>
</tr>
<tr>
<td>Eastwood, W.L.</td>
<td>Sheffield, Great Britain</td>
</tr>
<tr>
<td>Ebitani, N.</td>
<td>Nurumizu, Japan</td>
</tr>
<tr>
<td>Eeken, J.C.J.</td>
<td>Leiden, Netherlands</td>
</tr>
<tr>
<td>Ehrman, L.</td>
<td>Purchase, New York</td>
</tr>
<tr>
<td>Elens, A.</td>
<td>Namur, Belgium</td>
</tr>
<tr>
<td>Ellison, J.R.</td>
<td>Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td>Elmer, W.A.</td>
<td>Atlanta, Georgia</td>
</tr>
<tr>
<td>Emeny, J.</td>
<td>Cambridge, Great Britain</td>
</tr>
<tr>
<td>Emerson, C.P.</td>
<td>Charlottesville, Virginia</td>
</tr>
<tr>
<td>Endow, S.A.</td>
<td>Durham, North Carolina</td>
</tr>
<tr>
<td>Engels, W.R.</td>
<td>Madison, Wisconsin</td>
</tr>
<tr>
<td>Englert, D.C.</td>
<td>Carbondale, Illinois</td>
</tr>
<tr>
<td>English, D.S.</td>
<td>Flagstaff, Arizona</td>
</tr>
<tr>
<td>Engstrom, L.E.</td>
<td>Muncie, Indiana</td>
</tr>
<tr>
<td>Erbaş, G.</td>
<td>Ankara, Turkey</td>
</tr>
<tr>
<td>Erickson, J.</td>
<td>Bellingham, Washington</td>
</tr>
<tr>
<td>Erk, F.</td>
<td>Stony Brook, New York</td>
</tr>
<tr>
<td>Espinet, S.A.</td>
<td>Miami, Florida</td>
</tr>
<tr>
<td>Espinós, A.</td>
<td>Valencia, Spain</td>
</tr>
<tr>
<td>Fabré, A.C.</td>
<td>Austin, Texas</td>
</tr>
<tr>
<td>Faccio-Dolfini, S.</td>
<td>Milan, Italy</td>
</tr>
<tr>
<td>Fahmy, M.J.</td>
<td>Chalfont St. Giles, Great Britain</td>
</tr>
<tr>
<td>Fahmy, O.G.</td>
<td>Chalfont St. Giles, Great Britain</td>
</tr>
<tr>
<td>Falk, R.</td>
<td>Jerusalem, Israel</td>
</tr>
<tr>
<td>Farish, D.J.</td>
<td>Columbia, Missouri</td>
</tr>
<tr>
<td>Farmer, J.L.</td>
<td>Provo, Utah</td>
</tr>
<tr>
<td>Farnsworth, M.W.</td>
<td>Buffalo, New York</td>
</tr>
<tr>
<td>Fattig, W.D.</td>
<td>Billings, Montana</td>
</tr>
<tr>
<td>Fausto-Sterling, A.</td>
<td>Providence, Rhode Isl.</td>
</tr>
<tr>
<td>Félix, R.</td>
<td>Mexico City, Mexico</td>
</tr>
<tr>
<td>Felton, A.</td>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>Fenner, H.</td>
<td>Santiago, Chile</td>
</tr>
<tr>
<td>Ferré, J.</td>
<td>Lyon, France</td>
</tr>
<tr>
<td>Ferro, W.</td>
<td>Leiden, Netherlands</td>
</tr>
<tr>
<td>Ferrus, A.</td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>Feuerbach-Mrvagl, H.</td>
<td>Vienna, Austria</td>
</tr>
<tr>
<td>Filgueiras, L.</td>
<td>Rio de Janeiro, Brazil</td>
</tr>
<tr>
<td>Finley, D.W.</td>
<td>Tempe, Arizona</td>
</tr>
<tr>
<td>Fleuriet, A.</td>
<td>Clermont-Ferrand, France</td>
</tr>
<tr>
<td>Fontdevila, A.</td>
<td>Santiago, Spain</td>
</tr>
<tr>
<td>Forbes, C.</td>
<td>Moscow, Idaho</td>
</tr>
<tr>
<td>Fornili, P.</td>
<td>Bloomington, Indiana</td>
</tr>
<tr>
<td>Forrest, H.S.</td>
<td>Austin, Texas</td>
</tr>
<tr>
<td>Fourche, J.</td>
<td>Lyon, France</td>
</tr>
<tr>
<td>Fouremann, P.A.</td>
<td>Madison, Wisconsin</td>
</tr>
<tr>
<td>Fowler, G.</td>
<td>Ashland, Oregon</td>
</tr>
<tr>
<td>Fox, A.S.</td>
<td>Madison, Wisconsin</td>
</tr>
<tr>
<td>Fox, D.J.</td>
<td>Knoxville, Tennessee</td>
</tr>
<tr>
<td>Fox, D.P.</td>
<td>Aberdeen, Tennessee</td>
</tr>
<tr>
<td>Frankel, A.W.K.</td>
<td>Iowa City, Iowa</td>
</tr>
<tr>
<td>Frankham, R.</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Franklin, I.R.</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Frei, Hj.</td>
<td>Geneve, Switzerland</td>
</tr>
<tr>
<td>French, W.L.</td>
<td>Baton Rouge, Louisiana</td>
</tr>
<tr>
<td>Frey, F.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Friaś, D.</td>
<td>Santiago, Chile</td>
</tr>
<tr>
<td>Friedman, L.D.</td>
<td>St. Louis, Missouri</td>
</tr>
<tr>
<td>Friedman, T.B.</td>
<td>Bethesda, Maryland</td>
</tr>
<tr>
<td>Friedman, T.B.</td>
<td>Rochester, Michigan</td>
</tr>
<tr>
<td>Fritz-Niggli, H.</td>
<td>Zürich, Switzerland</td>
</tr>
<tr>
<td>Frutos, R.</td>
<td>de Burjaset, Spain</td>
</tr>
<tr>
<td>Frydenberg, O.</td>
<td>Aarhus, Denmark</td>
</tr>
<tr>
<td>Fuchs, M.S.</td>
<td>Notre Dame, Indiana</td>
</tr>
<tr>
<td>Fujii, H.M.</td>
<td>Fukuoka, Japan</td>
</tr>
<tr>
<td>Fujii, S.</td>
<td>Kobe, Japan</td>
</tr>
<tr>
<td>Fujita, S.C.</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>Fukatamai, A.</td>
<td>Sakado-Machi, Japan</td>
</tr>
<tr>
<td>Fukunaga, A.</td>
<td>Osaka, Japan</td>
</tr>
<tr>
<td>Fullilove, S.L.</td>
<td>Austin, Texas</td>
</tr>
<tr>
<td>Fuscaldo, K.E.</td>
<td>Philadelphia, Pennsylvania</td>
</tr>
<tr>
<td>Futch, D.C.</td>
<td>San Diego, California</td>
</tr>
<tr>
<td>Fuyama, Y.</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>Fyrberg, E.</td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>Gabay, S.J.</td>
<td>Urbana, Illinois</td>
</tr>
<tr>
<td>Gale, J.S.</td>
<td>Birmingham, Great Britain</td>
</tr>
<tr>
<td>Gall, J.G.</td>
<td>New Haven, Connecticut</td>
</tr>
<tr>
<td>Gallo, A.J.</td>
<td>Sao Jose de R.F., Brazil</td>
</tr>
<tr>
<td>Gamo, S.</td>
<td>Sakai, Japan</td>
</tr>
<tr>
<td>Ganetzky, B.</td>
<td>Madison, Wisconsin</td>
</tr>
<tr>
<td>Garcia, F.A.</td>
<td>Bogota, Colombia</td>
</tr>
<tr>
<td>Garcia, M.</td>
<td>Bellaterra, Spain</td>
</tr>
<tr>
<td>Garcia, P.</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td>Gardner, E.J.</td>
<td>Logan, Utah</td>
</tr>
<tr>
<td>Garen, A.</td>
<td>New Haven, Connecticut</td>
</tr>
<tr>
<td>Garen, S.</td>
<td>New Haven, Connecticut</td>
</tr>
<tr>
<td>Gartner, L.P.</td>
<td>Baltimore, Maryland</td>
</tr>
<tr>
<td>Gärtnert, S.</td>
<td>Basel, Switzerland</td>
</tr>
<tr>
<td>Gateff, E.</td>
<td>Freiburg, W. Germany</td>
</tr>
<tr>
<td>Gatti, M.</td>
<td>Rome, Italy</td>
</tr>
<tr>
<td>Gay, H.</td>
<td>Ann Arbor, Michigan</td>
</tr>
<tr>
<td>Gay, P.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Gayathri, M.V.</td>
<td>Mysore, India</td>
</tr>
<tr>
<td>Geer, B.W.</td>
<td>Galesburg, Illinois</td>
</tr>
<tr>
<td>Gehring, W.</td>
<td>Basel, Switzerland</td>
</tr>
<tr>
<td>Gelbart, W.M.</td>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>Gepner, J.I.</td>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>Gerresheim, F.</td>
<td>München, W. Germany</td>
</tr>
<tr>
<td>Gersh, E.S.</td>
<td>Philadelphia, Pennsylvania</td>
</tr>
<tr>
<td>Gertson, P.N.</td>
<td>Salt Lake City, Utah</td>
</tr>
<tr>
<td>Gethmann, R.C.</td>
<td>Catonsville, Maryland</td>
</tr>
<tr>
<td>Ghosh, M.</td>
<td>Calcutta, India</td>
</tr>
<tr>
<td>Ghosh, R.</td>
<td>Calcutta, India</td>
</tr>
<tr>
<td>Ghosh, S.</td>
<td>Calcutta, India</td>
</tr>
<tr>
<td>Gibson, P.K.</td>
<td>Urbana, Illinois</td>
</tr>
<tr>
<td>Gill, K.S.</td>
<td>Ludhiana, India</td>
</tr>
<tr>
<td>Gill, R.W.</td>
<td>Riverside, California</td>
</tr>
<tr>
<td>Girard, P.</td>
<td>Paris, France</td>
</tr>
<tr>
<td>Glanzman, F.</td>
<td>Tempe, Arizona</td>
</tr>
<tr>
<td>Glätzer, K.H.</td>
<td>Düsseldorf, W. Germany</td>
</tr>
<tr>
<td>Name</td>
<td>City</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Gloor, H.</td>
<td>Geneva, Switzerland</td>
</tr>
<tr>
<td>Godbole, N.N.</td>
<td>Poona, India</td>
</tr>
<tr>
<td>Godoy, E.</td>
<td>Santiago, Chile</td>
</tr>
<tr>
<td>González, A.</td>
<td>Burjas, Spain</td>
</tr>
<tr>
<td>González, F.H.</td>
<td>Lima, Peru</td>
</tr>
<tr>
<td>González, F.W.</td>
<td>Upton, New York</td>
</tr>
<tr>
<td>González, G.</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td>Gopalan, H.N.B.</td>
<td>Nairobi, Kenya</td>
</tr>
<tr>
<td>Gottlieb, F.J.</td>
<td>Pittsburgh, PA</td>
</tr>
<tr>
<td>Gottlieb, J.F.</td>
<td>Purchase, New York</td>
</tr>
<tr>
<td>Göt, K.G.</td>
<td>Tübingen, Germany</td>
</tr>
<tr>
<td>Gould, A.B.</td>
<td>Newark, Delaware</td>
</tr>
<tr>
<td>Gouz, J.M.</td>
<td>Paris, France</td>
</tr>
<tr>
<td>Grabiki, E.</td>
<td>New Haven, Connect</td>
</tr>
<tr>
<td>Grace, D.</td>
<td>Eugene, Oregon</td>
</tr>
<tr>
<td>Graf, U.</td>
<td>Zürich, Switzerland</td>
</tr>
<tr>
<td>Grainger, R.M.</td>
<td>Charlottesville, VA</td>
</tr>
<tr>
<td>Granados, L.A.</td>
<td>Bogota, Colombia</td>
</tr>
<tr>
<td>Grant, B.S.</td>
<td>Williamsburg, VA</td>
</tr>
<tr>
<td>Green, L.H.</td>
<td>Cambridge, MA</td>
</tr>
<tr>
<td>Green, M.M.</td>
<td>Davis, CA</td>
</tr>
<tr>
<td>Greenleaf, A.L.</td>
<td>Durham, NC</td>
</tr>
<tr>
<td>Grell, E.H.</td>
<td>Oak Ridge, TN</td>
</tr>
<tr>
<td>Grell, R.F.</td>
<td>Oak Ridge, TN</td>
</tr>
<tr>
<td>Gromko, M.</td>
<td>Bowling Green, OH</td>
</tr>
<tr>
<td>Grossfield, J.</td>
<td>New York, NY</td>
</tr>
<tr>
<td>Grünberg, H.</td>
<td>London, GB</td>
</tr>
<tr>
<td>Gubb, D.</td>
<td>Cambridge, GB</td>
</tr>
<tr>
<td>Guest, W.C.</td>
<td>Fayetteville, AR</td>
</tr>
<tr>
<td>Guevara, P.M.</td>
<td>Lima, Peru</td>
</tr>
<tr>
<td>Guillo, C.</td>
<td>Lyon, France</td>
</tr>
<tr>
<td>Gupta, A.P.</td>
<td>Rio de Janeiro, BA</td>
</tr>
<tr>
<td>Gupta, J.P.</td>
<td>Varanasi, India</td>
</tr>
<tr>
<td>Guzmán, J.M.S.</td>
<td>Mexico City, MX</td>
</tr>
<tr>
<td>Hackman, W.</td>
<td>Helsinki, Finland</td>
</tr>
<tr>
<td>Hackstein, J.</td>
<td>Nijmegen, NL</td>
</tr>
<tr>
<td>Haendle, J.</td>
<td>München, Germany</td>
</tr>
<tr>
<td>Häggele, K.</td>
<td>Bochum, Germany</td>
</tr>
<tr>
<td>Haagquist, K.</td>
<td>Umea, Sweden</td>
</tr>
<tr>
<td>Hale, G.</td>
<td>New York, NY</td>
</tr>
<tr>
<td>Halfer, C.</td>
<td>Milan, IT</td>
</tr>
<tr>
<td>Halfer-Mosna, G.</td>
<td>Milan, IT</td>
</tr>
<tr>
<td>Hall, J.C.</td>
<td>Waltham, MA</td>
</tr>
<tr>
<td>Hall, L.</td>
<td>Bronx, NY</td>
</tr>
<tr>
<td>Hames, B.D.</td>
<td>Colchester, GB</td>
</tr>
<tr>
<td>Hamks, G.D.</td>
<td>Gary, IN</td>
</tr>
<tr>
<td>Hammerschmidt, H.</td>
<td>München, Germany</td>
</tr>
<tr>
<td>Hampel, H.</td>
<td>Vienna, Austria</td>
</tr>
<tr>
<td>Han, J.H.</td>
<td>Seoul, Korea</td>
</tr>
<tr>
<td>Han, S.R.</td>
<td>Seoul, Korea</td>
</tr>
<tr>
<td>Handler, A.</td>
<td>Pasadena, CA</td>
</tr>
<tr>
<td>Hanley, E.W.</td>
<td>Salt Lake City, UT</td>
</tr>
<tr>
<td>Hannah, S.M.</td>
<td>York, GB</td>
</tr>
<tr>
<td>Hannah-Alava, A.</td>
<td>Turku, Finland</td>
</tr>
<tr>
<td>Hansson, L.</td>
<td>Umea, Sweden</td>
</tr>
<tr>
<td>Hara, K.</td>
<td>Fukuoka, Japan</td>
</tr>
<tr>
<td>Hardy, D.E.</td>
<td>Honolulu, HI</td>
</tr>
<tr>
<td>Hardy, R.</td>
<td>La Jolla, CA</td>
</tr>
<tr>
<td>Harford, A.G.</td>
<td>Buffalo, NY</td>
</tr>
<tr>
<td>Harrington, G.</td>
<td>Cambridge, GB</td>
</tr>
<tr>
<td>Harrison, B.J.</td>
<td>Norwich, GB</td>
</tr>
<tr>
<td>Hart, D.L.</td>
<td>West Lafayette, IN</td>
</tr>
<tr>
<td>Hartmann-Goldstein, I.J.</td>
<td>Sheffield, GB</td>
</tr>
<tr>
<td>Harvengt, J.</td>
<td>Louvain-La-Neuve, Belgium</td>
</tr>
<tr>
<td>Hauschteck-Jungen, E.</td>
<td>Zürich, Switzerland</td>
</tr>
<tr>
<td>Hay, D.A.</td>
<td>Bundoora, Australia</td>
</tr>
<tr>
<td>Haynie, J.L.</td>
<td>Seattle, WA</td>
</tr>
<tr>
<td>Hazelrigg, T.</td>
<td>Bloomington, IN</td>
</tr>
<tr>
<td>Hedrick, P.W.</td>
<td>Lawrence, KS</td>
</tr>
<tr>
<td>Hegde, S.N.</td>
<td>Mysore, India</td>
</tr>
<tr>
<td>Heim, W.G.</td>
<td>Colorado Springs, CO</td>
</tr>
<tr>
<td>Heisenberg, M.</td>
<td>Würzburg, Germany</td>
</tr>
<tr>
<td>Hengstenberg, R.</td>
<td>Tübingen, Germany</td>
</tr>
<tr>
<td>Hennig, W.</td>
<td>Nijmegen, NL</td>
</tr>
<tr>
<td>Herforth, R.S.</td>
<td>Minneapolis, MN</td>
</tr>
<tr>
<td>Herskovitz, I.H.</td>
<td>New York, NY</td>
</tr>
<tr>
<td>Hess, O.</td>
<td>Düsseldorf, Ger</td>
</tr>
<tr>
<td>Hexter, W.M.</td>
<td>Amherst, MB</td>
</tr>
<tr>
<td>Hihara, F.</td>
<td>Matsuama, Japan</td>
</tr>
<tr>
<td>Hildreth, P.E.</td>
<td>Charlotte, NC</td>
</tr>
<tr>
<td>Hill, R.</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Hilliker, A.J.</td>
<td>Canberra, Australia</td>
</tr>
<tr>
<td>Hillman, R.</td>
<td>Philadelphia, PA</td>
</tr>
<tr>
<td>Hinton, C.W.</td>
<td>Wooster, OH</td>
</tr>
<tr>
<td>Hiraizumi, Y.</td>
<td>Austin, TX</td>
</tr>
<tr>
<td>Hiroyoshi, T.</td>
<td>Osaka, Japan</td>
</tr>
<tr>
<td>Ho, M.W.</td>
<td>Milton-Keynes, GB</td>
</tr>
<tr>
<td>Hochman, B.</td>
<td>Knoxville, TN</td>
</tr>
<tr>
<td>Hodgetts, R.B.</td>
<td>Edmonton, CA</td>
</tr>
<tr>
<td>Hoekstra, R.F.</td>
<td>Haren, NL</td>
</tr>
<tr>
<td>Hoenigsberg, H.F.</td>
<td>Bogota, Colombia</td>
</tr>
<tr>
<td>Hoffman, M.F.</td>
<td>Bronx, NY</td>
</tr>
<tr>
<td>Hollingsworth, M.J.</td>
<td>London, Great Britain</td>
</tr>
<tr>
<td>Hollis, R.J.</td>
<td>Williamsburg, VA</td>
</tr>
<tr>
<td>Holm, D.</td>
<td>Vancouver, CA</td>
</tr>
<tr>
<td>Holmgren, F.</td>
<td>Umea, Sweden</td>
</tr>
<tr>
<td>Homytk, V.</td>
<td>Vancouver, CA</td>
</tr>
<tr>
<td>Hooper, G.B.</td>
<td>Poughkeepsie, NY</td>
</tr>
<tr>
<td>Hoorn, A.J.W.</td>
<td>Utrecht, NL</td>
</tr>
<tr>
<td>Hotta, Y.</td>
<td>Tokyo, Japan</td>
</tr>
<tr>
<td>Hsieh, T.</td>
<td>Durham, NC</td>
</tr>
<tr>
<td>Hubby, J.L.</td>
<td>Chicago, IL</td>
</tr>
<tr>
<td>Hubert, U.</td>
<td>Marburg, Ger</td>
</tr>
<tr>
<td>Hughes, M.A.</td>
<td>Newcastle, GB</td>
</tr>
<tr>
<td>Hunt, D.M.</td>
<td>London, GB</td>
</tr>
<tr>
<td>Huth, A.C.</td>
<td>Tübingen, Ger</td>
</tr>
<tr>
<td>Ichikawa-Ryo, M.</td>
<td>Osaka, Japan</td>
</tr>
<tr>
<td>Ikeda, H.</td>
<td>Matsuyama, Japan</td>
</tr>
<tr>
<td>Ikeda, K.</td>
<td>Duarte, CA</td>
</tr>
<tr>
<td>Ikenaga, M.</td>
<td>Osaka, Japan</td>
</tr>
<tr>
<td>Ilannak, G.</td>
<td>St. John's, NL</td>
</tr>
<tr>
<td>Imberski, R.B.</td>
<td>College Park, MD</td>
</tr>
<tr>
<td>Inagaki, E.</td>
<td>Hiroshima, Japan</td>
</tr>
<tr>
<td>Ingham, P.</td>
<td>Brighton, GB</td>
</tr>
<tr>
<td>Inocencio, B.</td>
<td>Purchase, NY</td>
</tr>
<tr>
<td>Inoue, H.</td>
<td>Osaka, Japan</td>
</tr>
<tr>
<td>Inoue, Y.</td>
<td>Misima, Japan</td>
</tr>
<tr>
<td>Ish-Horowicz, D.</td>
<td>London, GB</td>
</tr>
<tr>
<td>Ishii, Y.</td>
<td>Osaka, Japan</td>
</tr>
<tr>
<td>Israelowieski, N.</td>
<td>Bochum, Ger</td>
</tr>
<tr>
<td>Iturra, P.</td>
<td>Santiago, Chile</td>
</tr>
<tr>
<td>Ives, P.T.</td>
<td>Amherst, MA</td>
</tr>
<tr>
<td>Ivy, J.</td>
<td>La Jolla, CA</td>
</tr>
<tr>
<td>Iwamoto, R.N.</td>
<td>Pullman, WA</td>
</tr>
<tr>
<td>Izquierdo, E.</td>
<td>Santiago, Spain</td>
</tr>
<tr>
<td>Izquierdo, J.</td>
<td>Oviedo, Spain</td>
</tr>
<tr>
<td>Jacobs, M.E.</td>
<td>Goshen, IN</td>
</tr>
</tbody>
</table>

Alphabetical Directory
March 1981
Jacobson, A.G. Austin, Texas
Jain, H.K. New Delhi, India
James, F.W. Sydney, Australia
Janning, W. Münster, W.Germany
Jarry, B. Marseille, France
Jeffery, D.E. Provo, Utah
Jelisavcić, B. Belgrade, Yugoslavia
Jenkins, J.B. Swarthmore, Pennsylvania
Jha, A.P. Bhagalpur, India
Jenkins, J.B. Swarthmore, Pennsylvania
Jenkins, J.B. Swarthmore, Pennsylvania
Jha, A.P. Bhagalpur, India
Jinks, J.L. Birmingham, Great Britain
Joh, K. London, Great Britain
Johson, R.C. Garden City, New York
Johnson, G.B. St. Louis, Missouri
Johnson, K. London, Great Britain
Johnson, W.W. Albuquerque, New Mexico
Johnston, J.S. Austin, Texas
Jones, G.H. Birmingham, Great Britain
Jong, G. Utrecht, Netherland
Jordan, B. Marseille, France
Jowett, T. Eugene, Oregon
Juan, E. Barcelona, Spain
Judd, B.H. Austin, Texas
Jungen, H. Zurich, Switzerland
Kaji, S. Kobe, Japan
Kalicki, H. Garden City, New York
Kalisch, W-E. Bochum, W.Germany
Kambysellis, M.P. New York, New York
Kamping, A. Haren, Netherlands
Kaneka, A. Tokyo, Japan
Kang, E. Seoul, Korea
Kang, Y.S. Seoul, Korea
Kang-Shong, S.J. Seoul, Korea
Kankan, E. New Haven, Connecticut
Kaplan, L. New York, New York
Kaplan, W.D. Duarte, California
Karanja, S.N. Nairobi, Kenya
Karlik, A. Vienna, Austria
Karp, R. Cambridge, Great Britain
Karpin, G. Seattle, Washington
Kastritsis, C.D. Thessaloniki, Greece
Kato, T. Osaka, Japan
Kato, S. Sakado-Machi, Japan
Kaufmann, B.N. Philadelphia, Pennsylvania
Kauver, E. Pasadena, California
Kawabe, M. Kobe, Japan
Kawamishi, M. Misima, Japan
Kawasumi, M. Misima, Japan
Kayano, K. Nagasaki, Japan
Kearsney, M.J. Birmingham, Great Britain
Kekić, V. Belgrade, Yugoslavia
Keller, E.C.Jr. Morgantown, West Virginia
Keller, H.E. Morgantown, West Virginia
Kemphues, K. Bloomington, Indiana
Kennison, J. La Jolla, California
Kenny, R. Huntsville, Texas
Keppy, D.O. Ames, Iowa
Keränen, L. Oulu, Finland
Kercher, M.D. Lexington, Kentucky
Kertesz, J. Dayton, Ohio
Khan, F. Pakistan
Khishin, A.F. Assuit, Egypt

Kidwell, J. Providence, Rhode Island
Kidwell, M. Providence, Rhode Island
Kiefer, B.J. Middletown, Connecticut
Kiger, J.A. Davis, California
Kijken, F.B. Utrecht, Netherlands
Kikkawa, H. Osaka, Japan
Kim, B.Y. Seoul, Korea
Kim, H.S. Seoul, Korea
Kim, K.W. Kwangju, Korea
Kim, S.H. Seoul, Korea
Kimura, M.T. Sapporo, Japan
Kindle, R. Pasadena, California
Kingsbury, D. Evanston, Illinois
Kirshbaum, W.F. Buenos Aires, Argentina
Kitagawa, O. Tokyo, Japan
Klapwijk, P.M. Leiden, Netherlands
Klug, W.S. Crawfordsville, Indiana
Knipple, D. Ithaca, New York
Kobayashi, Y. Hiroshima, Japan
Kobel, H.R. Geneva, Switzerland
Koch, P. Marburg, W.Germany
Koenig, J.E. Duarte, California
Köhler, N. Valdivia, Chile
Kohler, W. Berlin, W.Germany
Kondo, S. Osaka, Japan
Konopka, R. Pasadena, California
Koo, D. Vancouver, Canada
Korn, G. Sakado-Machi, Japan
Kotarski, M. Ithaca, New York
Kraakauer, E. Bogota, Colombia
Kral, E. South Lansing, Michigan
Kramers, P.G.N. Leiden, Netherlands
Krause, E. South Orange, New Jersey
Kreber, R.A. Madison, Wisconsin
Kreitman, M. Cambridge, Massachusetts
Kress, H. München, W.Germany
Krieger, H. Storrs, Connecticut
Krimbas, C. Athens, Greece
Krishnamurthy, N.B. Mysore, India
Krivshenko, J.D. Rochester, New York
Kroeger, H. Saarbrücken, W.Germany
Kroman, R.A. Long Beach, California
Kruhnic, M. Belgrade, Yugoslavia
Kubl, E. Zürich, Switzerland
Kunz, W. Düsseldorf, W.Germany
Kuo, G. New Haven, Connecticut
Kurihara, J. Honolulu, Hawaii
Kuroda, Y. Misono, Japan
Kurokawa, H. Sakhr-Mura, Japan
Kusuda, K. Sakado, Japan
Kwok, Y. Nagasaki, Japan
Lachaise, D. Gif-sur-Yvette, France
Laird, C. Seattle, Washington
Lakhotia, S.C. Varanasi, India
Lakhotia, S.C. Ahmadabad, India
Lakovaara, S. Oulu, Finland
Lamb, M.J. London, Great Britain
Lam, T.J. Bloomington, Indiana
Landers, M.H. Burlington, Vermont
Langley, C. Res. Triangle Pk., N.C.
Lankinen, P. Oulu, Finland
La Torre, A. Burjasot, Spain
Laughnam, J.R. Urbana, Illinois
<table>
<thead>
<tr>
<th>Name</th>
<th>City/State/Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laurent, J.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Lavige, J.M.</td>
<td>Clermont-Ferrand, France</td>
</tr>
<tr>
<td>Lawlor, T.</td>
<td>La Jolla, California</td>
</tr>
<tr>
<td>Lawrence, M.J.</td>
<td>Birmingham, Great Britain</td>
</tr>
<tr>
<td>Lechien, J.</td>
<td>Namur, Belgium</td>
</tr>
<tr>
<td>Lechner, J.F.</td>
<td>Philadelphia, Pennsylvania</td>
</tr>
<tr>
<td>Lee, C.C.</td>
<td>Seoul, Korea</td>
</tr>
<tr>
<td>Lee, C.S.</td>
<td>Austin, Texas</td>
</tr>
<tr>
<td>Lee, M.S.</td>
<td>Seoul, Korea</td>
</tr>
<tr>
<td>Lee, T.J.</td>
<td>Seoul, Korea</td>
</tr>
<tr>
<td>Lee, W.R.</td>
<td>Baton Rouge, Louisiana</td>
</tr>
<tr>
<td>Leenders, H.J.</td>
<td>Nijmegen, Netherlands</td>
</tr>
<tr>
<td>Lefevre, G.Jr.</td>
<td>Northridge, California</td>
</tr>
<tr>
<td>Legay, J.M.</td>
<td>Lyon, France</td>
</tr>
<tr>
<td>Leibnath, F.</td>
<td>Saarbrücken, W.Germany</td>
</tr>
<tr>
<td>Leigh, B.</td>
<td>Leiden, Netherlands</td>
</tr>
<tr>
<td>Leigh-Brown, A.J.</td>
<td>London, Great Britain</td>
</tr>
<tr>
<td>Leister, P.</td>
<td>Baltimore, Maryland</td>
</tr>
<tr>
<td>Lemeunier, F.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Leonard, J.E.</td>
<td>Purchase, New York</td>
</tr>
<tr>
<td>Levan, G.</td>
<td>Göteborg, Sweden</td>
</tr>
<tr>
<td>Levitan, J.M.</td>
<td>Lyon, France</td>
</tr>
<tr>
<td>Leibenguth, F.</td>
<td>Saarbrücken, W.Germany</td>
</tr>
<tr>
<td>Leibnath, F.</td>
<td>Saarbrücken, W.Germany</td>
</tr>
<tr>
<td>Leifeld, H.J.</td>
<td>Nijmegen, Netherlands</td>
</tr>
<tr>
<td>Lentsch, C.</td>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>L'Hélias, C.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Libion-Hannaert, H.</td>
<td>Namur, Belgium</td>
</tr>
<tr>
<td>Liebrich, W.</td>
<td>Düsseldorf, W.Germany</td>
</tr>
<tr>
<td>Lindquist, S.</td>
<td>Chicago, Illinois</td>
</tr>
<tr>
<td>Lindsey, D.S.</td>
<td>La Jolla, California</td>
</tr>
<tr>
<td>Lints, C.</td>
<td>Louvain-La-Neuve, Belgium</td>
</tr>
<tr>
<td>Lints, F.</td>
<td>Louvain-La-Neuve, Belgium</td>
</tr>
<tr>
<td>Livak, K.</td>
<td>La Jolla, California</td>
</tr>
<tr>
<td>Ljung, K.</td>
<td>Umeå, Sweden</td>
</tr>
<tr>
<td>Lloyd, L.</td>
<td>St. Andrews, Great Britain</td>
</tr>
<tr>
<td>LoCascio, N.</td>
<td>Buffalo, New York</td>
</tr>
<tr>
<td>Logan, J.</td>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>Lokki, J.</td>
<td>Helsinki, Finland</td>
</tr>
<tr>
<td>Lokki, M.</td>
<td>Helsinki, Finland</td>
</tr>
<tr>
<td>Louis, C.</td>
<td>St. Christol-l-A., France</td>
</tr>
<tr>
<td>Louis, J.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Louis, M.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Loukas, M.</td>
<td>Athens, Greece</td>
</tr>
<tr>
<td>Loveland, M.J.</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Loverre, A.</td>
<td>Rome, Italy</td>
</tr>
<tr>
<td>Lowy, P.H.</td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>Lubsen, N.H.</td>
<td>Nijmegen, Netherlands</td>
</tr>
<tr>
<td>Lucchesi, J.C.</td>
<td>Chapel Hill, N.C.</td>
</tr>
<tr>
<td>Luce, W.M.</td>
<td>Urbana, Illinois</td>
</tr>
<tr>
<td>Lüers, H.</td>
<td>Berlin, W.Germany</td>
</tr>
<tr>
<td>Lumme, J.</td>
<td>Oulu, Finland</td>
</tr>
<tr>
<td>Lüning, K.G.</td>
<td>Stockholm, Sweden</td>
</tr>
<tr>
<td>Lyttle, T.W.</td>
<td>Honolulu, Hawaii</td>
</tr>
<tr>
<td>MacIntyre, R.</td>
<td>Ithaca, New York</td>
</tr>
<tr>
<td>Magalhaes, L.E.</td>
<td>Sao Paulo, Brazil</td>
</tr>
<tr>
<td>Mahler, E.P.</td>
<td>Aberdeen, Great Britain</td>
</tr>
<tr>
<td>Mahowald, A.</td>
<td>Bloomington, Indiana</td>
</tr>
<tr>
<td>Mainx, F.</td>
<td>Vienna, Austria</td>
</tr>
<tr>
<td>Maitra, S.N.</td>
<td>Calcutta, India</td>
</tr>
<tr>
<td>Majumdar, S.K.</td>
<td>Easton, Pennsylvania</td>
</tr>
<tr>
<td>Malogowkin-Cohen, Ch.</td>
<td>Haifa, Israel</td>
</tr>
<tr>
<td>Mandal, S.K.</td>
<td>Calcutta, India</td>
</tr>
<tr>
<td>Maniatis, T.</td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>Manna, G.K.</td>
<td>Kalyani, India</td>
</tr>
<tr>
<td>Manseau, L.</td>
<td>Madison, Wisconsin</td>
</tr>
<tr>
<td>Marcos, R.</td>
<td>Bellaterra, Spain</td>
</tr>
<tr>
<td>Margulies, L.</td>
<td>New York, New York</td>
</tr>
<tr>
<td>Marikovic, D.</td>
<td>Belgrade, Yugoslavia</td>
</tr>
<tr>
<td>Markov, T.A.</td>
<td>Tempe, Arizona</td>
</tr>
<tr>
<td>Maroni, G.P.</td>
<td>Chapel Hill, North Carolina</td>
</tr>
<tr>
<td>Marques, E.J.</td>
<td>Mato Grosso, Brazil</td>
</tr>
<tr>
<td>Marques, E.K.</td>
<td>Porto Alegre, Brazil</td>
</tr>
<tr>
<td>Marsh, L.</td>
<td>Basel, Switzerland</td>
</tr>
<tr>
<td>Martin, A.O.</td>
<td>Cleveland, Ohio</td>
</tr>
<tr>
<td>Martinez, M.J.</td>
<td>Burjasot, Spain</td>
</tr>
<tr>
<td>Martinez, M.N.</td>
<td>Porto Alegre, Brazil</td>
</tr>
<tr>
<td>Martinez, R.M.</td>
<td>Hamden, Connecticut</td>
</tr>
<tr>
<td>Maruyama, T.</td>
<td>Misima, Japan</td>
</tr>
<tr>
<td>Massie, H.R.</td>
<td>Utica, New York</td>
</tr>
<tr>
<td>Mather, K.C.B.E.</td>
<td>Birmingham, Great Britain</td>
</tr>
<tr>
<td>Mather, W.B.</td>
<td>Brisbane, Australia</td>
</tr>
<tr>
<td>Matsuda, T.</td>
<td>Asamizdoai, Japan</td>
</tr>
<tr>
<td>Matsusuma, T.</td>
<td>Nagasaki, Japan</td>
</tr>
<tr>
<td>Mayeda, K.</td>
<td>Detroit, Michigan</td>
</tr>
<tr>
<td>Mayfield, J.E.</td>
<td>Pittsburgh, Pennsylvania</td>
</tr>
<tr>
<td>Mazar-Barnett, B.</td>
<td>Buenos Aires, Argentina</td>
</tr>
<tr>
<td>McCarron, M.</td>
<td>Storrs, Connecticut</td>
</tr>
<tr>
<td>McCarthy, P.C.</td>
<td>New Wilimington, Pennsylvania</td>
</tr>
<tr>
<td>McCormack, M.K.</td>
<td>New Brunswick, New Jersey</td>
</tr>
<tr>
<td>McCready, E.</td>
<td>Greensboro, North Carolina</td>
</tr>
<tr>
<td>McCready, W.B.</td>
<td>Arlington, Texas</td>
</tr>
<tr>
<td>McDonald, J.F.</td>
<td>Ames, Iowa</td>
</tr>
<tr>
<td>Ménusua, J.L.</td>
<td>Burjasot, Spain</td>
</tr>
<tr>
<td>Mercader, J.</td>
<td>Mexico City, Mexico</td>
</tr>
<tr>
<td>Merrell, D.J.</td>
<td>Minneapolis, Minnesota</td>
</tr>
<tr>
<td>Merriam, J.</td>
<td>Los Angeles, California</td>
</tr>
<tr>
<td>Merritt, R.</td>
<td>Rochester, New York</td>
</tr>
<tr>
<td>Merten-Huber, H.</td>
<td>München, W.Germany</td>
</tr>
<tr>
<td>Meyer, G.F.</td>
<td>Tübingen, W.Germany</td>
</tr>
<tr>
<td>Meyer, H.U.</td>
<td>Madison, Wisconsin</td>
</tr>
<tr>
<td>Meyersonwitz, E.M.</td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>Michalopoulou, E.</td>
<td>Patras, Greece</td>
</tr>
<tr>
<td>Micheli, A.</td>
<td>Rome, Italy</td>
</tr>
<tr>
<td>Michinomae, M.</td>
<td>Kobe, Japan</td>
</tr>
<tr>
<td>Migliani, G.S.</td>
<td>Ludhiana, India</td>
</tr>
<tr>
<td>Mikasa, K.</td>
<td>Sakado-Machi, Japan</td>
</tr>
<tr>
<td>Miklós, G.L.E.</td>
<td>Canberra, Australia</td>
</tr>
<tr>
<td>Milkmán, R.D.</td>
<td>Iowa City, Iowa</td>
</tr>
<tr>
<td>Miller, D.D.</td>
<td>Lincoln, Nebraska</td>
</tr>
<tr>
<td>Miller, O.L.jr.</td>
<td>Charlottesville, Virginia</td>
</tr>
<tr>
<td>Milner, M.J.</td>
<td>St. Andrews, Great Britain</td>
</tr>
<tr>
<td>Minamouri, S.</td>
<td>Hiroshima, Japan</td>
</tr>
<tr>
<td>Minato, K.</td>
<td>Misima, Japan</td>
</tr>
<tr>
<td>Mindek, G.</td>
<td>Zürich, Switzerland</td>
</tr>
<tr>
<td>Miranda, M.</td>
<td>Rio de Janeiro, Brazil</td>
</tr>
<tr>
<td>Mishra, A.</td>
<td>Varanasi, India</td>
</tr>
<tr>
<td>Mitchell, C.</td>
<td>Duarte, California</td>
</tr>
<tr>
<td>Mitchell, H.K.</td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>Mittler, S.</td>
<td>DeKalb, Illinois</td>
</tr>
<tr>
<td>Mohler, J.D.</td>
<td>Iowa City, Iowa</td>
</tr>
<tr>
<td>Mohon-Acharya, P.</td>
<td>Calcutta, India</td>
</tr>
<tr>
<td>Moisand, R.</td>
<td>Buffalo, New York</td>
</tr>
<tr>
<td>Momma, E.</td>
<td>Sapporo, Japan</td>
</tr>
<tr>
<td>Monclus, M.</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td>Monks, G.</td>
<td>München, W.Germany</td>
</tr>
<tr>
<td>Montelente, G.</td>
<td>Rome, Italy</td>
</tr>
</tbody>
</table>
Montell, I. Umeå, Sweden
Montijn, C. Utrecht, Netherlands
Morea, M. Bari, Italy
Moree, R. Pullman, Washington
Mori, S. Nagasaki, Japan
Moriwaki, D. Tokyo, Japan
Mortensen, M. Copenhagen, Denmark
Moskwin, T. Notre Dame, Indiana
Mossige, J. Oslo, Norway
Mourad, A.O. Alexandria, Egypt
Mourao, C.A. Sao Jose de R.P., Brazil
Moya, A. Burjasot, Spain
Muckenthaler, F. Bridgewater, Mass.
Mukherjee, A.S. Calcutta, India
Mukherjee, T. Varanasi, India
Münster, R. Münster, W.Germany
Muñoz, E.R. Buenos Aires, Argentina
Muona, O. Helsinki, Finland
Murakami, A. Misima, Japan
Murata, M. Chiba, Japan
Murnik, M.R. Macomb, Illinois
Myszewski, M.E. Des Moines, Iowa
Nagaraj, H.J. Mysore, India
Nagyna, F. Naples, Italy
Najera, C. Burjasot, Spain
Nakai, S. Osaka, Japan
Nakamura, Y. Tokyo, Japan
Nakamura-Tanaka, E. Sakai, Japan
Nalcaci, O.B. Ankara, Turkey
Namkoon, Y. Seoul, Korea
Nand, H. Berlin, W.Germany
Nöthiger, R. Zürich, Switzerland
Novitski, E. Eugene, Oregon
Parkash, R. Amritsar, India
Park, W.L. West Lafayette, Indiana
Parish, R. Newcastle, Australia
Parsons, P.A. Bundooora, Australia
Pateur, G. Montpellier, France
Paterson, H.E. Nedlands, Australia
Paul, C.P. Ann Arbor, Michigan
Pavan, C. Sao Paulo, Brazil
Paz, C. Buenos Aires, Argentina
Pazman, G.J. Lancaster, Great Britain
Peacock, W.J. Canberra, Australia
Peers, E. New York, New York
Pelecanos, M. Patras, Greece
Pelisson, A. Clermont-Ferrand, France
Pentzos-Daponte, A. Thessaloniki, Greece
Peñafiel, T. Bellaterra, Spain
Pereira, M. Sao Paulo, Brazil
Pereira, S.M.F. Mato Grosso, Brazil
Perez, M. Bellaterra, Spain
Perez-Salas, Caracas, Venezuela
Periquet, G. Paris, France
Petanovic, R. Belgrade, Yugoslavia
Peterson, N. Pasadena, California
Petit, C. Paris, France
Petrovic, B. Belgrade, Yugoslavia
Petrus, W. Cambridge, Massachusetts
Petrovich, S.B. Catonsville, Maryland
Pfriem, P. Tübingen, W.Germany
Phillips, J. Austin, Texas
Phelps, R.W. San Diego, California
Pierce, D. Chapel Hill, North Carolina
Pilares, G.L. Lima, Peru
Pinchin, S.M. London, Great Britain
Pinheiro, R. Oviedo, Spain
Oh, S.K. Seoul, Korea
Ohanessian, A. Gif-sur-Yvette, France
Ohba, S. Tokyo, Japan
Oishi, K. Kobe, Japan
Okada, M. Sakura-Mura, Japan
Okada, T. Tokyo, Japan
Oksala, T.A. Turku, Finland
Olivieri, G. Rome, Italy
Oller, R. Tübingen, W.Germany
Olvera, O.M.S. Mexico City, Mexico
Ondrej, M. Prague, Czechoslovakia
Ortiz, E. Madrid, Spain
Osborn, R. Berkeley, California
Oshima, C. Misima, Japan
Oster, I.I. St. John's, Canada
Oster, P. Bowling Green, Ohio
Ostrowski, R.S. Charlotte, North Carolina
Pages, M. Madrid, Spain
Paik, Y.K. Seoul, Korea
Pak, W.L. West Lafayette, Indiana
Pal, T.K. Calcutta, India
Palabos, L. Paris, France
Palka, J. Seattle, Washington
Papanicolaou, M. Barcelona, Spain
Paradi, E. Budapest, Hungary
Parente, A. Detroit, Michigan
Paris, G. Naples, Italy
Park, M.S. Kwangju, Korea
Parkash, R. Amritsar, India
Parker, D.R. Riverside, California
Parrs, R. Newcastle, Australia
Paz, C. Buenos Aires, Argentina
Pazman, G.J. Lancaster, Great Britain
Peacock, W.J. Canberra, Australia
Peers, E. New York, New York
Pelecacos, M. Patras, Greece
Pelisson, A. Clermont-Ferrand, France
Pentzos-Daponte, A. Thessaloniki, Greece
Peñafiel, T. Bellaterra, Spain
Pereira, M.A.Q.R. Sao Paulo, Brazil
Pereira, S.M.F. Mato Grosso, Brazil
Perez, M. Bellaterra, Spain
Pérez-Salas, Caracas, Venezuela
Periquet, G. Paris, France
Petanovic, R. Belgrade, Yugoslavia
Peterson, N. Pasadena, California
Petit, C. Paris, France
Petković, B. Belgrade, Yugoslavia
Petri, W. Cambridge, Massachusetts
Petrovich, S.B. Catonsville, Maryland
Pfriem, P. Tübingen, W.Germany
Phillips, J. Austin, Texas
Picard, G. Clermont-Ferrand, France
Pierce, D. Chapel Hill, North Carolina
Pilares, G.L. Lima, Peru
Pincin, S.M. London, Great Britain
Pinser, W. Tübingen, W.Germany
Piñeiro, R. Oviedo, Spain
<table>
<thead>
<tr>
<th>Name</th>
<th>Affiliation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipkin, S.B.</td>
<td>Washington, D.C.</td>
</tr>
<tr>
<td>Plá, C.</td>
<td>Bellaterra, Spain</td>
</tr>
<tr>
<td>Pleign, Chr.</td>
<td>Bochum, W.Germany</td>
</tr>
<tr>
<td>Plus, N.</td>
<td>St. Christol-1-A., France</td>
</tr>
<tr>
<td>Poodry, C.A.</td>
<td>Santa Cruz, California</td>
</tr>
<tr>
<td>Portin, P.</td>
<td>Turku, Finland</td>
</tr>
<tr>
<td>Postlethwait, J.H.</td>
<td>Eugene, Oregon</td>
</tr>
<tr>
<td>Potter, J.H.</td>
<td>College Park, Maryland</td>
</tr>
<tr>
<td>Potter, S.S.</td>
<td>Middletown, Connecticut</td>
</tr>
<tr>
<td>Powell, J.R.</td>
<td>New Haven, Connecticut</td>
</tr>
<tr>
<td>Prakash, H.S.</td>
<td>Mysore, India</td>
</tr>
<tr>
<td>Prakash, S.</td>
<td>Rochester, New York</td>
</tr>
<tr>
<td>Prasad, J.</td>
<td>Calcutta, India</td>
</tr>
<tr>
<td>Prat, C.</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td>Privitera, E.</td>
<td>Milan, Italy</td>
</tr>
<tr>
<td>Prout, T.</td>
<td>Davis, California</td>
</tr>
<tr>
<td>Pruzan, A.</td>
<td>Purchase, New York</td>
</tr>
<tr>
<td>Puro, J.</td>
<td>Turku, Finland</td>
</tr>
<tr>
<td>Pyle, D.</td>
<td>Raleigh, North Carolina</td>
</tr>
<tr>
<td>Quinn, W.G.</td>
<td>Princeton, New Jersey</td>
</tr>
<tr>
<td>Rae, P.M.M.</td>
<td>New Haven, Connecticut</td>
</tr>
<tr>
<td>Rafael, H.V.</td>
<td>Lima, Peru</td>
</tr>
<tr>
<td>Raff, E.</td>
<td>Bloomington, Indiana</td>
</tr>
<tr>
<td>Raff, R.</td>
<td>Bloomington, Indiana</td>
</tr>
<tr>
<td>Raham, R.</td>
<td>La Jolla, California</td>
</tr>
<tr>
<td>Rahat, A.</td>
<td>Jerusalem, Israel</td>
</tr>
<tr>
<td>Rahman, S.M.Z.</td>
<td>Bhagalpur, India</td>
</tr>
<tr>
<td>Rai, K.S.</td>
<td>Notre Dame, Indiana</td>
</tr>
<tr>
<td>Raisbeck, J.A.</td>
<td>Newcastle, Australia</td>
</tr>
<tr>
<td>Rajasekarasetty, M.R.</td>
<td>Mysore, India</td>
</tr>
<tr>
<td>Ramel, C.</td>
<td>Stockholm, Sweden</td>
</tr>
<tr>
<td>Ramesh, S.R.</td>
<td>Mysore, India</td>
</tr>
<tr>
<td>Ramírez, L.</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Ramshaw, J.</td>
<td>Cambridge, Massachusetts</td>
</tr>
<tr>
<td>Ranganathan, H.A.</td>
<td>Mysore, India</td>
</tr>
<tr>
<td>Ransom, R.J.</td>
<td>Milton-Keynes, Great Britain</td>
</tr>
<tr>
<td>Rapport, E.</td>
<td>Burnaby, Canada</td>
</tr>
<tr>
<td>Rasmussen, A.</td>
<td>Umeå, Sweden</td>
</tr>
<tr>
<td>Rasmussen, B.</td>
<td>Umeå, Sweden</td>
</tr>
<tr>
<td>Rasmussen, M.</td>
<td>Umeå, Sweden</td>
</tr>
<tr>
<td>Ratnayake, W.E.</td>
<td>Gangodawila, Sri Lanka</td>
</tr>
<tr>
<td>Ratty, F.J.</td>
<td>San Diego, California</td>
</tr>
<tr>
<td>Ray, C.</td>
<td>Atlanta, Georgia</td>
</tr>
<tr>
<td>Razzini-Bonifazio, A.</td>
<td>Milan, Italy</td>
</tr>
<tr>
<td>Reddi, O.S.</td>
<td>Hyderabad, India</td>
</tr>
<tr>
<td>Regis, A.</td>
<td>Santiago, Spain</td>
</tr>
<tr>
<td>Rolston, J.</td>
<td>Sheffield, Great Britain</td>
</tr>
<tr>
<td>Remondi, D.J.</td>
<td>Bethesda, Maryland</td>
</tr>
<tr>
<td>Renkawitz, J.M.</td>
<td>Sydney, Australia</td>
</tr>
<tr>
<td>Renkawitz, R.</td>
<td>Düsseldorf, W.Germany</td>
</tr>
<tr>
<td>Renkawitz-Pohl, R.</td>
<td>Düsseldorf, W.Germany</td>
</tr>
<tr>
<td>Ribó, G.</td>
<td>Barcelona, Spain</td>
</tr>
<tr>
<td>Ribolínez, A.</td>
<td>Bloomington, Indiana</td>
</tr>
<tr>
<td>Richard-Molard, Ch.</td>
<td>Gif-sur-Yvette, France</td>
</tr>
<tr>
<td>Richards, G.P.</td>
<td>Cambridge, Great Britain</td>
</tr>
<tr>
<td>Richardson, R.H.</td>
<td>Austin, Texas</td>
</tr>
<tr>
<td>Richmond, R.</td>
<td>Bloomington, Indiana</td>
</tr>
<tr>
<td>Richmond, R.C.</td>
<td>Raleigh, North Carolina</td>
</tr>
<tr>
<td>Rick, J.T.</td>
<td>Sheffield, Great Britain</td>
</tr>
<tr>
<td>Rico, M.</td>
<td>Valencia, Spain</td>
</tr>
<tr>
<td>Rinehart, R.R.</td>
<td>San Diego, California</td>
</tr>
<tr>
<td>Rios, R.I.</td>
<td>Rio de Janeiro, Brazil</td>
</tr>
</tbody>
</table>
Schubiger, G. Seattle, Washington
Schubiger, M. Seattle, Washington
Schweizer, P. Zürich, Switzerland
Schwinck, I. Storrs, Connecticut
Schwochau, M. Düsseldorf, W.Germany
Sears, D. Eugene, Oregon
Sederoff, R.R. Eugene, Oregon
Seiger, M. Rio de Janeiro, Brazil
Seiger, M.B. Dayton, Ohio
Semeonoff, R. Leicester, Great Britain
Sene, F.M. São Paulo, Brazil
Serban, S.N. Belgrade, Yugoslavia
Serra, L. Barcelona, Spain
Shafer, S.J. Oakdale, New York
Shakoori, A.R. Pakistan
Sharma, G.P. Chandigarh, India
Sharma, R.P. New Delhi, India
Shear, C. Atlanta, Georgia
Shearn, A. Baltimore, Maryland
Sheldon, B.L. Sydney, Australia
Shellenbarger, D. Vancouver, Canada
Shelton, M. Newcastle, Great Britain
Shen, M.W. Austin, Texas
Shiomi, T. Nagasaki, Japan
Shirk, D. Eugene, Oregon
Shorrock, B. Leeds, Great Britain
Shukle, P.T. Edinburgh, Great Britain
Sick, K. Copenhagen, Denmark
Siddaveere-Gowda, L. Mysore, India
Sidhu, N.S. Iskantgar, India
Silva, A.B.C. São Jose de R.P., Brazil
Simmons, J.R. Logan, Utah
Singh, A. Chandigarh, India
Singh, B.K. Varanasi, India
Sirotkin, K. Pasadena, California
Skibinski, D.E.F. Swansea, Great Britain
Skripski, T. Chapel Hill, North Carolina
Smit, S.Z. Belgrade, Yugoslavia
Smith, B.R. Aberdeen, Great Britain
Smith, D.A. Birmingham, Great Britain
Smith, P.D. Atlanta, Georgia
Sobels, F.H. Leiden, Netherlands
Södergren, A. Umeå, Sweden
Sofier, W. Baltimore, Maryland
Sokoloff, A. San Bernardino, California
Soliman, M.H. Armidale, Australia
Soll, D.G. New Haven, Connecticut
Sondermeijer, P. Nijmegen, Netherlands
Sonnenblick, B.P. Newark, New Jersey
Sorsa, M. Helsinki, Finland
Sorsa, V. Helsinki, Finland
Sourdis, J. Athens, Greece
Sparrow, J.C. York, Great Britain
Speers, L. Ottawa, Canada
Spencer, G.E. Bundooora, Australia
Spencer, J. Cambridge, Great Britain
Sperlich, D. Tübingen, W.Germany
Spiess, E.B. Chicago, Illinois
Spieth, H.T. Davis, California
Spofford, J.B. Cambridge, Great Britain
Spofford, A. Bloomington, Indiana
Sprechman, L. Austin, Texas
Sprey, Th.J. Leiden, Netherlands
Springer, R. Vienna, Austria
Sréc, Z. Geneva, Switzerland
Sreerama-Reddy, G. Mysore, India
Sroczyński, A. Birmingham, Great Britain
Stalker, H.D. St. Louis, Missouri
Stanley, S.M. Bundooora, Australia
Stark, W.S. Baltimore, Maryland
Steffensen, D.M. Urbana, Illinois
Stein, H. Tübingen, W.Germany
Steiner, E. La Jolla, California
Steiner, W.W.M. Urbana, Illinois
Stern, G. Berkeley, California
Stewart, B. Los Angeles, California
Stewart, D. Waltham, Massachusetts
Stögerer, K. Tübingen, W.Germany
Stone, J. Eugene, Oregon
Storter, E. Montpellier, France
Strickberger, M.W. St. Louis, Missouri
Strom, P. Copenhagen, Denmark
Strommen, C. Eugene, Oregon
Strub, S. Stony Brook, New York
Ståhl, G. Stockholm, Sweden
Suchopova, N. Brno, Czechoslovakia
Sulerud, R.L. Minneapolis, Minnesota
Sullivan, D.T. Syracuse, New York
Suomalainen, E. Helsinki, Finland
Suyo, T. Lima, Peru
Suzuki, D. Vancouver, Canada
Svalhlin, H. Umeå, Sweden
Sved, J.A. Sydney, Australia
Swift, H.H. Chicago, Illinois
Szuchmacher, R. Rio de Janeiro, Brazil
Tadei, W.J. São Jose de R.P., Brazil
Tadei, W.P. São Jose de R.P., Brazil
Takada, H. Sapporo, Japan
Takamura, T. Misima, Japan
Takanashi, E. Tokyo, Japan
Taketani, J. Sakado-Machi, Japan
Takikawa, S. Asamizodai, Japan
Tallentire, A.C. Kampala, Uganda
Tanouye, M. Pasadena, California
Tantawy, A.O. Alexandria, Egypt
Tartof, K.D. Philadelphia, Pennsylvania
Tavares, L.J. Rio de Janeiro, Brazil
Taylor, C.E. Los Angeles, California
Temin, R. Madison, Wisconsin
Templeton, A.R. St. Louis, Missouri
Tener, G. Vancouver, Canada
Teninges, D. Gif-sur-Yvette, France
Teramoto, L.T. Honolulu, Hawaii
Thalmann, G.J. Oakdale, New York
The, D. Sydney, Australia
Thirle, B. Ann Arbor, Michigan
Thoday, J.M. Cambridge, Great Britain
Thomopoulos, G. Thessaloniki, Greece
Thompson, C. Johnstown, Pennsylvania
Thompson, J.N. Norman, Oklahoma
Thompson, S.R. Ithaca, New York
Thörig, G.E.W. Utrecht, Netherlands
Throckmorton, L.H. Chicago, Illinois
Tigerstedt, P. Helsinki, Finland
Titová, A. Helsinki, Finland
Tischendorf, G. Düsseldorf, West Germany
Tobari, I. Chiba, Japan
Tobari, Y.N. Tokyo, Japan
Tobler, H. Fribourg, Switzerland
Tokunaga, C. Berkeley, California
Tokuyasu, K. La Jolla, California
Tomomura, Y. Tokyo, Japan
Tonzetich, J. Lewisburg, Pennsylvania
Torres, M.E. Bogota, Colombia
Torroja, E. Madrid, Spain
Tracey, M.L. Miami, Florida
Tracey, M.L. St. Catherines, Canada
Treat, H. Münster, Germany
Triantaphyllidis, C.D. Thessaloniki, Greece
Trippa, G. Rome, Italy
Trot, W.E.III Duarte, California
Tsacas, L. Gif-sur-Yvette, France
Tsakas, S. Athens, Greece
Tsubota, S. Cambridge, Great Britain
Tsuchida, H. Chiba, Japan
Tsunoda, K. Sakado-Machi, Japan
Tsuchiya, M. Asamizodai, Japan
Tucić, N. Belgrade, Yugoslavia
Tucker, C. Milton-Keynes, Great Britain
Tuckett, J.B. St. Andrews, Great Britain
Tuinstra, E.J. Utrecht, Netherlands
Tung, P.S.C. University Park, Pennsylvania
Turner, R.R. Bloomington, Indiana
Twardzik, D.R. Bethesda, Maryland
Uiber, M. Madison, Wisconsin
Ulubay, F. Ankara, Turkey
Umlü, H. Ankara, Turkey
Usihio, Y. Kobe, Turkey
Vacek, D. Armidale, Australia
Vaiidya, V.G. Poona, India
Valadé, E. Santiago, Spain
Valencia, E. Madrid, Spain
Valenta, J. Göttingen, Germany
Valporto, V.M. Rio de Janeiro, Brazil
Van der Geer, W. Haren, Netherlands
Van den Haute, J. Namur, Belgium
Van Herreweghe, J. Villeurbanne, France
Van Valen, L. Chicago, Illinois
Varga, J. Budapest, Hungary
Vartanian, G. Sao Jose de R.P., Brazil
Vasquez, E. Oviedo, Spain
Vasquez, E.J. Lima, Peru
Vasudev, V. Mysoore, India
Velissariou, V. Cambridge, Great Britain
Vepsäläinen, K. Helsinki, Finland
Vergini, Y. Athens, Greece
Viinikkala, Y. Turku, Finland
Vijayan, V.A. Mysoore, India
Vilageliu, L. Barcelona, Spain
Vincent, W.S. Tempe, Arizona
Voelker, R.A. Res. Triangle Pk., N.C.
Vogel, E. Leiden, Netherlands
Vogt, H.P. Nijmegen, Netherlands
Vreezen, W.J. Leiden, Netherlands
Vye, E.R. Bozeman, Montana
Wada, R. Osaka, Japan
Waddle, F.R. Fayetteville, North Carolina
Wakahama, K.I. Matsue, Japan
Wakimoto, B. Bloomington, Indiana
Walker, V. Cambridge, Great Britain
Wallace, B. Ithaca, New York
Wallace, H. Birmingham, Great Britain
Ward, C.L. Durham, North Carolina
Wargent, H. Sheffield, Great Britain
Warren, M.E. Swansea, Great Britain
Wasserman, M. New York, New York
Watabe, H. Sapporo, Japan
Watanabe, T.K. Misima, Japan
Watson, W.A.F. Aberdeen, Great Britain
Wehner, R. Zürich, Switzerland
Weide, R. Tempe, Arizona
Weideli, H. Basel, Switzerland
Welshons, J. Ames, Iowa
Welshons, W.J. Ames, Iowa
Welter, R.J. Ames, Iowa
Wendisch, I. Nijmegen, Netherlands
Wensink, P. Waltham, Massachusetts
Westerberg, B.M. Umeå, Sweden
Westra, A. Leiden, Netherlands
Wheel, L. Austin, Texas
Wheeler, M.R. Austin, Texas
White, B.N. Kingston, Canada
White, E. New Haven, Connecticut
White, V. Amherst, Massachusetts
Whittinghill, M. Chapel Hill, N.C.
Whittle, J.K.S Brighton, Great Britain
Whitty, R.W. Canberra, Australia
Wieschaus, E. Heidelberg, Germany
Wijmans, E. Madison, Wisconsin
Wildeboer-du Fui, M. Haren, Netherlands
Wilkerson, R.D. Oak Ridge, Tennessee
Williamson, D.L. Stony Brook, New York
Williamson, J.H. Calgary, Canada
Williamson, R.J. Misima, Japan
Willcohn, P. Bochum, Germany
Wimber, D. Eugene, Oregon
Wing-Cordeiro, H. Porto Alegre, Brazil
Winkler, F. Valdivia, Chile
Wong, P.T.-C. Duarte, California
Woo, T.H. Seoul, Korea
Woodruff, R.C. Austin, Texas
Woodruff, R.C. Bowling Green, Ohio
Woolf, C.M. Tempe, Arizona
Wright, C.P. Cullowhee, North Carolina
Wright, T.R.F. Charlottesville, Virginia
Wu, C.-F. Iowa City, Iowa
Wui, I.S. Kwangju, Korea
Würgler, F.E. Zürich, Switzerland
Wyers, F. Gif-sur-Yvette, France
Wyman, A. Cambridge, Massachusetts
Wyman, R.J. New Haven, Connecticut
Yamada, M.A. Misima, Japan
Yamamoto, T. Sakai, Japan
Yamazaki, H.I. Tokyo, Japan
Yanders, A.F. Columbia, Missouri
Yang, C.Y. Seoul, Korea
Yannopoulos, G. Patras, Greece
Yeh, F. Halifax, Canada
Yoon, J.S. Austin, Texas
Yoon, Y.S. Seoul, Korea
Yoshikawa, I. Nagasaki, Japan
Yost, H.T. Amherst, Massachusetts
Young, J.P.W. Brighton, Great Britain
Younis, S.A. Assuit, Egypt
Zacharopoulou, A. Patras, Greece
Zapata, C. Santiago, Spain
Zarate, E. Santiago, Chile
Zijlstra, J. Leiden, Netherlands
Zimm, G. La Jolla, California
Zimmering, S. Providence, Rhode Island
Zonneveld, B.J.M. Leiden, Netherlands
Zouros, E. Halifax, Canada
Zubeldia, A. Valencia, Spain
Züst, B. Fribourg, Switzerland
ARGENTINA
Buenos Aires: Comisión Nacional de Energía Atómica, Departamento de Radiobiología, División Genética. Avda. Libertador 8250. Tel 70-771 Ext 331
Kirschbaum, W.F. B.Sc.Agr., Research Associate Salivary cytology
Magar Barnett, B. Ph.D. Radiation genetics and chemical induction of mutations
Muñoz, E.R. M.D. Radiation genetics
Paéz, C. Curator of Stocks

AUSTRALIA
Brink, N.G. Ph.D., Senior Lecturer Development
Cann, L. Curator of Stocks
Clark, A.M. Ph.D., Professor Mutagenesis
Adamin, New South Wales, 2351: University of New England, Department of Animal Science. Tel. (067) 72-2911
Claxton, J.H. B.Sc., Ph.D. Senior Lecturer Developmental genetics.
East, P.D. B.Sc. Research Fellow. Population and biochemical genetics
Brisbane, Queensland 4067: Univ. of Queensland, Department of Zoology, Genetics Laboratory.
Balwin, G. B.Sc., (Hons), Graduate Student
Mather, W.B. Ph.D., Head of Laboratory Chromosomal polymorphism, isolating mechanisms, speciation.
Bundoora, Victoria 3083: La Trobe University, Department of Genetics and Human Variation (Australian Drosophila Research Unit) Tel. (03) 478-3122
Brock, I.R. P.D., Senior Lecturer Taxonomy, cytology and zoogeography of Drosophilidae, especially of the Australian region.
Hay, D.A. Ph.D., Senior Lecturer Behavior genetics
Parsons, P.A. Sc.D., Professor Behavior and ecological genetics; zoogeography of Australian Drosophilidae
Spence, G.E. B.Sc., Curator of stocks
Stanley, S.M. Ph.D., Senior Research Assistant Ecology; Australian Drosophilidae.
Canberra, A.C.T. 2601: Australian National University, Department of Population Biology
Miklos, G.L.G. Ph.D., Research Fellow Chromosome pairing, yeast mitochondrial genetics, repeated DNA
Whitty, R.W. Senior Technical Officer Electron Microscope Unit Electron microscopy of Drosophila
Canberra, A.C.T. 2601: Commonwealth Scientific and Industrial Research Organization, Division of Plant Industry
Appels, R. Ph.D., Research Scientist Chromosome structure - 5981
Dennis, E.S. Ph.D., Research Scientist Molecular biology of Drosophila highly repetitive DNA - 5434
Hilliker, A.J. Ph.D., Research Fellow Chromosome structure and function; recombination; gene regulation; mutagenesis - 5434
Peacock, W.J. Ph.D., Chief of Division Chromosome organization - 5250, 5610
Clayton, Victoria 3168: Monash University, Department of Genetics
Camfield, R.G. Ph.D., Senior Teaching Fellow Biochemical and development genetics, particularly temperature sensitive mutants
Dyer, K.F. Ph.D., Lecturer Population genetics, mutagenesis
Clayton, Victoria 3168: Monash University, Department of Psychology
Crossley (nee Pearce), S.A. Ph.D., Senior Lecturer Behavior genetics
Nedlands, Western Australia 6009: University of Western Australia, Department of Zoology
Paterson, H.E. Ph.D., Senior Lecturer Speciation
Newcastle, N.S.W. 2308: Univ. of Newcastle, Department of Biological Sciences Tel (049)85535
Angus, D.S. Ph.D., Senior Lecturer Population Genetics
Parris, R. B.Sc., Hon., Curator of Stocks
Raisbeck, J.A. B.Sc., Hon., Graduate Student
Sydney, N.S.W.: Commonwealth Scientific and Industrial Research Organization, Genetics Research Laboratories, P.O. Box 184, North Ryde, N.S.W. 2113. Tel 88 0221
Franklin, I.R. Ph.D. Population genetics
Hill, R.J. Ph.D. Molecular genetics
Lovelock, M.J. B.Sc. Developmental genetics
Rendel, J.M. Ph.D. Population, developmental genetics
Sheldon, B.L. Ph.D. Quantitative, developmental genetics

Sydney, N.S.W. 2113: Macquarie Univ. Sch. of Biological Sciences, North Ryde Tel 889129
Daggard, G. B.A. (Hons.), Graduate student ADH
Frankham, R. Ph.D., Senior Lecturer Quantitative genetics
Ramirez, L. M.Sc., Graduate student Developmental genetics

Sydney, N.S.W. 2006: Univ. of Sydney, Dept. of Agricul, Botany, Fac. of Agric. Tel 660-8941
Baker, E.P. Ph.D. Cytogenetics
The, D. M.Sc.Agr., Teaching Fellow

Sydney, N.S.W. 2006: Botany Building, A72 Tel (02) 692-2298
Sved, J.A.

Sydney, N.S.W. 2006: University of Sydney, Department of Animal Husbandry Tel 692-2186
Barker, J.S.F. B.Agr.Sc., Ph.D., Associate Professor Animal Genetics, population and quantitative genetics
East, P.D. B.Sc., Research Assistant Population genetics

Sydney, N.S.W. 2033: University of New South Wales, School of Wool and Pastoral Sciences Tel 662-2294
James, F.W. B.A., Senior Lecturer Quantitative genetics

AUSTRIA
A-1090 Vienna IX: Institut für allgemeine Biologie, Schwarzspanierstr. 17 Tel 0222-42 27 67
Baxa, H. Ph.D. Population genetics
Feuerback-Mravlag, H. Ph.D. Population genetics
Hampel, H. Ph.D. Behaviour genetics
Karlik, A. Ph.D. Population genetics
Mainx, F. Ph.D., Retired Professor
Ruderer-Doschek, E. Ph.D. subobscura, sexual behaviour
Springer, R. Ph.D. subobscura, sexual behaviour

BELGIUM
Brussels: Université Libre de Bruxelles, Département de Biologie moléculaire, Laboratoire de Cytologie et Embryologie moléculaires
Altorfer, N. Dr.Sc.
Brachet, J. Dr.Méd., Professor
B - 1348 Louvain-la-Neuve. Université de Louvain, Faculté des Sciences agronomiques, Laboratoire de Génétique, Place Croix du Sud 2. Tel 010/418 181 Est 3667
Bourgeois, M. Ph.D., Student Natural selection
Harvengt, J. Assistant Longevity mutants
Lints, C.V. Research Assistant Curator of stocks
Lints, F.A. Ph.D., Professor, Head of Laboratory Population and physiological genetics, longevity and aging

B-5000 Namur: Facultés Universitaires N.D. de la Paix, Laboratoire de Génétique, rue de Bruxelles 61
Delcour, J. Ph.D., Lecturer Molecular genetics
Oeltombe-Lietaert, M.-C. M.D., Senior Assistant Enzyme polymorphism
Elens, A. Ph.D., Professor Behavior genetics
Lechien, J. Curator of Stocks
Libion-Mannaert, M. Grad.Chem., Senior Technical Assistant Molecular genetics
Van den Haute, J. B.Sc., Assistant Molecular genetics

BRAZIL
Mato Grosso: Universidade Estadual de Mato Grosso, Departamento de Morfologia - Cidade Universitária - Caixa Postal 649 - 79.00 - Campo Grande - Mato Grosso
Porto Alegre: Universidade Federal do Rio Grande do Sul, Instituto de Biociencias, Departamento de Genética, Caixa Postal 1953 Tel 240794
Cordeiro, A.R. Ph.D., Professor Chromosome development & polymorphism, enzyme polymorphism
Dratz, F.L. M.Sc., Professor, Inst. Ciências Biológicas UFGO Enzyme polymorphism
Marques, E.K. Ph.D., Head of Department, Associate Professor Population genetics, effects of radiation and radioresistance
Martinez, M.N. B.Sc.Lic., Assistant Professor Color polymorphism in Drosophila, enzyme polymorphism
Winge-Corderio, H. B.Sc.Lic., Assistant Professor Animal genetics, speciation in D. Willistoni cryptic group, enzyme polymorphism

20.000 Rio de Janeiro – RJ: Cidade Universitária UFRJ, Departamento de Genética, Cx.P 68011

Arantes, P.C. Assistant Professor Isoenzymes in natural populations of D. capricorni
Cordeiro, A.R. Dr., Chairman Genetic and evolution of protein polymorphism and gene regulation in Drosophila and Cavia; experimental populations
Filgueiras, L. Assistant Professor Drosophila taxonomy; experimental populations of Drosophila

Miranda, M. Dr., Professor Regulatory gene crossing in Drosophila and Rynchosciara
Nascimento, L. Technical Assistant Stockkeeper
Rios, R.I. Assistant Professor Drosophila protein polymorphism related to environmental conditions
Seiger, M. Dr., Visiting Professor Behaviour genetics of Drosophila
Szwachmacher, R. MSc. Behaviour genetics of Drosophila
Valporto, V.M. Aux Ensonio Ontogenetic and tissue distribution of isoenzymes in Tripunctata group of Drosophila

Tavares, L.L. Admin. Assistant

21.941 Rio de Janeiro-RJ: Cidade Universitária UFRJ, Departamento de Genética Instituto de Biologia, Cx.P. 68011

Gupta, A.P. Dr. Visiting Assistant Professor. Population and Developmental Genetics.

15100 São José do Rio Preto, SP: Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), Departamento de Biologia. Tel 32-6500 Ext 57

Mourão, C.A. Sc.D. Population and ecological genetics
Bicudo, H.E.M. de C. Sc.D. Cytogenetics, gene action and speciation
Gallo, A.J. Sc.D. Genetic load and taxonomy
Vartanian, G. Sc.D. Population genetics
Tadei, W.J. Sc.D. Population genetics
Valporto, V.M. Aux Ensonio Ontogenetic and tissue distribution of isoenzymes in Tripunctata group of Drosophila

Tavares, L.L. Admin. Assistant

São Paulo: Universidade de São Paulo, Departamento de Biologia, Instituto de Biociências, Cidade Universitária – Caixa Postal 11.230 Tel 286-0011 Ext 215

Cunha, A.B. Ph.D., Professor Polymorphism in natural populations
Magalhães, L.E. Ph.D. Population genetics
Pavan, C. Ph.D., Professor Polymorphism in natural populations
Pereira, M.A.Q.R. MS. Evolutionary biology
Sene, F.M. Ph.D. Evolutionary biology

Burnaby 2, Brit. Col. V4A 1S6: Simon Fraser Univ., Dept. of Biological Sciences Tel291-4475

Rapport, E.
Calgary, Alb. T2N 1N4: Univ. of Calgary, Dept. of Biology Tel 284-6794

Williamson, J.H. Ph.D. Chromosome mechanics, radiation genetics
Edmonton, Alb. T6G 2E9: Univ. of Alberta, Dept. of Genetics Tel 403-432-3290

Bell, J.B. Assistant Professor Isolation of suppressors
Hodgetts, R.B. Associate Professor Genetic control of enzyme regulation
Nash, D. Professor The genetics of nucleoside biosynthesis
Russell, M.A. Assistant Professor Genetics of development

Halifax, Nova Scotia B3H 4J1: Dalhousie University, Dept. of Biology

Yeh, F. Ph.D., Research Associate
Zouro, E. Ph.D., Assistant Professor
Kingston, Ont. K7L 3N6: Queen’s University, Dept. of Biology Tel (613) 547-6675

Chen, T. Molecular and developmental genetics
Holden, J.J.A.
White, B.N. Molecular genetics

Montreal 262: Loyola of Montreal, Dept. of Biology Tel (514) 482-0320 Ext 445

Beckman, C. Ph.D., Assistant Professor Behavior
Ottawa, Ont. K1S 5B6: Carleton Univ., Dept. of Biology Tel Office (613)231-4451; Lab (613)231-3683

Carwody, G.R. Ph.D., Assistant Professor Population genetics
Speers, L. B.Sc., Stockkeeper, Research Technician
Regina, Saskatchewan S4S 0A2: Univ. of Regina, Dept. of Biology Tel (306) 584-4478
- Chapko, W. Associate Professor Population genetics
- Tracey, M.L. Assistant Professor Population genetics and recombination

St. Catherines, Ont. L2S 3A1: Brock Univ., Dept. of Biological Sciences Tel (416) 684-7201
- Tracey, M.L. Assistant Professor Population genetics and recombination

St. John's, Newfoundland A1C 6C8: Genetic Consulting Associates, Ltd., Harvey Road Post Office, P.O. Box 4546 Tel (709) 726-2409
- Ilannak, G. B.Sc., Curator
- Nuvivak, P. M.A., Research Assistant
- Oster, I.I. Ph.D., Director Genetic schemes for mutational and developmental analyses

Vancouver, B.C.: Univ. of British Columbia, Dept. of Zoology (Z) and Biochemistry (B) Tel (604) (Office) 228-3381, (Lab) 228-3382, -4276**, -2792**
- Cross, D. Ph.D., SRC, Postdoctoral Fellow (Z) Cell culture
- Holm, D. Ph.D., Associate Professor (Z)**
- Homy, T. Ph.D., Postdoctoral Fellow (Z) Behavior
- Koo, D. M.Sc., Curator of Stocks (Z)
- Shellemberger, D. Ph.D., Postdoctoral Fellow (Z) Development
- Suzuki, D. Ph.D., Professor (B)**
- Tener, G. Ph.D., Professor (B)**

CHILE
Santiago: Universidad de Chile, Sede Norte, Departamento de Biología Celular y Genética, Avda. Alberto Zañartu 1042 - Casilla 6556 (Correo 4)
- Brnicic, D. Professor Evolutionary genetics, cytogenetics
- Budnik, M. Associate Professor Evolutionary and ecological genetics
- Fenner, H. Curator of Stocks
- Frías, D. Instructor Cytogenetics
- Godoy, R. Instructor Behavior
- Iturra, P. Instructor Behavior
- Navarro, J. Instructor Cytogenetics
- Zárate, E. Curator of Stocks

Valdivia: Universidad Austral de Chile, Institute of Ecology and Evolution, P.O. Box 57-D
- Del Solar, E. Head of Institute Ecological - Genetics and behavior
- Sepulveda, J. Curator of Stocks
- Ruiz, G. Instructor Ecological - genetics
- Kohler, N. Instructor Behavior - genetics
- Winkler, F. Graduate Student Ecological - genetics

COLOMBIA
Bogotá, D.E.: Universidad de los Andes, Instituto de Genética
- Castro, L.E. M.Sc., Instructor Population genetics
- Garcia, P.A. B.Sc., Technician - Curator
- Granobles, L.A. M.Sc., Assistant Professor Population genetics
- Hoernisberg, H.F. Ph.D., Professor Population genetics
- Torres, M.E. Technician, Curator
- Krakauer, E. M.Sc., Research Assistant Population genetics

CZECHOSLOVAKIA
Brno: J.E. Purkyne Univ., Faculty of Science, Dept. of Genetics, Kotlářská 2 Tel 511 12/34
- Benedík, J.K. Dr. Population genetics
- Cetl, I. Dr., Associate Professor, Head of Department General genetics
- Suchopova, N. Curator

Prague: Czechoslovak Academy of Sciences, Institute of Experimental Botany, Department of Botany, Department of Genetics, Flemingovo námesti2
- Ondrzej, M. Research Worker

DENMARK
8000 Aarhus: University of Aarhus, Department of Genetics Tel 06 127642 Ext 262
- Frydenberg, O. Professor Population genetics

DK-1353 Copenhagen: Univ. of Copenhagen, Inst. of Genetics, 2A Øster Farimagsgade
- Bahn, E. Ph.D. Nutritional requirements
- Mortensen, M. Curator of Stocks
EGYPT

Alexandria: Alexandria University, Faculty of Agriculture, Department of Genetics

Abou-Youssef, A.M. Ph.D., Lecturer Population genetics
Dawood, M.M. Ph.D., Professor Competition
Mourad, A.M. Ph.D., Assistant Professor Population and ecological genetics
Tantawy, A.O. Ph.D., Assistant Professor Population and ecological genetics

Assuit: University of Assuit, Department of Genetics Tel 3000

Abdallah, M.H. Dipl.Agric., Stockkeeper
Khishin, A.F. Ph.D., Professor Radiation and chemical mutagenesis
Younis, S.A. Ph.D., Associate Professor Population studies

FINLAND

SF 00100 Helsinki 10: Univ. of Helsinki, Dept. of Genetics, P. Rautatiekatu 13 Tel (90) 40271

Hackman, W. Ph.D., Research Associate Systematics
Lokki, J. Ph.D., Research Associate Population genetics
Lokki, M.-L. M.Sc., Research Associate Population genetics
Muona, O. M.Sc., Research Associate Population genetics
Saura, A. M.Sc., Research Associate Salivary chromosomes
Saura, A. Ph.D., Assistant Teacher Enzyme polymorphism
Sorsa, M. Ph.D., Senior Lecturer Salivary chromosomes
Sorsa, V. Ph.D., Research Associate Salivary chromosomes
Suomalainen, E. Ph.D., Professor Head of Department
Tigerstedt, P. Ph.D., Professor Evolution
Tiivola, A. Curator of Stocks
Veispaläinen, K. Ph.D., Assistant Teacher Ecological genetics

SF 90330 Oulu 10: University of Oulu, Dept. of Genetics Tel (981) 345411

Keränen, L. M.Sc., Stockkeeper
Lakovaara, S. Ph.D., Professor Enzyme polymorphism, evolution
Lankinen, P. M.Sc. Enzyme polymorphism, circadian rhythms
Lumme, J. Phil.lic. Photoperiodism, phenology, circadian rhythms

SF 20500 Turku 50: Univ. of Turku, Institute of Biology, Dept. of Genetics Tel (921) 335599

Hannah-Alava, A. Ph.D., Research Associate
Nokkala, S. M.Sc., Research Associate
Oksala, T.A. Ph.D., Professor Emeritus
Portin, P. Ph.D., Assistant Teacher
Puro, J. Ph.D., Associate Professor
Savontaus, M.-L. Ph.lc., Assistant Teacher Curator of Stocks
Viinikka, Y. Ph.lc., Assistant Teacher Salivary chromosomes

FRANCE

Aubièrè 63170: Université Clermont-Ferrand II, Lab. de Génétique, B.P.45 Tel (73)92 22 26

Fleuriet, A. Maître Assistant Polymorphism in natural populations
Bregliano, J.C. Maître de Conférences
Bucheton, A. Attaché de Recherches Hybrid dysgenesis in
Lavigne, J.M. Assistant Drosophila melanogaster
Pelisson, A. Assistant (I - R system)
Picard, G. Chargé de Recherches

Gif-sur-Yvette 91190: Laboratoire de Biologie et Génétique Evolutives du Centre National de la Recherche Scientifique Tel 907-78-28

Carton, Y. Ph.D. Maître de Recherches Interactions Drosophila - hymenopterous parasites
Chassagnard, M.F. Curator of Stocks
David, J. Professor, Head of Dept. Genetic polymorphism and geographic variation
Frey, F. Curator of Parasite Stocks
LaChaise, D. Ph.D. Attaché de Recherches Adaptative strategies and coevolution in afrotropical Drosophilids
L'Hélis, C. Ph.P., Maître de Recherches Cytoplasmic DNA studies in Drosophila lethal, mutagenic action of pteridines
LeMeunier, F. Ph.D., Maître Assistant Chromosomes of African Drosophilidae
Louis, M. Curator of Stocks
Louis, J. Ph.D., Chargé de Recherches Ecology and natural populations
Rouault, J. D.spec. Influence of hymenopterous parasites in the competition
mellonagaster - simulans
Tsacas, L. Ph.D., Maître de Recherches Systematics of Drosophilidae
Gif sur Yvette: Laboratoire de Génétique des Virus du Centre National de la Recherche Scientifique Tel 907-78-28
Brun, G. Professor, Head of Department The Pirx virus genetics, in D. mellonagaster
Bernard, J. Maître Assistant Drosophila X virus: virion associated RNA polymerase
Bras, F. Maître Assistant Sindbis virus multiplication in different strains
of D. mellonagaster
Contamine, D. Attaché de recherche Genetics of Drosophila Sigma virus
Coulon, P. Student Genetics of Drosophila Sigma virus
deNeubourg, A. Assistant Study of non permissive alleles of ref genes in D. m.
deZeele, S. Chargé de recherche VSV multiplication and its control in Drosophila
cell cultures
Gay, P. Chargé de recherche Study of ref genes in D. mellonagaster
Laurent, J. Assistant G protein modification during adaptation of VSV to Drosophila
Ohanessian, A. Maître de recherche in vitro D. cell cultures, study of carrier
state established in D. cell lines by VSV
Richard-Molard, Ch. Assistant Biochemistry of Sigma virus
Teninges, D. Chargé de recherche Molecular biology of Sigma virus, viral RNA metabolism
Wyers, F. Chargé de Recherche VSV multiplication and its control in Drosophila
cell cultures
Lyon: Université Claude Bernard, Biologie Gén. et Appl., 43, Boulevard du 11 Novembre 1918
Biémont, C. Attaché C.N.R.S. Inbreeding in Drosophila
Calvez, C. Assistant Drosophila oogenesis
deBouzie, D. Assistant Genetics of population
Fourche, J. Maître de Conférences Respiratory metabolism in Drosophila
Guillet, C. Assistant Energetic metabolism in Drosophila
LeGay, J.-M. Professor Morphogenesis and biometry of insects eggs
Marseille: Centre de Biologie Moléculaire, GLM 31, Chemin Joseph Aiguier 13274
Jarry, B.R. Attaché de Recherches
Jordan, B.R. Chargé de Recherches
Rosset, R. Professor Biochemistry of Drosophila and of Drosophila cell lines
34060 Montpellier: Ecole Pratique des Hautes Études, Section Génétique, place Eugène-
Bataillon Tel (67) 63 91 44 poste 742, or 63 11 36
Pasteur, G. D.Sc., Directeur Zaprionus ecological genetics and cytotaxonomy
Stordeur, E.de D. Spéc., Stagiaire Zaprionus enzyme polymorphism
34060 Montpellier: Université des Sciences et Techniques, Laboratoire de Génétique du CEREM
Tel (67) 63 91 44 poste 628
Pasteur, N. Ph.D., D.Sc., Chargé de Recherche Enzyme polymorphism
Paris: Université Paris 7, Laboratoire de Génétique des Populations, 12 rue Cuvier
Tel 336.25.25 Poste 36.59
Anxolabèhère, D. Maître-Assistant Larval selection, frequency dependency
Girard, P. Assistant Enzymatic polymorphism in natural populations
Goux, J.M. Professor Demographical genetics, penetrance
Nauaud, D. Stockkeeper
Palabost, L. Assistant Larval competition and enzymatic polymorphism
Periquet, G. Maître-Assistant Expressivity, penetrance and natural polymorphism
Petit, C. Professor Sexual selection frequency dependency
30380 St. Christol-les-Ares, Gard: Station de recherches cytopathologiques Tel (66)52 20 17
Plus, N. Maître de recherches Endemic virus of Drosophila populations and cell lines
Louis, C. Chargé de recherches Multiplication of invertebrate intracellular Procaryotes
injected into D. mellonagaster
Villeurbanne 69621: Université Claude Bernard, Laboratoire d'Entomologie expérimentale
et de Génétique, 43 Boulevard du 11 Novembre 1918
Allemand, R. Attaché de Recherche, CNRS Oviposition and circadian rhythms, light effects
Bouletreau, M. Maître-Assistant Parasitic wasps of Drosophila
Bouletreau-Merie, J. Chargée de Recherche, CNRS Female reproduction
Cohet, Y. Attaché de Recherche, CNRS Temperature effects
David, J. Professor Ecological and population genetics
Van Herrewege, J. Maître-Assistant Adult nutrition
GERMANY, WEST

D-1000 Berlin 33 (Dahlem): Inst. für Genetik der Freien Univ. Berlin, Arnimalle 5/7
Tel. 030/838 3640
Köhler, W. Dr. Assistant Professor Behavioural and population genetics
Nöthel, H. Dr. Professor Mutagenesis and population genetics
Rogge, A. (Miss) Curator of Stocks

D-463 Bochum: Ruhr-Universität, Inst. für Genetik, MA 5, Postfach 10 21 48 Tel (0234) 700 3839
Charton-Strunk, U. Intrachr. effects 700 3008
Hägele, K. Dr. Replication 700 3845
Israelewski, N. Dr. Radiation genetics, chromosome structure 700 3843
Kalisch, W.-E. Dr. Replication, recombination 700 3008
Plehm, Chr. Technician, Curator of Stocks 700 3008
Willkomm, P. Recombination 700 3008

D-4000 Düsseldorf: Institut für Genetik der Universität, Universitätstrasse 1,
Tel (0211) 311-2276/2279
Bauer, G. Technician, Curator of Stocks 311-2406
Bünemann, H. Dr. Assistant Y chromosome of D. hydei, molecular genetics 311-3421
Glätzer, K.H. Dr. Assistant Y chromosome of D. hydei, electron microscopy, microspreading 311-2296
Hess, O. Dr. Professor Y chromosome of D. hydei, cytogenetics 311-2276
Kunz, W. Dr. Assoc. Professor rDNA of D. hydei 311-2333
Liebrich, W. Dr. Assistant Y chromosome of D. hydei, organ and cell culture 311-3422
Schwochau, M. Dr. Assoc. Professor Y chromosome of D. hydei, molecular genetics 311-2358
Schöfer, U. Dr. Assistant Y chromosome of D. hydei Organ and Cell culture 311-4541
Tischendorf, G. E. Dr. Assistant Y chromosome of D. hydei Y-specific proteins, immunological methods 311-3423

6900 Heidelberg: European Molecular Biology Laboratory, P.O. Box 102209
Nüsslein-Volhard, C. Ph.D. Developmental genetics
Schneider, A. Stockkeeper
Wieschaus, E. Ph.D. Developmental genetics

78 Freiburg I Br.: Biologisches Institute I (Zoologie) der Universität, Schänzlestr. 9
Gateff, E. Dr.
Sander, K. Dr.

355 Marburg: Zoologisches Institute der Universität, Ketzerbach 63 Tel (06421) 693405
Hubert, U. Curator of Stocks
Kock, P. Ovogenesis and development of insects

8000 München 2: Zoologisches Institute der Universität, Lüisenstrasse 14 Tel (089) 5902 359
Becker, G.L. Ph.D. Lethals
Becker, H.J. Professor Mitotic recombination, neurological genetics
Biederich, U. Curator of Stocks
Gerresheim, F. Genetics of chemotaxis
Haendle, J. Dr. Mitotic recombination
Hammerschmidt, H. Curator of Stocks
Korge, G. Dr. Salivary gland function
Kress, H. Dr. Puff induction
Mertens-Huber, M. Nuclear transplantation
Mönks, G. Mitotic recombination
v. Schilcher, F. Ph.D. Genetics of mating behavior

4400 Münster: Institute für Strahlenbiologie der Universität, Hittorfstr. 17 Tel (0251) 835301
Traut, H. Professor Radiation genetics and chemical mutagenesis

4400 Münster: Zoologisches Institute der Universität, Badestr. 9, Tel (0251) 833847
Janning, W. Dr. Developmental genetics
Münster, R. Curator of stocks

66 Saarbrücken: Universität des Saarlandes, Institut für Genetik
Kroeger, H. Dr. Professor Gene activation in giant chromosomes, pattern formation
Leibenguth, F. Dr. Professor

D-74 Tübingen: Institute für Biologie II, Lehrstuhl für Populationsgenetik, Auf der Morgenstelle 28 Tel (07071) 292611
Aldinger-v. Kleist, R. Behavioral genetics
Pfriem, P. Dr. Population and radiation genetics
Pinsker, W. Dr. Population and behavioural genetics
Sperlich, D. Dr. Professor, Head of Department Population genetics
Stögerer, K. Stockkeeper
D-74 Tübingen: Max-Planck-Inst. für Biologie Abt. Beermann, Spemannstr. 34 Tel (07071) 601201
Beermann, W. Dr. Professor Chromosome structure and function
Meyer, G.F. Dr. Professor Electron microscopy of spermiogenesis and ribosomal cistrons
Stein, H. Dr. Transcription, isolation of DNA-dependent RNA polymerases of D. hydei

D-74 Tübingen: Max-Planck-Institute für Biologische Kybernetik Tel (07122) 260 14
Götz, K.G. Ph.D. Visual perception
Hengstenberg, R. Ph.D. Electrophysiology of the visual system
Hutch, A.C. Curator of Stocks Locomotion

8700 Würzburg: Institut f. Genetik u. Mikrobiologie der Universität, Röntgenring 11
Heisenberg, M. Dr. Professor

GREAT BRITAIN
Aberdeen, Scotland: University of Aberdeen, Department of Genetics, 2 Tillydrone Avenue
Fox, D.P. Dr. Cytogenetics: heterochromatin in insects
Maber, E.P. Dr. Biochemical genetics: properties of DNA
Robertson, F.W. Professor Population and biochemical genetics
Rutherford, P. Stockkeeper
Smith, B.R. Dr. Recombination in Neurospora
Watson, W.A.F. Dr. Recombination and repair

Birmingham B15 2TT: The University, Dept. of Genetics Tel 472-1301 Ext 2031
Barnes, B.W. Ph.D.,Lecturer Genetical architecture and natural selection in Drosophila
Birley, A.J. M.Sc.,Ph.D.,Research Fellow Population genetics of D. melanogaster
Caligari, P.D.S. Ph.D.,Research Fellow Population genetics of Drosophila
Caten, C.E. Ph.D.,Senior Lecturer Genetic systems of fungi
Croft, J.H. Ph.D.,Lecturer Genetic systems of fungi
Gale, J.S. Ph.D.,Research Fellow Biometrical genetics of Papaver
Jinks, J.L. Ph.D.,D.Sc.,F.I.Biol.,F.R.S.,Professor Systems of variation of fungi, extra chromosomal inheritance, biometrical genetics
Jones, G.H. Ph.D.,Lecturer Genotypic control of chromosomal behaviour
Kearsey, M.J. Ph.D.,Senior Lecturer Genetic architecture in Drosophila and natural selection
Lawrence, M.J. Ph.D.,Senior Lecturer Experimental studies with higher plants
Mather, Sir Kenneth Professor,C.B.E.,D.Sc.,F.R.S.,Honorary Professor and Senior Fellow Populations genetics of Drosophila
Smith, D.A. Ph.D.,Senior Lecturer Methionine synthesis in Salmonella typhimurium
Sroczynski, A. Technician,Stockkeeper
Wallace, H. D.Phil.,D.Sc.,Lecturer Cytogenetics

Brighton BN1 9QG: University of Sussex, School of Biological Sciences Tel 0273-66755 Ext 466
Atherton, J. Stockkeeper
Charlesworth, B. Ph.D. Population genetics
Charlesworth, D. Ph.D. Population genetics
Collett, J.I. Ph.D. Biochemical genetics, peptidases
Ingham, P. B.A. Homoeotics and determination
Sang, J.H. Professor Tissue and cell culture, biochemical genetics
Whittle, J.R.S. Ph.D. Homoeotics, disc growth and genetic mosaics
Young, J.P.W. Ph.D. Population genetics

Cambridge CB4 1XH: University of Cambridge, Downing Street Tel (0223) 69551
Angel, P. Stockkeeper
Ashburner, M. Reader
Bodmer, M. Graduate Student
Chia, B. Postdoc
Detwiler, C. Postdoctoral Fellow
Dover, G. University Lecturer
Emeny, J. Postdoc
Gubb, D. Research Assistant
Harrington, G. Assistant
Karp, R. Postdoctoral Fellow
Lathe, R. Postdoc
Lewis, M. Research Assistant
Spencer, J. Research Assistant
Spoerel, N. Postdoc
Thoday, J.M. Professor
Tsubota, S. Postdoctoral Fellow
Walker, V. Postdoctoral Fellow
Chalfont St. Giles, Bucks, England: Chester Beatty Research Institute, Institute of Cancer Research, Pollards Wood Research Station, Department of Genetics Tel Little Chalfont 2530
Fahmy, M.J. D.Sc. Mutagenesis
Fahmy, O.G. D.Sc. Cytogenetics

Colchester CO4 3SQ: University of Essex, Department of Biology
Bowes, M. Ph.D., Lecturer Determination & devel. genetics, analysis of yolk proteins
Hames, B.D. Ph.D., Lecturer Analysis of yolk proteins
Roberts, S. Stockkeeper

Edinburgh EH9 3JN: Univ. of Edinburgh, Inst. of Animal Genetics, West Mains Rd.
Tel 031-667-1081
Auerbach, C. D.Sc., F.R.S., Professor Mutagenesis
Bishop, J.D. Ph.D., Reader Cloning of DNA corresponding to larval messenger RNA
Robertson, A. D.Sc., F.R.S., Professor Quantitative and population genetics
Robertson, E. Research Assistant Embryology
Shukla, P.T. Ph.D. Radiation and chemical mutagenesis

Leicester LE1 7RH: University of Leicester, Department of Genetics Tel 0533-50000
Semenoff, R. Ph.D., Lecturer Population genetics

London W.C.1: Birkbeck College of University of London, Department of Zoology, Malet Street
Tel 01-580 6622 Ext 432
Johnson, K. Stockkeeper
Lamb, M.J. Ph.D., Lecturer Mutagenesis, aging

London N.W.1 2HE: University College London, Department of Animal Genetics, Wolfson House
4 Stephenson Way Tel 01-387 7050 Ext 730
Grunberg, H. D.Sc., F.R.S., Professor
Hunt, D.M. Ph.D. Developmental genetics

Norwich, England: John Innes Institute, Colney Lane Tel 52571
Beck, M.A. Stockkeeper
Hughes, M.A. Dr. Cyanogenesis
Shelton, M. B.Sc. Developmental genetics

Oxford OX1 3QU: University of Oxford, Dept. of Biochemistry, Genetics Laboratory
Roberts, D.B. Ph.D., University Lecturer Developmental genetics

Lloyd, L. Stockkeeper
Milner, M.J. Ph.D., Lecturer Tissue culture of imaginal discs
Tucker, J.B. Ph.D., Reader Imaginal disc ultrastructure

Sheffield S10 2TN: Univ. of Sheffield, Behaviour Genetics Grp., Depts. of Genetics and Psychology Tel 78555
Burnet, B. Ph.D., Reader Behaviour genetics
Connolly, K. Ph.D., Professor Behavior genetics and evolution
Eastwood, W.L. B.Ed., Research Associate Genetic analysis of courtship behaviour and auditory stimuli
Relton, J. Curator of Stocks Larval behaviour
Rick, J.T. Ph.D., Lecturer Behaviour genetics, psychopharmacology
Sheffield S10 2TN: University of Sheffield, Department of Genetics Tel 78555
Hartmann-Goldstein, I.J. Ph.D., Lecturer Cytology, heterochromatin
Wargent, J. Ph.D., Research Associate Salivary gland chromosomes, heterochromatin
Swansea, Wales: University College of Swansea, Department of Genetics
Beardmore, J.A. Ph.D., Professor Stabilising selection, parental age effects
Skibinski, D.O.F. Ph.D., Lecturer Selection
Warren, M.E. Stockkeeper
York YO1 5DD: University of York, Department of Biology, Heslington Tel 0904 59681
Hannah, S.M. B.Sc., Graduate Student Developmental/biochemical genetics
Sparrow, J.C. Ph.D., Lecturer Developmental/biochemical genetics

GREECE
Athens: Agricultural College of Athens, Department of Genetics, Votanicos Tel 3460 680
Krimbas, C.B. Professor, Head of Dept. Inversion and protein polymorphism of D. subobscura
Loukas, M. Lecturer Inversion and enzyme polymorphism of D. subobscura
Sourdis, J. Ecological and populational mathematical models
Tsakas, S. Ph.D. Enzyme polymorphism of D. subobscura
Vergini, Y. Ph.D. Enzyme polymorphism of D. subobscura
Patras: University of Patras, Department of Genetics Tel 429-721, 429-853
Alahiotis, S. Dr., Research Assistant Population and ecological genetics
Christopoulou, A. Stockkeeper
Dimopoulos, N. Research Assistant Population genetics
Michalopoulou, E. Stockkeeper
Pelecanos, M. Professor Mutagenesis, population genetics
Yannopoulos, G. Dr., Chief Research Assistant Population and biochemical genetics
Zacharopoulou, A. Research Assistant Population genetics and cytogenetics
Thessaloniki: University of Thessaloniki, Laboratory of General Biology Tel 23922468
Kastritsis, C.D. Dr., Chairman Developmental and cell biology, evolution
Pentzos-Daponte, A. D.Sc. Population genetics of D. subobscura
Thomopoulos, G. D.Sc. Developmental and cell biology
Triantaphyllidis, C.D. D.Sc. Isoenzymes in natural populations of Drosophila and mouse, nucleic acid hybridization in situ

HUNGARY
1088 Budapest: Eötvös Lóránd University, Department of Genetics, Muzeum krt 4/a Tel 141-020
Parad, E. Dr. Developmental genetics, chemical mutagenesis
Varga, J. Stockkeeper

INDIA
Ahmedabad 380 009: Gujarat University, Univ. School of Sciences, Dept. of Zoology Tel 42362
Lakhotia, S. Ph.D., Lecturer Polytene chromosomes, heterochromatin, mitotic chromosome banding
Roy, S. M.Sc., Graduate Student Replication in polytene chromosomes
Amritsar 143005: Guru Nanak Dev University, Department of Biology
Parkash, R. Ph.D., Lecturer Isozyme polymorphism in Drosophila
Bharalpur-7, Bihar: Bhagalpur University, Dept. of Zoology, Drosophila Laboratory Tel 1054
Jah, A.F. Ph.D., Head of Laboratory
Rahman, S.M.Z. Ph.D., Senior Research Scholar
Calcutta 19: University of Calcutta, Department of Zoology, Cytogenetics Laboratory
35, Ballygunge Circular Road Tel 47-3681
Acharya, P.M. J.R.F. DNA biosynthesis and salivaries
Bhattia, N. J.R.F. Mutagenesis
Chatterjee, C. J.R.F. Control of replication and transcription
Chatterjee, R.M. S.R.F. Dosage compensation and regulation
Chatterjee, S.M. Dr., Res.Ass. Salivaries, DNA biosynthesis
Das, P. J.R.F. Genetic fine structure
Day, A. J.R.F. Glue protein
Duttagupta, A.K. Dr., Reader Genetic fine structure, DNA biosynthesis
Ghosh, M. S.R.F. Nucleo-chromatin organisation
Ghosh, R. Do Replication cytology
Ghosh, S. J.R.F. Cell physiology and dosage compensation
Maitra, S.N. J.R.F. Fluorescence banding, replicative cytology
Majumdar, D. S.R.F. Control of replication, organ culture
Mandal, S.K. Dr., Teacher Fellow Mutagenesis
Mukherjee, A.S. Dr., Professor Salivaries, dosage compensation, DNA biosynthesis, mutagenesis
Pal, T.K. Do DNA biosynthesis
Prasad, J. J.R.F. Dosage compensation

Chandigarh, Union Territory: Panjab University, Department of Zoology
Sharma, G.P. Ph.D. (Pb.), Ph.D. (Edin.) Professor, Head Cytology, cytogenetics, genetics
Singh, A. Ph.D., Lecturer Cytology, cytogenetics and taxonomy

Hyderabad 7, A.P.: Osmania University, Department of Genetics
Reddi, O.S. Professor
Sanjeeva Rao, M. Dr., Reader

Izatnagar, U.P.: Indian Veterinary Research Institute, Division of Animal Genetics
Bhat, P.M. Dr., Head of Division Population genetics
Sidhu, M.S. Dr., Professor Genetics of gametes, quantitative inheritance

Kalyani, West Bengal: University of Kalyani, Department of Zoology Tel 220 Ext 2
Manna, G.K. Ph.D., Professor, Head

Ludhiana, Punjab: Punjab Agricultural University, Department of Genetics
Gill, K.S. Ph.D., Professor Developmental genetics, systematics
Miglan, G.S. M.S., Research Assistant Mutagenesis

Gayathri, M.V. M.Sc., Research Fellow Chemical mutagenesis
Hegde, S.M. M.Sc., Senior Research Fellow Cytotaxonomy, behavioural and biochemical genetics
Krishnamurthy, N.B. M.Sc., Ph.D. (Texas), Professor Cytotaxonomy, population genetics, biochemical, behavioural and developmental genetics, chemical mutagenesis
Nagaraj, H.J. M.Sc., Research Fellow Cytotaxonomy and population genetics
Prakash, H.S. M.Sc., Research Fellow Cytotaxonomy, biochemical, population and developmental genetics
Rajasekarastty, M.R. M.Sc., A.M., Ph.D. (USA), F.A.Sc., F.N.A., Professor, Head of Department Drosophila, mouse and human genetics
Ramesh, S.R. M.Sc., Research Fellow Cytogenetics and biochemical genetics
Ranganath, H.A. M.Sc., Ph.D., Lecturer Population genetics, cytogenetics, biochemical genetics and developmental genetics
Siddaveere Gowda, L. M.Sc., Lecturer Population and biochemical genetics
Srerera Reddy, G. M.Sc., Ph.D., Lecturer Cytotaxonomy, biochemical, population and developmental genetics
Vasudev, V. M.Sc., Research Fellow Chemical mutagenesis
Vijayan, V.A. M.Sc., Research Fellow Chemical mutagenesis

New Delhi: Indian Agricultural Research Institute, Division of Genetics
Chopra, V.L. Professor
Jain, J.K. Head of Division
Sharma, R.P. Assistant Geneticist

Poona 411 004: Maharashtra Assn. for the Cultivation of Science, Zoology Dept. Tel 56357
Godbole, N.N. M.Sc. Taxonomy and genetics
Vaidya, V.G. M.Sc., Ph.D. Taxonomy and genetics

Varanasi-221005: Banaras Hindu Univ., Dept. of Zoology, Drosophila Genetics Laboratory
Dwivedi, Y.N. M.Sc., Research Fellow Ecology and cytogenetics
Gupta, J.P. Ph.D., Lecturer Systematics, ecology and evolutionary genetics
Sarkar, D.N. B.Sc., Curator of Stocks
Singh, B.K. Ph.D., Post-doctoral Fellow Systematics and cytogenetics

Varanasi 221005: Banaras Hindu Univ., Dept. of Zoology, Cytogenetics Laboratory
Lakhotia, S.C. Ph.D., Reader Polytene and mitotic chromosome organization
Mishra, A. H.Sc., Research Scholar X-chromosome activity
Mukherjee, T. M.Sc., Research Scholar Induced puffing
Roy, J.K. M.Sc., Research Scholar Mitotic chromosome organization
Roy, S. M.Sc., Research Scholar Replication in polytene nuclei
Sinha, P. M.Sc., Research Scholar X-chromosome activity
ISRAEL
Haifa: University of Haif, Department of Biology, Mount Carmel Tel 254411
Baran, A. Ph.D., Research Assistant Biochemical genetics
Malogolowkin-Cohen, Ch. Ph.D., Professor Genetics, population genetics
Jerusalem: The Hebrew University, Department of Genetics Tel 02-35291
Baker, S. Research Technician
Fal, R. Ph.D., Professor
Rahat, A. M.Sc., Stock Curator

ITALY
Bari: Istituto di Genetica Università di Bari, Via Amendola 165/5
Morea, M. CNR Fellow
Ritossa, F. Professor
Scalenghe, F. CNR Fellow

20133 Milan: University of Milan, Institute of Genetics, via Celoria, 10 Tel 230.823
Faccio Dolfini, S. Dr.Sc., Assistant Cultivation in vitro of Drosophila cells
Halter, C. Dr.Sc., Assistant Cultivation in vitro of Drosophila cells
Halter Mosna, G. Dr.Sc., Technical Assistant Cultivation in vitro of cells
Privitera, E. Dr.Sc., Research Assistant Cultivation in vitro of cells
Razzini Bonifazio, A. Technician, Curator of Stocks

Naples: Univ. Istituto di Biologia gen. e Genetica ed Ist. di Zoologia, via Mazzocannone 8
Carfagna, M. Professor Population genetics
Megna, F. Curator of Stocks
Paris, G. Professor Biochemical genetics

35100 Padova: Università di Padova, Istituto di Biologia Animale, Sezione di Genetica, via Loredan 10 Tel 662900, 662851
Alfini, A. Technician, Curator of Stocks
Battaglia, B. Ph.D., Professor of Genetics Population genetics
Costa, R. B.Sc., Research Assistant Allozymes
Danieli, G.A. B.Sc., Assistant Professor, Lecturer in Genetics Salivary glands, allozymes
Rodinò, E. B.Sc., Assistant Professor, Lecturer in Genetics Biochemical polymorphism

00185 Rome: Istituto di Genetica, Facoltà di Scienze, Città Universitaria Tel 4956205
De Marco, A. Research Associate Mutagenesis
Gatti, M. Research Associate Mutagenesis
Loverre, A. Research Associate Segregation distortion and biochemical genetics
Micheli, A. Curator of Stocks, Assistant in Research
Montalenti, G. Professor General genetics
Olivieri, G. Professor Mutagenesis and gametic selection
Trippa, G. Associate Professor Segregation distortion and biochemical genetics

JAPAN
Asamizodai, Sagamihara City, Kanagawa Prefecture 228: Kitasato University, School of Liberal Arts, Biological Laboratory
Matsuda, T. Instructor Biochemistry
Takikawa, S. Instructor Biochemistry
Tsusue, M. Dr., Professor Biochemistry

Chiba: National Inst. of Radiological Sciences, Division of Genetics Tel 0472-2111 Ext 271
Tobari, T. Dr., Head of Laboratory Mutagenesis and population genetics in D. melanogaster
Tsujii, H. Dr., Research Member Mutagenesis and cytogenetics in D. melanogaster

Fukuoka 812: Kyushu Univ., Fac. of Agriculture, Dept. of Biology Tel (092)64-1101 Ext 4324-6
Chikushi, H. Dr., Professor Morphological and biochemical genetics
Doira, H. Dr., Associate Professor Gene analysis and biochemical genetics
Fujii, H.M. Research Associate Biochemical genetics
Hara, K. Curator of Stocks
Sakaguchi, B. Dr., Assoc. Professor Devel. and biochemical genetics, hereditary infections

Hirosima: Hiroshima University, Faculty of Science, Zoological Institute, Higashishendamachi 1-1, Hiroshima City Tel (0822) 41-1221 Ext 428, 448
Inagaki, E. Dr., Research Assistant Mechanisms of mutation productions induced by radiations and chemicals
Kobayashi, Y. Dr., Lecturer Biochemical studies on bacterial sporulation
Minamouri, S. Dr., Assistant Professor Populational studies of an extrachromosomal element

Kobe (Okamota) 658: Konan University, Dept. of Biology Tel (078) 431-4341 Ext 286
Kaji, S. Dr., Professor Developmental genetics
Michinomae, M. Dr., Instructor Developmental genetics
Ushioda (Hirose), Y. Dr., Instructor Developmental genetics
Kobe, Rokko-dai: Kobe University, Faculty of Science, Department of Biology, Rokko-dai, Nada-ku, Kobe-shi 657 Tel (078) 881-1212
Fujii, S. Dr., Professor Emeritus Cytogenetics Ext 4459
Kawabe, M. Dr., Associate Professor Developmental genetics Ext 4458
Oishi, K. Ph.D., Associate Professor Developmental genetics Ext 4457
Matsue: Shimane University, Faculty of Science, Dept. of Biology, Rokko-dai, Nada-ku, Kobe-shi 657 Tel (0852) 21-7100 Ext 386
Wakahama, K.-I. D.Sc., Associate Professor Cytogenetics, evolution
Matusyama: Ehime University, Biological Institute Tel (0899) 41-7111 Ext 3870, 3873
Hihara, F. Dr., Associate Professor Evolutionary genetics
Ikeda, H. Dr., Associate Professor Behaviour genetics
Misima, Shizuoka-ken 411: National Institute of Genetics, Departments of Morphological(M), Physiological(P), Biochemical(B) genetics, and Genetic Stock Center(S) Tel (0559) 75-0771
Inoue, Y. Dr., Research Member Population genetics, salivary (S)
Kawanishi, M. Curator of Stocks, Research Assistant Taxonomy and ecology (P)
Kuroda, Y. Dr., Head of Department Developmental genetics, tissue culture (M)
Minato, K. MS, Research Member Developmental genetics, tissue culture (M)
Murakami, A. Dr., Head of Laboratory Mutagenesis and gametogenesis (M)
Nawa, S. Dr., Head of Laboratory Transformation and DNA (B)
Oshima, C. Dr., Head of Department Behavior genetics, biorhythm (P)
Takamura, T. MS, Graduate Student Behaviour genetics, oviposition (P)
Watanabe, T., K. Dr., Head of Laboratory Evolutionary biology, simulans (P)
Yamada, M. A. MS, Research Member DNA, SR and differentiation (B)
852 Nagasaki: Nagasaki Univ., Fac. of Liberal Arts, Inst. of Biology Tel (0968) 47-1111 Ext 556
Kayano, H. Dr., Professor Cytogenetics and population genetics
852 Nagasaki: Nagasaki Univ., Sch. of Medicine, Dept. of Genetics Tel (0958) 47-2111 Ext 2385-2387
Ayaki, T. M.Sc., Research Assistant Radiation mutagenesis and population genetics
Kurokawa, Y. Technical Assistant
Matsumura, T. Research Assistant Cytogenetics
Mori, S. Technical Assistant Curator of Stocks
Shioi, T. Dr., Professor Radiation and chemical mutagenesis, physiological genetics, human genetics
Yoshikawa, I. Dr., Assistant Professor Population and quantitative genetics
Nurumizu, Atsugi 243: North Shore College, Biological Laboratory Tel (0462) 24-3131
Ebitani, N. Dr., Associate Professor Population genetics Ext 222
Osaka 530: Osaka Univ., Faculty of Medicine, Dept. of Fundamental Radiology Tel (06) 443-5531
Ichikawa-Ryo, M. Radiation genetics
Ikenaga, M. Ph.D. Radiation biochemistry
Ishii, Y. Ph.D. Radiation cytogenetics
Kato, T. Ph.D. Biochemical genetics
Kondo, S. D.Sc. Molecular radiation biology and molecular evolution
Nomura, T. Ph.D. Developmental genetics
Osaka, Nakanoshima 4-3-57, Kita-ku: Osaka University Medical School, Department of Genetics Tel 443-5531 Ext 260-270
Fukunaga, A. M.Sc., Graduate Student Developmental genetics
Hiroyoshi, T. Dr., Instructor Musca genetics, population genetics
Inoue, H. M.Sc., Graduate Student Chemical mutagenesis, developmental genetics
Kikkawa, H. Dr., Emeritus Professor Biochemical genetics, developmental genetics
Nakai, S. Dr., Research Associate, Curator of Stocks Developmental genetics
Nishida, Y. Research Associate Developmental genetics
Sakoyama, Y. Research Associate Biochemical genetics, developmental genetics
Wada, R. Curator of Stocks
Sakado-Machi, Saitama-ken: Josai Dental Univ., Dept. of Biochemistry Tel (0492) 85-5511
Arai, Yayoi
Taketani, Terumi
Sakao, Saitama 350-02: Josai Dental Univ., Dept. of Biology Tel (0492) 85-5511 Ext 215
Bando, K. Assistant Behavior genetics
Fukatami, A. Dr., Assistant Professor Speciation
Mikasa, K. Assistant Behavior genetics
Narise, T. Dr., Professor Behavior genetics
Tsuno, K. Dr., Lecturer Enzyme polymorphism
Sakado, Saitama 350-02: Josei Univ., Fac. of Science, Biological Laboratory Tel (0492)82-2233
Kosuda, K. Dr., Associate Professor Population genetics
Narise, S. Dr., Professor Biochemical genetics of isozymes
Sasaki, M. Assistant Biochemical genetics of isozymes

Sakai 591: Univ. of Osaka Prefecture, Dept. of Life Sciences Tel (0772)52-1161 Ext. 2732
Gamo, S. Dr., Assistant Anesthetics resistance, biochemical genetics
Nakashima-Tanaka, E. Dr., Instructor Behavioral genetics, developmental genetics
Ogaki, M. Dr., Professor Anesthetics resistance, developmental genetics
Yamamoto, T. Postgraduate Student Mutagenesis, anesthetics resistance

Sakura-Mura, Ibaraki, 300-31: Univ. of Tsukuba, Inst. of Biol. Sciences Tel (0298)53-4691
Kurokawa, H. Dr., Professor Spermatogenesis, population genetics
Oguma, Y. Dr. Speciation, spermatogenesis
Okada, M. Ph.D., Associate Professor Developmental biology, cytoplasmic factors

Sapporo: Hokkaido University, Faculty of Science, Zoological Institute
Kimura, M.T. Instructor Evolutionary ecology
Momma, E. D.Sc., Professor Geographical distribution
Watabe, H. Graduate Student Evolution of domestic species

Sapporo: Sapporo University, Department of General Education Tel. 011-852-1181 Ext. 335
Takada, H. Dr., Professor Taxonomy, ecological genetics

Tokyo 113: University of Tokyo, Faculty of Science, Department of Physics, Drosophila Genetics Laboratory Tel 03-812-2111 Ext. 2797
Fujita, S.C. Research Associate Biochemical genetics
Hotta, Y. Associate Professor Behavior genetics

Tokyo 112: Ochanomizu University, Department of Biology, Genetics Laboratory Tel 03-943-3151
Nizzeke, S. D.Sc., Professor Biochemical and developmental genetics
Chigusa, S.I. Ph.D., Assoc. Prof. Population genetics (genetic load and polygenic systems)
Takanashi, E. M.S., Instructor Evolutionary genetics (speciation, coadaptation)

Tokyo 158: Tokyo Metropolitan Univ., Dept. of Biology Tel 03-717-0111 Ext. 360, 371
Aotsuka, T. Dr., Instructor Population genetics, enzyme polymorphism
Fuyama, Y. Dr., Instructor Behavioural genetics
Kaneko, A. Dr., Guest Investigator Taxonomy, ecology
Kitagawa, O. Dr., Associate Professor Population genetics, speciation
Moriwaki, D. Dr., Professor Emeritus Population genetics, male crossingover
Makamura, Y. Stockkeeper
Ohsa, S. Dr., Professor Population genetics, longevity and aging
Okada, T. Dr., Professor Emeritus Taxonomy
Tobari, Y.N. Dr., Instructor Population genetics, recombination
Tomomura, Y. Dr., Guest Investigator Cytogenetics
Yamazaki, H.I. Dr., Postdoctoral Fellow Biochemistry

KENYA
Nairobi: University of Nairobi, Botany Department, Genetics Unit
Gopalan, H.N.B. Dr.
Karanja, S.N.

KOREA
Kwangju, Chunnam: College of Liberal Arts and Sciences, Dept. of Biology Tel (2) 4261-7
Chun, S.B. Instructor Biochemical genetics
Chung, C.U. Instructor Drosophila taxonomy
Kim, K.W. Associate Professor Drosophila taxonomy, cytogenetics
Park, M.S. Associate Professor Biochemical genetics
Wui, I.S. Associate Professor Cytogenetics

Seoul: Chung-ang University, College of Liberal Arts and Science, Department of Biology
Choo, J.K. Dr., Associate Professor Behavior genetics
Han, J.H. Research Assistant Curator of Stocks
Kim, B.Y. Research Assistant Behavior genetics
Lee, C.S. Instructor Population genetics
Lee, T.J. Dr., Professor Population genetics

Seoul: Ewha Womans University, College of Education, Dept. of Science Education, Laboratory of Genetics Tel 33-0151 Ext. 520
Chung, Y.J. Ph.D., Professor Population genetics
Chung, Y.R. Graduate Student Human genetics
<table>
<thead>
<tr>
<th>Geographical Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>March 1981</td>
</tr>
<tr>
<td>DIS 56 - 285</td>
</tr>
</tbody>
</table>

Han, Y.S. Instructor MS Mutagenesis
Kang (Song), S.J. Assistant professor, Ph.D. Electrophoresis
Kim, H.S. Graduate Student Biochemical Genetics
Lee, Y.S. Research Assistant Curator MS Population genetics
Yoon, Y.S. Graduate Student Biochemical genetics

Seoul: Seoul National University, Department of Zoology, Tel 87-6180
- **Kang, Y.S.** D.Sc., Professor Cytogenetics
- **Lee, C.C.** D.Sc., Assistant Professor Genetics
- **Namkoong, Y.** Research Assistant Genetics

Sungdong-ku, Seoul 133: Hanyang University, School of Medicine, Dept. of Genetics, Tel 254-8131
- **Choi, Y.** Ph.D., Assistant Professor Population genetics
- **Kim, S.H.** Research Assistant

Seoul 120: Yonsei University, College of Science, Dept. of Biology, Tel 35-5071 Ext 430
- **Kang, Y.S.** D.Sc., Professor Cytogenetics
- **Lee, C.C.** D.Sc., Assistant Professor Genetics
- **Namkoong, Y.** Research Assistant Genetics

Malaysia, West: Universiti Kebangsaan Malaysia, Unit Genetik, Jalan Pantai Baru, Kuala Lumpur 22-12.

MEXICO
Chapingo: Escuela Nacional de Agricultura, Colegio de Postgraduados, Rama de Genética
- **Salceda, S. V.M., Dr.Sc.** Population genetics

Mexico City: National Institute of Nuclear Energy, Department of Genetics and Radiobiology, Insurgentes Sur #1079, Mexico 18, D.F.
- **De Garay, A.L.** Professor, Head of Department of Human Cytogenetics, Radiobiology and human population genetics
- **Félix, R. Dr.** Radiobiology and genetics of Drosophila, spontaneous and induced mutagenesis and its repair, non-disjunction
- **Guzmán, J.M.S.** Mutagenesis in Drosophila
- **Mercader, J.** Curator of Stocks
- **Olvera, O.M.S.** Cytogenetics in Drosophila
- **de la Rosa, M.E.** Mutagenesis in Drosophila

NETHERLANDS
Haren, Groningen: University of Groningen, Department of Genetics, Biological Center, P.O. Box 14, Tel 050-115781
- **Bijlsem, R.** Research Scientist Population genetics
- **Boerema, A.C.** Research Assistant Population genetics
- **Bos, M.** Ph.D., Research Scientist Population and evolutionary genetics
- **van Delden, W. Ph.D.** Lecturer Population and evolutionary genetics
- **Hoeckstra, R.F. Ph.D.** Research Scientist Theoretical population genetics
- **Kamping, A.** Research Assistant Population genetics
- **Wildeboer-du Pui, M.L.L.** Curator of Stocks

Leiden: State University, Genetisch Laboratorium, Kaiserstraat 63, Tel 071-148333 Ext 7609
- **Breugel, F.M.A. van Dr.** Senior Research Scientist, Developmental genetics (Drosophila)
- **Sprey, Th.J. Dr.** Senior Research Scientist, Developmental genetics (Drosophila)
- **Vreezen, W.J.** Research Scientist, Developmental genetics (Drosophila)
- **Westra, A. Dr.** Research Scientist Developmental genetics (Drosophila)
- **Zonneveld, B.J.M. Dr.** Senior Research Scientist, Developmental genetics (Aspergillus, Fungi)

Leiden: State University, Department of Radiation Genetics and Chemical Mutagenesis, Wassenaarseweg 72, Tel 071-148333 Ext 6150-6151
- **Aaron, C.S. Ph.D.** Senior Research Scientist, Chemical dosimetry and Adh
- **Blijleven, W.G.H. Drs.** Research Scientist, Environmental mutagenesis
- **Duyan, A. van Senior Technical Assistant, Curator of Stocks
- **Eeken, J.C.J. Ph.D.** Research Scientist, Radiosensitivity and repair, mutator effects
- **Ferro, W. Drs.** Research Scientist, Radiosensitivity and repair
- **Klapwijk, P.M. Ph.D.** Research Scientist, Activation of mutagens
- **Kramer, P.G.N. Drs.** Research Scientist, Environmental mutagenesis
- **Leigh, B. Ph.D.** Senior Research Scientist, Repair and fixation of radiation damage
Sankaranarayanan, K. Ph.D., Associate Professor Radiosensitivity and repair
Schalet, A. Ph.D., Senior Research Scientist Genetic analysis of spontaneous lethals in Drosophila
Sobels, F.H. Ph.D., Professor, Director of the Laboratory Repair deficiencies and analysis of mutator effects
Vogel, E. Ph.D., Senior Research Scientist Chemical mutagenesis mechanisms
Zijlstra, J. Drs., Research Scientist Activation of mutagens
Nijmegen 6525 ED: Genetisch Lab., Katholieke Universiteit, Toernooiveld, Tel 080-55 88 33

Boender, P.J. RNA synthesis in D. hydei
Hackstein, J. Genetics of D. hydei
Hennig, W. Chromosome structure and function
Leenders, H.J. Heat shock puffs and protein in D. hydei
Link, B. Electron microscopy of spermiogenesis
Lubsen, N.H. Heat shock puffs in D. hydei
Sondermeijer, P. Technician
Vogt, H.P. Nucleic acids of D. hydei
Wendisch, I. Technician

Utrecht: Genetisch Inst. van de Rijksuniv., Transitorium III, Padualaan 8 Tel 030-533138
Boer, M.H.den Ph.D., Research Scientist Ecological genetics, Bupalus piniarius (L.)
Kijken, F.R.van M.Sc., Research Scientist Quantitative inheritance, selection for behavioral characters, reproductive isolation
Hoorn, A.J.W. M.Sc., Research Scientist Physiological genetics
Jong, G.de M.Sc., Research Scientist Natural selection, isozymes
Montijn, C. Technical Adviser
Scharloo, W. Professor Evolutionary genetics, developmental genetics
Schouten, SC.C.M. Ph.D., Research Scientist Adaptation, developmental genetics
Thörig, G.E.W. M.Sc., Research Scientist Physiological genetics, isozymes
Tuinstra, E.J. Research Scientist, Curator of Stocks

NORWAY
Oslo: Norwegian Radium Hospital, Norsk Hydro's Institute for Cancer Research, Laboratory for Genetics Tel 55 40 80
Mossige, J. Radiation of sperm
Oftedal, P. Professor Spermatogonial sensitivity

PAKISTAN
Khan, F.M. Ph.D(Brisbane) Chromosomal aberrations and radiation induced mutations in Drosophila, chromosomal mapping
Shakoori, A.R. D.Sc.(Stuttgart) Developmental abnormalities induced by chemicals like thioacetamide in Drosophilidae

PERU
Lima: Universidad Nacional Mayor de San Marcos, Departamento de Ciencias Biológicas,
Sección de Biología y Genética, Apartado No 10338-Sucursal 51, La Colmena
Gonzales, F.H. Associate Professor Cytogenetics in Peruvian Anopheles
Pilares, G.L. Associate Professor Evolution genetics, cytogenetics in Drosophila
Rafael, H.V. Instructor, Biologist Genetics in Drosophila
Suyo, T.H. Instructor, Biologist Genetics in Drosophila
Vasquez, E.J. Biologist, Professor Genetics in Drosophila

SOUTH AFRICA
Johannesburg, Tvl 2000: Univ. of the Witwatersrand, Dept. of Genetics Tel 724-1311 Ext 775
Agnew, J.D. Lecturer Population genetics, speciation, African Drosophilidae

SPAIN
Bellaterra (Barcelona): Autonomous University of Barcelona, Faculty of Sciences, Department of Genetics Tel (93)6920200 Ext 1341-1348
Cabrè, O. Professor, Head of Department Molecular genetics
Crespi, S. Graduate Student Molecular genetics
Creus, A. Assistant Professor Fitness in quantitative characters
<table>
<thead>
<tr>
<th>Name</th>
<th>Position and Responsibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>García, M.</td>
<td>Stockkeeper</td>
</tr>
<tr>
<td>Marcos, R.</td>
<td>Associate Professor Quantitative genetics, selection</td>
</tr>
<tr>
<td>Peñafiel, T.</td>
<td>Assistant Professor Quantitative genetics, asymmetry</td>
</tr>
<tr>
<td>Pérez, M.</td>
<td>Assistant Professor Variability in natural populations</td>
</tr>
<tr>
<td>Plá, C.</td>
<td>Assistant Professor Quantitative genetics, canalisation</td>
</tr>
<tr>
<td>Sánchez, A.</td>
<td>Assistant Professor Enzymes polymorphism</td>
</tr>
<tr>
<td></td>
<td>Barcelona-7: Univ. of Barcelona, Faculty of Biology, Dept. of Genetics Tel 3182085</td>
</tr>
<tr>
<td>Aguadé, M.</td>
<td>Assistant Professor Allozyme and quantitative traits</td>
</tr>
<tr>
<td>García, P.</td>
<td>Assistant Professor Leucine aminopeptidases in D. subobscura</td>
</tr>
<tr>
<td>Gonzáles, R.</td>
<td>Associate Professor Biochemistry of allozymes</td>
</tr>
<tr>
<td>Juan, E.</td>
<td>Assistant Professor Biochemistry of ADH</td>
</tr>
<tr>
<td>Monclús, M.</td>
<td>Research Associate Ecology and systematics of Drosophila</td>
</tr>
<tr>
<td>Papaceit, M.</td>
<td>Assistant Professor Cytogenetics of Drosophila</td>
</tr>
<tr>
<td>Prevosti, A.</td>
<td>Professor, Head of Department Population genetics</td>
</tr>
<tr>
<td>Ribó, G.</td>
<td>Assistant Professor Natural selection</td>
</tr>
<tr>
<td>Sagarra, E.</td>
<td>Assistant Professor Allozyme of D. subobscura</td>
</tr>
<tr>
<td>Serra, L.</td>
<td>Assistant Professor Allozyme and quantitative traits</td>
</tr>
<tr>
<td>Vilageliu, L.</td>
<td>Assistant Professor Biochemistry of ADH</td>
</tr>
<tr>
<td></td>
<td>Madrid 6: Centro de Investigaciones Biológicas, C.S.I.C., Instituto de Genética y</td>
</tr>
<tr>
<td>Ortiz, E.</td>
<td>Ph.D., Professor Speciation, chromosomal polymorphism</td>
</tr>
<tr>
<td>Torroja, E.</td>
<td>Ph.D., Research Member Population genetics, genetic load and selection</td>
</tr>
<tr>
<td></td>
<td>Madrid 34: Centro de Biologia Molecular, C.S.I.C., Facultad de Ciencias, C-X, Universidad</td>
</tr>
<tr>
<td>Alonso, C.</td>
<td>Structure and function of chromosomes</td>
</tr>
<tr>
<td>García-Bellido, A.</td>
<td>Ph.D. Developmental genetics</td>
</tr>
<tr>
<td>Pagés, M.</td>
<td>Structure and function of chromosomes</td>
</tr>
<tr>
<td></td>
<td>Oviedo: Univ. de Oviedo, Fac. de Ciencias y Medicina, Dept. de Genética Tel(98524 10 26</td>
</tr>
<tr>
<td>Albornoz, J.</td>
<td>Teaching Assistant Quantitative genetics</td>
</tr>
<tr>
<td>Blanco, G.</td>
<td>Teaching Assistant Population genetics</td>
</tr>
<tr>
<td>Casares, P.</td>
<td>Assistant Professor Fitness</td>
</tr>
<tr>
<td>Carracedo, M.C.</td>
<td>Teaching Assistant Interspecific competition</td>
</tr>
<tr>
<td>Comendador, M.A.</td>
<td>Dr., Associate Professor Population and ecological genetics</td>
</tr>
<tr>
<td>Domínguez, A.</td>
<td>Teaching Assistant Population genetics</td>
</tr>
<tr>
<td>Izquierdo, J.</td>
<td>Teaching Assistant Population genetics</td>
</tr>
<tr>
<td>Piñeiro, R.</td>
<td>Assistant Professor Population genetics</td>
</tr>
<tr>
<td>Roca, A.</td>
<td>Teaching Assistant Salivary chromosomes</td>
</tr>
<tr>
<td>Rubio, J.</td>
<td>Ph.D., Professor, Head of Department Population and evolutionary genetics</td>
</tr>
<tr>
<td>Sánchez, J.A.</td>
<td>Teaching Assistant Enzyme polymorphisms</td>
</tr>
<tr>
<td>Sánchez, M.</td>
<td>Teaching Assistant Behaviour genetics</td>
</tr>
<tr>
<td>Vásquez, E.</td>
<td>Teaching Assistant Quantitative genetics</td>
</tr>
<tr>
<td></td>
<td>Santiago De Compostela: Univ. de Santiago, Fac. de Ciencias, Dept. de Genética Tel(981)592827</td>
</tr>
<tr>
<td>Alvarez, G.</td>
<td>Assistant Professor Population genetics of D. subobscura</td>
</tr>
<tr>
<td>Domínguez, M.</td>
<td>Research Associate Linkage disequilibrium in humans</td>
</tr>
<tr>
<td>Fontdevila, A.</td>
<td>Professor, Head of Department Biology of populations of Drosophila</td>
</tr>
<tr>
<td>Izquierdo, E.</td>
<td>Research Associate Yeasts of Drosophila buzzatii</td>
</tr>
<tr>
<td>Reigosa, A.</td>
<td>Research Associate Competition in Drosophila</td>
</tr>
<tr>
<td>Ruiz, A.</td>
<td>Teaching Assistant Chromosomal polymorphism in Drosophila buzzatii</td>
</tr>
<tr>
<td>Santos, M.</td>
<td>Research Associate Adh polymorphism in Drosophila buzzatii</td>
</tr>
<tr>
<td>Valadé, E.</td>
<td>Assistant Professor Mutators in Drosophila melanogaster</td>
</tr>
<tr>
<td>Zapata, C.</td>
<td>Teaching Assistant Experimental populations of Drosophila subobscura</td>
</tr>
<tr>
<td></td>
<td>**Valencia: High Technical School of Agriculture, Genetics Dept., Paseo al Mar, 19 Tel 694858</td>
</tr>
<tr>
<td>Baselga, M.</td>
<td>Assistant Professor Population genetics</td>
</tr>
<tr>
<td>Cornejo, P.</td>
<td>Research Assistant, Curator of Stocks</td>
</tr>
<tr>
<td>Espinos, A.</td>
<td>Assistant Professor in charge of Laboratory General and human genetics</td>
</tr>
<tr>
<td>Nuez, F.</td>
<td>Assistant Professor Population genetics</td>
</tr>
<tr>
<td>Rico, M.</td>
<td>Ph.D., Professor, Head of Department Population genetics</td>
</tr>
<tr>
<td>Zubeldia, A.</td>
<td>Ph.D., Professor</td>
</tr>
<tr>
<td>Burjasot (Valencia:</td>
<td>University of Valencia, Faculty of Biological Sciences, Department of</td>
</tr>
<tr>
<td>Ferré, J.</td>
<td>Graduate Student Pigments in Drosophila</td>
</tr>
<tr>
<td>Frutos, R.de</td>
<td>Associate Professor Polytene chromosomes</td>
</tr>
</tbody>
</table>
González, A. Assistant Professor Lethals in populations
Latorre, A. Stockkeeper
Martínez, M.J. Graduate Student Artificial selection, chromosomal polymorphism
Ménsua, J.L. Professor, Head of Department Population genetics
Moya, A. Assistant Professor Frequency dependent selection
Nájera, C. Assistant Professor Adaptation, color mutants in Drosophila

SRI LANKA
Gangodawila, Nugegoda: Vidyodaya University, Department of Biological Sciences
Ratnayake, W.E. Ph.D., Lecturer

SWEDEN
S-414 63 Göteborg: University, Inst. of Genetics, Stigbergliden 14 Tel +46 0 14 57 31
Levan, G. Ph.D., Professor, Head of Department Cancer cytogenetics
Valentin, J. Ph.D. Recombination, meiotic regulation
S-113 86 Stockholm: Univ. of Stockholm, Inst. of Genetics, Box 6801 Tel 08/34 08 60 Ext 267
Lüning, K.O. Ph.D., Professor, Director of Institute Population genetics
Stahl, G. Fil. Kand., Research Assistant, Curator of Stocks Recombination
S-104 Stockholm: Envir. Toxicology Group at Wallenberg Lab., Lilla Frescati Tel 08/15 78 83
Ramal, C. Ph.D., Professor, Head of Group Genetic effects of pesticides, recombination
S-901 87 Umeå: University of Umeå, Institute of Genetics Tel 090/16 50 00
Aslund, S.-E. Ph.D., Curator of Stocks Behaviour genetics, population genetics
Haggquist, K. Fil. Kand. Physiological genetics
Hansson, L. Fil. Kand. Biochemical genetics
Holmgren, P. Ph.D., Lecturer Physiological genetics
Lambertsson, A. Ph.D. Biochemical genetics
Ljung, K. Fil. Kand. Physiological genetics
Montell, I. Fil. Lic. Biochemical genetics
Nygren, J. Fil. Kand. Ecological genetics
Rasmuson, B. Ph.D., Professor, Head of Department Biochemical genetics, mutable genes
Rasmuson, M. Ph.D., Professor Population genetics, quantitative genetics
Rasmuson, A. Fil. Kand. Mutagenesis
Svahn, H. Fil. Lic., Assistant Physiological genetics, mutagenesis
Södergren, A. Fil. Lic., Assistant Population genetics
Westerberg, B.-M. Fil. Kand. Mutatable genes

SWITZERLAND
4056 Basel: Biocenter, University of Basel, Klingelbergstr. 70 Tel (061) 25 38 80
Artavanis, S. Postdoctoral Fellow Developmental genetics
Bernhard, H.P. Assistant Professor Cell cultures
Görtner, S. Stockkeeper
Gehring, W. Professor Cell determination and differentiation
Marsh, L. Postdoctoral Fellow Developmental genetics
Nüsslein, Ch. Postdoctoral Fellow Developmental genetics
Schedl, P. Postdoctoral Fellow Biochemistry
Weideli, H. Research Associate Biochemistry
Freiburg: University of Freiburg, Institute of Zoology Tel 037 21 33 02
Tobler, H. Ph.D., Professor Developmental genetics
Züst, E. Ph.D. Imaginal discs
\[CH-1224 Geneva: Univ. of Geneva, Dept. of Genetics, 154bis rte de Malagnou Tel 022 35.30.36
Beck, H. Ph.D. rRNA methylation (on leave)
Frei, Hj. Ph.D. Half-translocations, mosaics
Gloor, H. Ph.D., Professor, Head of Department
Kobel, H.-R. Ph.D. Mutants of D. hydei
Srdić, Z. Ph.D. Imaginal discs, lymph gland
CH-8008 Zürich: Strahlenbiologisches Institute der Universität Zürich, Postfach 8029
Fritz-Niggli, H. Ph.D., Professor, Head of Department Radiation effects (dependence on LET + Milieu, ultra structure)
Hauschteck-Jungen, E. Ph.D., Research Associate Cytogenetics
Mindek, G. Ph.D., Research Associate Embryonic systems, cytology
Schweizer, P. Ph.D., Research Associate Radiation effect on embryonic systems
CH-8006 Zürich: Zoologisches Inst. u. Museum der Univ., Künstliergasse 16 Tel 32 62 41
Bächli, G. Ph.D. Taxonomy of Drosophilidae
Borner, P. Ph.D. Enzymes
Chen, P.S. Ph.D.,Professor Physiology and development
Déak, I. Ph.D.,Professor Development genetics in muscles
Dübdendorfer, A. Ph.D. Tissue culture in vitro, imaginal discs
Jungen, H. Ph.D. Inversion polymorphism in Drosophila subobscura
Kubli, E. Ph.D. Transf-RNA precursors, gene localization
Nöthiger, R. Ph.D.,Professor Imaginal discs
Wehner, R. Ph.D.,Professor Pattern recognition

CH-8603 Schwerzenbach bei Zürich, Swiss Federal Institute of Technology; and Univ. of Zürich, Institute of Toxicology, Schorenstr. 16 Tel (01) 825 10 10
Graf, U. Ph.D., Research Associate Genetic control of mutagenesis, DNA-repair, maternal effects, mutagenicity testing
Würgler, F.E. Ph.D., Professor Chemical mutagenesis, DNA-repair, mutagenicity testing, metabolism of mutagens and carcinogens

THAILAND
Bangkok 4: Mahidol University, Faculty of Science, Department of Biology, Rama 6 Road
Amitaba, I.B. D.V.M., Visiting Investigator Radiation genetics
Baimai, V. Ph.D., Lecturer Cytogenetics and evolution
Nilkan, C. B.Sc., Research Associate Cytogenetics

TURKEY
Ankara: Genetics Dept. Inst. of Biology, Hacettepe Univ., Beytepe Campus Tel 23 51 30/13 66
Bozucuk, A.N. Ph.D., Head of Genetics Unit
Erbaş, G. M.S., Research and Teaching Assistant
Nalçaci, O.B. M.S. Research and Teaching Assistant
Ünlü, H. Ph.D., Research and Teaching Assistant
Ulubay, F. Technician, Stockkeeper

UGANDA
Kampala: Makerere University, Botany Department, P.O. Box 7062 Tel 42471 Ext 385, 28, 19
Tallantire, A.C. Senior Lecturer Systematics

UNITED STATES
Albuquerque, New Mexico 87131: Univ. of New Mexico, Dept. of Biology Tel 505-277-5140
Johnson, W. W. Ph.D., Assoc. Professor Population genetics

Ames, Iowa 50011: Iowa State University, Dept. of Genetics Tel 515-294-3908
Keppy, D.O. Ph.D., Postdoctoral Associate
McDonald, J.F. Ph.D. Assistant Professor
Welshons, J. Stockkeeper
Welshons, W.J. Ph.D., Professor
Welter, R.J. Ph.D., Visiting Assistant Professor
Amherst, Massachusetts 01002: Amherst College, Dept. of Biology, Tel 413-542- (see individual numbers below)
Hexter, W.M. Ph.D., Professor Genetic fine structure -2063
Ives, P.T. Ph.D., Faculty Research Associate Ecological genetics -2087
White, V. (Mrs.) Stockkeeper -2087
Yost, H.T., Jr. Ph.D., Professor Cytogenetics -2462

Ann Arbor, Michigan 48104: University of Michigan, Dept. of Human Genetics (H), Dept. of Zoology (Z) Tel 313-764-5499 (H), 764-1692 (Z)
Gay, H. Ph.D., Professor (Z) Cytogenetics, chromosome structure and function
Oelshlegel, F.J. Ph.D., Senior Research Associate (H) Biochemical genetics, isozymes
Paul, C.P. M.S., Research Assistant and Stockkeeper (Z) Cytogenetics
Rizki, R.M. Research Associate (Z) Developmental genetics
Rizki, T.M. Ph.D., Professor (Z) Developmental genetics
Thirle, B. Research Assoc., Stockkeeper (H) Biochemical and population genetics, isozymes

Arlington, Texas 76019: University of Texas at Arlington, Dept. of Biology Tel 817-273-2871
McCready, W.B. Ph.D., Professor CO₂ responses

Ashland, Oregon 97520: Southern Oregon State College, Dept. of Biology Tel 503-482-6341
Fowler, G. Ph.D., Associate Professor Cytogenetics, gene regulation
Athens, Georgia 30602: University of Georgia, Dept. of Zoology, Tel 404-542-5342
Anderson, W.W. Ph.D., Professor, Population genetics, D. pseudoobscura stocks

Atlanta, Georgia 30322: Emory University, Dept. of Biology, Tel 404-377-2411 Ext 7516
Abraham, I. Assistant Professor, Developmental genetics
Elmer, W.A. Associate Professor, Developmental genetics
Ray, C., Jr. Professor, Population genetics
Shear, C.G. Research Specialist
Smith, P.D. Assistant Professor, Recombination, mutagen sensitivity

Austin, Texas 78712: Univ. of Texas, Dept. of Zoology, Genetics Foundation, Tel 512-471-4128
Averhoff, W.W. B.A., NIH Training Grant Predoctoral Fellow -5844
Faberg, A.C. Ph.D., Lecturer, Researcher, General genetics, fine structure analysis -7442
Forrest, H.S. Ph.D., Professor, Biochemical genetics -1639
Fullilove, S.L. Ph.D., Research Associate, Ultrastructure of early D. development
Hiraizumi, Y. D.Sc., Professor, Population genetics, meiotic drive -5735
Jacobson, A.G. Ph.D., Professor, Morphogenetic movements and ultrastructure of early D. embryos
Johnston, J.S. Ph.D., NIH Training Grant Postdoc. Fellow, Dispersal, ecology of D. -5844
Judd, B.H. Ph.D., Professor, Gene organization and function -5044
Lee, C.S. Ph.D., Assistant Professor, Molecular cytogenetics -4362
Phillips, J. Ph.D., Assistant Professor, Biochemical genetics -7443
Richardson, R.H. Ph.D., Associate Professor, Evolution, population genetics, ecology -4128
Shen, M.W. M.S., Research Associate, Cytology
Sprechman, L. Ph.D., NIH Training Grant Postdoctoral Fellow, Population genetics -5844
Wheeler, L. Ph.D., Research Associate, Cytogenetics, evolution -1263
Woodruff, R.C. Ph.D., NIH Training Grant Postdoctoral Fellow
Yoon, J.S. Ph.D., Research Associate, Evolution, cytogenetics

Baltimore, Maryland 21210: Carnegie Institution of Washington, Department of Embryology, 115 West University Parkway
Rubin, G.M.

Baltimore, Maryland 21218: Johns Hopkins University, Dept. of Biology, Tel 301-338-
Leister, F. B.A., Stockkeeper
Shearn, A. Ph.D., Associate Professor, Developmental genetics, imaginal discs -7285
Sofer, W. Ph.D., Associate Professor, Developmental genetics, ADH -7283

Baltimore, Maryland 21201: Univ. of Maryland, School of Dentistry, Dept. of Anatomy
Gartner, L.P. Ph.D.

Baton Rouge, Louisiana 70803: Louisiana State University, Dept. of Zoology and Physiology, Tel 504-388-1132 and 388-6736
Aaron, C.S. Ph.D., Postdoctoral Fellow, Mutagenesis
Benson, S. B.A., Stockkeeper
French, W.L. Ph.D., Associate Professor, Molecular and physiological genetics
Lee, W.R. Ph.D., Professor, Mutagenesis

Bellingham, Washington 98255: Western Washington State College, Dept. of Biology, Tel 206-676-3640
Erickson, J. Ph.D., Associate Professor, Meiotic drive

Berkeley, California 94720: University of California, Dept. of Molecular Biology
Beckendorf, S.K.

Berkeley, California 94720: University of California, Dept. of Zoology, Tel 415-642-2919
Osborn, R. M.A., Stockkeeper
Stern, C. Ph.D., Emeritus Professor, General
Tokunaga, C. D.Sc., Research Zoologist, Developmental genetics

Bethesda, Maryland 20014: Genetics Study Section, Division of Research Grants (SRB), National Institute of Health, Tel 301-496-7271

Remondini, D.J. Ph.D., Developmental genetics, temperature sensitive mutants

Bethesda, Maryland 20014: National Institutes of Health, National Cancer Institute (C), National Institute of Mental Health (M)
Friedman, T.B. Ph.D., Developmental genetics (M)
Nash, W.G. Ph.D., Genetics (M)
O'Brien, S.J. Ph.D., Biochemical genetics (C)
Twardzik, Ph.D., Biochemical genetics (C)

Billings, Montana 59102: Rocky Mountain College, Dept. of Biology, Tel 406-245-6151 Ext 218
Dapples, C.C. Ph.D., Comparative oogenesis and cytogenetics

Birmingham, Alabama 35233: Univ. of Alabama, Dept. of Biology, Tel 205-934-4262
Fattig, W.D. Ph.D., Associate Professor, Developmental genetics
Blacksburg, Virginia 24061: Virginia Polytechnic Inst., Dept. of Biology Tel 703-951-5469
 Davis, B.K. Ph.D., Assistant Professor Cytogenetics
Bloomington, Indiana 47401: Indiana University, Dept. of Biology Tel 812-337-
 Bonner, J. Ph.D., Assistant Professor Molecular cytogenetics -7322
 Chooi, Y. Ph.D., Assistant Professor Ribosome biogenesis during development -0630
 Fornili, P. B.S., Research Associate Y chromosome genetics -7674
 Hazelrigg, T. B.S., Graduate Student Developmental genetics -7674
 Kaufman, T.C. Ph.D., Assist. Prof. Cytogenetics, genetics of homeosis, spermiogenesis -3033
 Kaufman, T.E. Curator of Stocks -3033
 Kemphues, K. B.S., Graduate Student Developmental genetics -7674
 Lewis, R. M.A., Graduate Student Developmental genetics -7674
 Mahowald, A. Ph.D., Professor Oogenesis and early development -3057
 Raff, E. Ph.D., Assistant Professor Molecular embryology gametogenesis -5287
 Raff, R. Ph.D., Associate Professor Molecular embryology gametogenesis -2791
 Richmond, R. Ph.D., Associate Professor Population genetics -6871
 Spradling, A. Ph.D., Research Fellow Molecular cytogenetics -2894
 Turner, F.R. Ph.D., Research Associate Ultrastructure embryology gametogenesis -2894
 Wakimoto, B. M.A., Graduate Student Developmental genetics -7674

Bowling Green, Ohio 43403: Bowling Green State University, Dept. of Biological Sciences
 Tel 419-372-2332
 Gromko, M. Assistant Professor Ecological genetics
 Oster, P. Curator of Mid-America Drosophila Stock Center
 Woodruff, R.C. Assistant Professor, Director of Mid-America Drosophila Stock Center
 Developmental genetics, genetics of natural populations, mutagenesis
 Yoon, J.S. Associate Professor Evolution, cytogenetics

Bozeman, Montana 59715: Montana State University, Dept. of Biology Tel 406-994-2441
 Vyse, E.R. Assistant Professor

Bridgewater, Massachusetts 02324: Bridgewater State Coll., Dept. Biol. Sci. Tel 617-697-8321
 Muckenhalter, F.A. Ph.D., Assistant Professor Oogenesis and development

Bronx, New York 10461: Albert Einstein College of Medicine, Dept. of Genetics, 1300 Morris Park Avenue Tel 212-430-2824
 Boyce, J.T. Curator of Stocks
 Hall, L.M. Ph.D., Associate Professor of Genetics and Neurosciences Neurogenetics
 Hoffman, M.F. Dr.

Buffalo, New York 14222: State University College at Buffalo, Dept. of Biology, 1300 Elmwood Ave. Tel 716-862-5008
 LoCascio, N. Ph.D., Assistant Professor Genetic analysis of isoenzymes
 Moisand, R. Ph.D., Associate Professor Population genetics and behavior

Buffalo, New York 14214: State University of New York at Buffalo, Dept. of Biology 3435 Main Street Tel 716-831-2624
 Farnsworth, M.S. Associate Professor
 Harford, A.G. Assistant Professor

Burlington, Vermont 05401: University of Vermont, Dept. of Zoology

Cambridge, Massachusetts 02138: Harvard University Biological Laboratories Tel 617-495-
 Gelbart, W.M. Ph.D., Assistant Professor -2906
 Gepner, J.I. Ph.D., Postdoctoral Fellow -2906
 Green, L.H. Ph.D., Postdoctoral Fellow -2906
 Petri, W.H. Research Fellow Developmental genetics -3292
 Ribolini, A. Ph.D., Postdoctoral Fellow -2906
 Wyman, A.R. Research Fellow Developmental biochemistry -3292

Cambridge, Massachusetts 02138: Harvard Univ., Museum of Comparative Zoology Tel 617-495-2419
 Cohan, P. Selection studies in D. melanogaster
 Coyne, J. Biochemical and ecological genetics, allozymes
 Eanes, W. Biochemical genetics, enzyme kinetics
 Felton, A. Allozyme studies, stock curator
 Keith, T. Developmental genetics of allozyme loci
 Kreitman, M. Biochemical genetics, allozymes
 Lewontin, R. Theoretical and experimental population genetics
 Logan, J. Molecular biology of DNA in D.
 Ramshaw, J. Protein structure and biochemistry of D.

Canton, New York 13617: St. Lawrence University, Dept. of Biology Tel 315-379-5295
 Ash, W.J. Dr. Physiological genetics
Carbondale, Illinois 62901: Southern Illinois University, Dept. of Zoology Tel 618-536-2314

Engler, D.C. Ph.D., Professor Population genetics

Catonsville, Maryland 21228: University of Maryland Baltimore County, Dept. of Biological Sciences Tel 301-455-2261

Bradley, R.P. Ph.D., Assistant Professor Population and quantitative genetics -2244

Geethman, R.C. Ph.D., Assistant Professor Chromosome behavior -2245

Petrovic, S.B. Ph.D., Assistant Professor Behavioral genetics -2365

Chapel Hill, North Carolina 27514: University of North Carolina, Curriculum in Genetics and Dept. of Zoology Tel 919-933- (see below)

Cochrane, B. Ph.D., NIH Postdoctoral Trainee Biochemical genetics -1332

Davis, E.A. Curator of Stocks -1332

Lucchesi, J.C. Ph.D., Professor Developmental genetics, molecular cytogenetics -1332

Maroni, G.P. Ph.D., Assist. Prof. Developmental genetics, chromatin biochemistry -1343

Pierce, D. Ph.D., Research Assoc. Developmental genetics, chromatin biochemistry -1343

Roehrdanz, R. Ph.D., Research Assoc. Developmental genetics, dosage compensation -1332

Skripski, T. Ph.D., Swiss Nat. Found. Postdoctoral Fellow Developmental genetics, sex limited lethality -1332

Whittinghill, M. Ph.D., Emeritus Professor Mutagenesis, crossing over, cytogenetics -2266

Charlotte, North Carolina 28213: University of North Carolina at Charlotte, Dept. of Biology Tel 704-597-2315

Hildreth, P.E. Ph.D., Professor Developmental genetics

Ostrowski, R.S. Ph.D., Assistant Professor Developmental genetics

Charlottesville, Virginia 22901: University of Virginia, Dept. of Biology Tel 804-924-7118

Adler, P.N. Ph.D., Assistant Professor Determination and positional information in imaginal discs 924-3294

Emerson, C.P. Ph.D., Associate Professor Gene regulation and myogenesis 924-7067

Grainger, R.M. Ph.D., Assistant Professor Fate and localization of maternal macromolecules during development 924-7993

Miller, C.L., Jr. Ph.D., Professor Ultrastructural analysis of transcription, translation and replication 924-3909

Wright, T.R.F. Ph.D., Professor Genetic regulation of dopa decarboxylase activity during development 924-3856

Chicago, Illinois 60628: Chicago State University, Dept. of Biological Sciences

Sampsell, B. Assistant Professor Population genetics, enzyme polymorphisms Chicago, Illinois 60637: University of Chicago, Dept. of Biology Tel 312-753-2715

Hubby, J.L. Ph.D., Professor Proteins in Drosophila -2717

Lindquist, S. Ph.D., Assistant Professor Heat shock proteins -2189

Spofford, J.B. Ph.D., Associate Professor Position-effect, duplications -2715

Swift, H.H. Ph.D., Professor Cytogenetics, molecular biology -2714

Throckmorton, L.H. Ph.D., Professor Protein differences in Drosophila, systematics and biogeography of the Drosophilidae. -2704

Van Valen, L. Ph.D., Professor Evolution -8106

Chicago, Illinois 60680: University of Illinois at Chicago Circle, Dept. of Biological Sciences Tel 312-996-2576 (Spiess Lab), 996-2259 (Cummings Lab)

Cummings, M.R. Ph.D., Associate Professor Developmental genetics

Spies, E.B. Ph.D., Professor Population-behavior genetics

Cleveland, Ohio 44106: Case Western Reserve University, Dept. of Biology Tel 216-368-3610

Martin, A.O. Ph.D., Instructor Human population genetics and evolution

Cleveland, Ohio 4415: Cleveland State University, Dept. of Biology and Health Sciences, Euclid Avenue and 24th Street Tel 216-687-2440

Cline, R.L. Ph.D., Professor Population genetics

DeMarinis, F.H. Ph.D., Professor Gene action

Dickerman, R.C. Ph.D., Associate Professor Mutagenesis

College Park, Maryland 20742: University of Maryland, Dept. of Zoology Tel 301-454- Imberski, R.B. Associate Professor Developmental and biochemical genetics -5159

Potter, J.H. Associate Professor Behavioral and ecological genetics -5410

Colorado Springs, Colorado 80903: Colorado College, Dept. of Biology Tel 303-473-2233 Ext 304

Heim, W.G. Ph.D., Professor General genetics

Columbia, Missouri 65211: University of Missouri, Dept. of Genetics and Cytology, 205 Curtis Hall Tel 314-882-3393

Burdick, A.B. Ph.D., Professor Gene structure and function, spermatogenesis
March 1981 Geographical Directory DIS 56 - 293

Coe, E.H., Jr. Ph.D., Professor Gynandromorphs
Farish, D.J. Ph.D., Associate Professor Behavioral genetics
Yanders, A.F. Ph.D., Professor and Dean Cytogenetics, meiotic drive, spermatogenesis
Stark, W.S. Ph.D.

Corvallis, Oregon 97331: Oregon State University, Dept. of Zoology Tel 503-754-
Dawson, P. Ph.D., Associate Professor Population genetics -1128
Roberts, P.A. Ph.D., Professor Cytogenetics, developmental genetics -1648

Crawfordsville, Indiana 47933: Wabash College, Dept. of Biology Tel 462-1400
Cole, T.A. Associate Professor Ext 261
Klug, W.S. Assistant Professor Ext 350

Cullowhee, North Carolina 28723: Western Carolina Univ., Dept. of Biology Tel 704-227-7244
Wright, C.P. Ph.D., Associate Professor Developmental genetics

Davis, California 95616: University of California, Dept. of Genetics Tel 916-752-
Ayala, F.J. Ph.D., Professor -2209
Barr, L. Stockkeeper -0406
Boyd, J.B. Ph.D., Associate Professor -3070
Cottle, Celia Stockkeeper -2197
Green, M.M. Ph.D., Professor -1189 or -6295
Kiger, J.A. Ph.D., Assistant Professor -2059
Prout, T. Ph.D., Professor -2197

Davis, California 96716: University of California, Dept. of Zoology Tel 916 752-1220
Spieth, H.T. Ph.D., Professor Mating behavior

Dayton, Ohio 45431: Wright State University, Dept. of Biological Sciences Tel 513-873-2106
Kertesz, J. B.S., Stockkeeper
Seiger, M.B. Ph.D., Associate Professor Genetics of behavior

DeKalb, Illinois 60115: Northern Illinois Univ., Dept. of Biol. Sciences Tel 815 753-0433
Bennett, C.J. Ph.D., Professor Population, behavior
Mittler, S. Ph.D., Professor Mutagenesis

Des Moines, Iowa 50311: Drake University, Dept. of Biology Tel 515-271-3765
Myszewski, M.E. Ph.D., Assistant Professor Chromosome mechanics, mutagenesis

Detroit, Michigan 48202: Wayne State University, Dept. of Biology Tel 313-577-2873
Arking, R. Ph.D., Assistant Professor Developmental genetics 577-2891
Mayeda, K. Ph.D., Professor Cytogenetics 577-3529
Parente, A. Research Technician, Graduate Student, Stockkeeper

Duarte, California 91010: City of Hope Research Institute Tel 213-359-8111
Dept. of Behavior Genetics Ext 2466
Kaplan, W.D. Ph.D., Research Scientist Neurological mutants, aging
Trout, W.E., III Ph.D., Assistant Research Scientist Neurological mutants, aging
Williamson, R.L. M.A., Research Associate Behavior genetics
Wong, P.T-C. Ph.D., Assistant Research Scientist Neurophysiology
Dept. of Developmental Biology Ext 2473
Bournias-Vardiabasis, N. Ph.D., Research Fellow Developmental genetics
Buzin, C.M. Ph.D., Assistant Research Scientist Developmental genetics
Division of Neurosciences Ext 2782
Ikeda, K. Ph.D., Research Scientist Neurophysiology
Koenig, J. Ph.D., Assistant Research Scientist Neurophysiology

Durham, North Carolina 27706: Duke University Tel (919) 684-

Department of Botany
Antonovics, J. Ph.D., Professor Population Genetics -3571

Department of Zoology
Ward, C.L. Ph.D., Professor Speciation, chromosomal polymorphism -3270

Durham, North Carolina 27710: Duke University School of Medicine Tel (919) 684-

Department of Anatomy
Counce, S.J. (Mrs. Bruce Nicklas) Ph.D., Professor Developmental genetics -2018

Department of Biochemistry
Greenleaf, Arno L. Ph.D., Assistant Professor Transcriptional regulation and RNA-polymerase mutants -4030
Heich, T. Ph.D., Assistant Professor Molecular genetics, chromosome structure -5519

Department of Microbiology/Immunology
Endow, S.A. Ph.D., Assistant Professor Genetic regulation of replication and transcription, chromosome structure -6311

East Lansing, Michigan 48824: Michigan State University, Dept. of Zoology Tel 517-
Band, H. Ph.D. Population genetics, ecological genetics 351-7941
Kral, L.G.
Robbins, L. Ph.D. 355-0337
Easton, Pennsylvania 18042: Lafayette College, Dept. of Biology Tel 215-253-6281 Ext 286
Majumdar, S.K. Ph.D., Assistant Professor Cytogenetics, chemical mutagenesis and developmental genetics
Eugene, Oregon 97403: University of Oregon, Dept. of Biology Tel 503-686-4502
Clark, B. Graduate Student DNH Locus -4524
Kowlett, T. Postdoctoral Fellow Developmental genetics -4495
Novitski, E. Ph.D., Professor Chromosome behaviour -4525 or -4524
Postlethwait, J. Ph.D., Associate Professor Developmental genetics -4438
Seals, D. Research Assistant, Stockkeeper -4495
Shirk, P. Ph.D., Postdoctoral Fellow Developmental genetics, molecular biology and endocrinology -4495
Stone, J. Graduate Student Nature of filicidal effect, ring chromosomes -4524
Postlethwait, J. Ph.D., Associate Professor Developmental genetics -4438
Evanston, Illinois 60201: Northwestern University, Dept. of Biology Sci. Tel 312-692-3652
King, R.C. Ph.D., Professor Comparative oogenesis
Fayetteville, North Carolina 28301: Fayetteville State University, Dept. of Biological and Physical Science Tel 919-483-6144 Ext 352
Waddle, F.R. Ph.D., Assistant Professor melanogaster
Fayetteville, Arkansas 72701: University of Arkansas, Dept. of Zoology Tel 501-575-3251
Clayton, F.E. Ph.D., Professor Cytogenetics
Guest, W.C. Ph.D., Professor Cytogenetics
Flagstaff, Arizona 86001: Northern Arizona University, Dept. of Biology Tel 602-523-3538
English, D.S. Ph.D., Associate Professor Chemical mutagenesis, developmental genetics
Galesburg, Illinois 61401: Knox College, Dept. of Biology Tel 309-343-0112
Kowlett, T. Postdoctoral Fellow Developmental genetics -4495
Kalicki, H. Ph.D., Associate Professor Physiological and developmental genetics
Gary, Indiana 46408: Indiana University Northwest, Dept. of Biology Tel 219-887-0111 Ext 396
Hanks, G.D. Ph.D., Associate Professor, Acting Head Meiotic drive, sex ratios, biological effects of radiation and chemicals
Glenside, Pennsylvania 19038: Beaver College, Dept. of Biology Tel 215-884-3500 Ext 435
Rose, R.W. Ph.D., Assistant Professor Biochemical genetics, nucleic acids
Goshen, Indiana 46526: Goshen College, Dept. of Biology Tel 219-533-3161
Bell, B.W. Ph.D., Professor Metabolism, reproduction
Garden City, New York 11530: Adelphi University, Dept. of Biology Tel 516-817-2200
Johnsen, R.C. Ph.D., Assistant Professor Chromosome mechanics and cytogenetics
Kalicki, H. Ph.D., Associate Professor Physiological and developmental genetics
Greensboro, North Carolina 27412: University of North Carolina at Greensboro, Dept. of Biology Tel 379-5387
McCrady, E., III Ph.D.
Hamden, Connecticut 06518: Quinnipiac College, Dept. of Biology, Mount Carmel Avenue
Martinez, R.M. Ph.D., Assistant Professor Crossing-over, interference
Honolulu, Hawaii 96822: University of Hawaii, Dept. of Entomology(E), Dept. of Genetics(G) Tel 808-948-
Ahearn, J.W. Ph.D., Assistant Researcher Developmental genetics (G) -7662
Rose, R.W. Ph.D., Assistant Professor Biochemical genetics, nucleic acids
Goshen, Indiana 46526: Goshen College, Dept. of Biology Tel 219-533-3161
Jacobs, M.E. Ph.D., Melanization in D. melanogaster
Greensboro, North Carolina 27412: University of North Carolina at Greensboro, Dept. of Biology Tel 379-5387
McCoy, E., III Ph.D.
March 1981

Geographical Directory

Huntsville, Texas 77340: Sam Houston State Univ., Life Sci. Dept. Tel 713-295-6211 Ext 1677
Dewees, A.A. Ph.D., Professor Population genetics and genetic control of recombination

Iowa City, Iowa 52242: University of Iowa, Dept. of Zoology Tel 319-353-5751
Frankel, A.W.K. Ph.D., Fellow
Milkman, R.D. Ph.D., Professor Evolutionary genetics - 5706
Mohler, J.D. Ph.D., Professor Developmental genetics, oogenesis - 4893
Wu, C.-F. Ph.D., Assistant Professor Physiological genetics, behavior - 4116

Ithaca, New York 14850: Cornell University, Section of Genetics, Development and Physiology Tel 607-256-
Knipple, D. Graduate Student Genetics of β-glucosidase
Kotarski, M. Graduate Student Fine structure of αGPDH
MacIntyre, R. Professor - 3018 Biochemical and evolutionary genetics
Wallace, B. Professor - 5291 Population and ecological genetics

Ithaca, New York 14850: Ithaca College, Dept. of Biology Tel 607-274-3166
Thompson, S.R. Ph.D., Associate Professor Natural variation and canalization

Johnson City, Tennessee 37601: East Tennessee State U., Biol. Dept. Tel 615-926-1112 Ext 358
Benner, D.B. Assistant Professor

Johnstown, Pennsylvania 15904: University of Pittsburgh, Division of Natural Sciences
Thompson, C.

Knoxville, Tennessee 37916: University of Tennessee, Dept. of Zoology Tel 615-974-2371
Dodd, C.K. M.S., Stockkeeper
Fox, D.J. Ph.D., Assistant Professor Developmental and enzyme genetics
Hochman, B. Ph.D., Professor Genetics, cytology and developmental effects of chromosome 4

La Jolla, California 92037: University of California-San Diego, Dept. of Biology Tel 714-453-2000 Ext 2195
Baker, B. Ph.D., Assistant Professor
Belote, J. Ph.D., Postdoctoral
Carpenter, A.T.C. Ph.D., Assistant Professor
Carson, G. Graduate Student
Denell, R. Ph.D.
Hardy, R. Ph.D., Research Biologist
Ivy, J. Graduate Student
Lawlor, T. Graduate Student 452-4807
Lindsay, D. Ph.D., Professor
Livak, K. Postdoctoral
Rokop, S. Curator of Stocks
Romans, P. Graduate Student 452-3109
Tokuyasu, K.T. Ph.D., Professor-in-Residence 452-2185
Zimm, G. Ph.D., Research Associate

Lawrence, Kansas 66045: University of Kansas, Div. of Biol. Sci. Tel 913-864-3763 or 4305
Hedrick, P.W. Associate Professor Population genetics

Le Mars, Iowa 51031: Westmar College, Dept. of Biology Tel 712-546-7081 Ext 319
Divelbiss, J. Ph.D., Professor Complex loci, pterydines, brown mutants

Lewisburg, Pennsylvania 17837: Bucknell University, Dept. of Biology Tel 717-524-1124
Tonzetich, J. Ph.D., Assistant Professor

Lexington, Kentucky 40506: University of Kentucky, Dept. of Zoology Tel 606-258-8771
Carpenter, J.M. Ph.D., Prof. Gene ecology, radiation eco-genetics, reproductive potential
Rawls, J.M., Jr. Ph.D., Assistant Professor
Ossgood, C.J. Ph.D. Visiting Assistant Professor

Lincoln, Nebraska 68508: Univ. of Nebraska-Lincoln, Sch. of Life Sciences Tel 402-472-2720
Miller, D.D. Ph.D., Professor D. affinis subgroup intro- and interspecific variation

Logan, Utah 84322: Utah State University, Dept. of Biology Tel 801-752-4100 Ext 7868
Bowman, J.T. Ph.D., Associate Professor Gene action
Gardner, E.J. Ph.D., Professor Developmental genetics of head abnormalities
Simmons, J.R. Ph.D., Professor Biochemical genetics

Long Beach, California 90840: California State University, Dept. of Biology Tel 213-498-4805
Kroman, R.A. Professor Developmental genetics, melanogaster

Los Angeles, California 90024: Univ. of Calif. - Los Angeles, Biology Dept. Tel 213-825-2256
Hardy, R. Ph.D., Postdoctoral Fellow Behavior mutants
Merriam, J. Ph.D., Associate Professor Neurogenetics
Stewart, B. Ph.D., Postdoctoral Fellow Cytogenetics

Taylor, C.E.
Bryant, M. L. Stockkeeper Mutagenesis
Bryant, S. H. Assistant Professor Population genetics
Murnik, M. R. Associate Professor Mutagenesis, behavior genetics -1374

Madison, Wisconsin 53706: University of Wisconsin, Laboratory of Genetics (G) and Dept. of Zoology (Z) Tel 608- (see below)
Abrahamson, S. Ph.D., Professor (Z,G) 262-2506
Berg, R. Ph.D., Associate Scientist (G) 262-3896
Brittnacher, J. Ph.D., Postdoctoral Fellow (G) 262-3896
Crow, J. F. Ph.D., Professor (G,Z) 263-1993
DeJongh, C. M. S., Research Specialist (Z) 262-3328
Engels, W. R. Ph.D., Postdoctoral (G) 262-3896
Fourman, P. A. B., Graduate Student (G) 262-3896
Ganetzky, B. Ph.D., Assistant Professor (G) 262-3896
Kreber, R. A. M.S., Research Specialist (G) 262-3896 (Project Specialist)
Manseau, L. B.S., Graduate Student (G) 262-3896
Meyer, H. U. Ph.D., Senior Scientist (Z) 262-3328
Preston, C. B. A. (G) 262-3896 (Project Specialist)
Rose, M. Ph.D., Postdoctoral Fellow (G) 262-3896
Temin, R. Ph.D., Assistant Scientist (G) 262-1993
Ulber, M. B. A., Graduate Student (G) 262-3896
Valencia, R. M. Ph.D., Senior Scientist (Z) 262-2701

Manhattan, Kansas 66506: Kansas State University, Division of Biology
Denell, R. Ph.D. Homoeotic mutants, genetic control of aspects of sex

Marietta, Ohio 54750: Marietta College, Dept. of Biology Tel 614-373-4643 Ext 240
Brown, W. P. Ph.D., Associate Professor Population genetics

Miami, Florida 33199: F.I.U., Dept. of Biological Sciences
Espinet, S. A. M.Sc. Behavioral genetics, speciation
Tracey, M. L. Ph.D. Population genetics, recombination

Middletown, Connecticut 06457: Wesleyan University, Dept. of Biology Tel 203-347-9411
Donady, J. J. Assistant Professor (X496) Developmental genetics, myogenesisis, gene regulation
Kiefer, B. I. Professor (X365) Developmental genetics, spermiogenesis, regulation of RNA synthesis
Potter, S. S. Assistant Professor (X608) Genome organization, repeated sequences, gene regulation

Minneapolis, Minnesota 55404: Augsburg College, Dept. of Biology Tel 612-332-5181
Herforth, R. S. Ph.D., Assistant Professor CO₂ sensitivity
Sulerud, R. L. Ph.D., Professor CO₂ sensitivity

Minneapolis, Minnesota 55455: University of Minnesota, Dept. of Zoology Tel 612-373 3645
Merrell, D. J. Ph.D., Professor Population genetics

Morgantown, West Virginia 26506: West Virginia Univ., Dept. of Zoology Tel 304-293-4380
Keller, E. C. Jr. Professor of Biology
Keller, H. E. Storekeeper

Moscow, Idaho 83843: University of Idaho, Dept. of Biological Sciences Tel 208-885-6280
Forbes, C. Associate Professor Mutation
Muncie, Indiana 47306: Ball State University, Dept. of Biology Tel 317 285-5480
Engstrom, L. E. Ph.D., Assistant Professor Developmental genetics
Newark, New Jersey 07102: Rutgers University, Dept. of Zoology and Physiology Tel 201-621-1766 Ext 4286 & 4482
Borack, L. I. Ph.D., Associate Professor
Sonnenblick, B. P. Ph.D., Professor Radiation effects

Newark, Delaware 19711: Univ. of Delaware, Dept. of Biological Sciences Tel 302-738-2669
Clark, A. M. Ph.D., Professor Developmental genetics
Gould, A. B. Ph.D., Instructor

New Brunswick, New Jersey 08903: Rutgers University, Dept. of Biological Sciences
McCormack, M. K. Ph.D., Assistant Professor Biochemical genetics

New Haven, Connecticut 06520: Yale University, Dept. of Biology (B); Dept. of Molecular Biophysics & Biochemistry (MB) Tel Nos. 203-436-0417 (B); 436-4819 (MB)
Coggshall, J. Ph.D., Research Associate & Lecturer Neurophysiology (B)
Gall, J. G. Ph.D., Professor Chromosome structure, nucleic acids (B) 436-1676
Garen, A. Ph.D., Professor Developmental genetics, gene and protein (MB) 436-4819
Garen, S. Ph.D., Research Associate Developmental neurogenetics (B)
Grabicki, E. Curator of Stocks, Assistant in Research (B) 436-0417
Kankel, D. Ph.D., Associate Professor Developmental neurogenetics (B) 436-1292
Poulson, D.F. Ph.D., Professor Physiological and developmental genetics, hereditary infections (B) 436-0416
Powell, J.F. Ph.D., Associate Professor Population and evolutionary genetics (B) 432-2497
Rae, P.M.M. Ph.D., Associate Professor Molecular cytology (B) 436-2648
Söll, D. Ph.D., Professor Molecular genetics, development (MB) 436-3611
Wyman, R.J. Ph.D., Professor Neurophysiology, developmental genetics (B) 436-2575
New Wilmington, Pennsylvania 16142: Westminster College, Dept. of Biology Tel 412-946-8761

McCarthy, P.C. Ph.D., Assistant Professor, Curator Biochemical genetics

New York, New York 10031: City College of New York, Dept. of Biology, 137th Street and Convent Avenue Tel 212-690-8472

Bargiello, T. Stockkeeper
Grossfiled, J. Ph.D., Associate Professor Behavioral and population genetics
Rockwell, R.F. Ph.D., Postdoctoral Fellow Population and behavior genetics
New York, New York 10021: Hunter College, Dept. of Biological Sciences Tel 212-570-5321

Herskowitz, I.H. Ph.D., Professor Molecular and developmental genetics
Margulies, L. Ph.D., Instructor Molecular and developmental genetics
New York, New York 10029: Mt. Sinai School of Medicine, City University of New York, Dept. of Anatomy Tel 212-650-7268

Levitan, M. Ph.D., Professor Population genetics, chromosome breakage
New York, New York 10003: New York University, Dept. of Biology, 952 Brown Building Tel 212-598-7545

Craddock, E.M. Ph.D., Associate Research Scientist Hawaiian Drosophila population genetics, cytoevolution, vitellogenesis
Kambysellis, M.P. Ph.D., Associate Professor Developmental genetics, tissue culture, oogenesis, reproductive strategies
Rubenstein, E. Ph.D., Postdoctoral Fellow Vitellogenesis, ovarian proteins
New York, New York 11367: Queens College, Dept. of Biology Tel 212-415-7500 Ext 418

Hale, G. M.S., Lecturer Cytogenetics
Kaplan, M.L. Ph.D., Professor Drosophila tumors
Marien, D. Ph.D., Professor Population genetics
Peers, E. B.A., Science Assistant, Curator of Stocks
Wasserman, M. Ph.D., Professor Cytogenetics
Norman, Oklahoma 73069: Univ. of Oklahoma, Dept. of Zoology Tel 405-325-6998

Braver, G. Ph.D., Professor
Thompson, J.N. Jr. Ph.D. Quantitative genetics
Northridge, California 91324: California State University, Dept. of Biology

Bengston, R. Curator of Stocks
Lefecre, G. Jr. Ph.D., Professor
Notre Dame, Indiana 46556: University of Notre Dame, Dept. of Biology Tel 219-283-

Render, H.A. Ph.D., Professor -7075
Burton, W.G. Ph.D., Assistant Professor -6435
Craig, G.B. Ph.D., Professor -7366
Fuchs, M.S. Ph.D., Associate Professor -7739
Moskowski, T. Curator of Stocks -7075
Rai, K.S. Ph.D., Professor -6584
Oakdale, New York 11769: Dowling College, Dept. of Biology Tel 516-589-6100 Ext 274

Shafer, S.J. Ph.D., Assistant Professor Biochemical genetics
Thalman, G.J. Ph.D., Research Scientist Developmental genetics
Oak Ridge, Tennessee 37830: Oak Ridge National Laboratory, Biology Division, P.O. Box Y Tel 615-483-8611 Ext 3-7672

Grell, E.H. Ph.D. Biochemical genetics
Grell, R.F. Ph.D. Recombination and chromosome behavior
Nix, C.E. Ph.D. Nucleic acids
Wilkerson, R.D. Curator of Stocks
Pasadena, California 91109: Calif. Inst. of Technology, Div. of Biology Tel 213-795-6811

Benzer, S. Ph.D., Professor Ext 1963
Craymer, L. Ph.D., Curator of Stocks Ext 1925 or 1905
Davidson, N. Ph.D., Professor Ext 2055
Duncan, I. Ph.D., Helen Hay Whitney Foundation Fellow Ext 1925
Ferrus, A. Ph.D., Research Fellow Ext 2476
Fyrberg, E. Ph.D., Research Fellow Ext 2047
Handler, A. Ph.D., Research Fellow Ext 2800
Kauvar, L. Ph.D., Research Fellow Ext 2476
Kindle, K. Ph.D., Research Fellow Ext 2047
Konopka, R. Ph.D., Assistant Professor Ext 2811
Lewis, E. Ph.D., Professor Ext 1941
Lowy, P. Doctorandum, Senior Research Fellow Ext 1950
Maniatis, T. Ph.D., Assistant Professor Molecular genetics Ext 2889 or 2895
Mitchell, H. Ph.D., Professor Ext 1948
Petersen, N. Ph.D., Senior Research Fellow Ext 1950
Sirotkin, K. Ph.D., Research Fellow Ext 2054
Tanouye, M. Ph.D., Research Fellow Ext 2476

Philadelphia, Pennsylvania 19102: Hahnemann Medical Coll., Genetics Div. Tel 215-448-8201/03

Asselstadt, H. Ph.D., Research Assistant, Professor
Fuscaldo, K.E. Ph.D., Associate Professor
Kaufmann, B.N. M.D., Professor
Lechner, J.E. Ph.D., Assistant Professor

Philadelphia, Pennsylvania 19111: Inst. for Cancer Research, 7701 Burholme Avenue Tel 215-342-1000

Cohen, L. Ph.D., Associate Member
Rudkin, G.T. Ph.D., Associate Member
Tartof, K.D. Ph.D., Assistant Member

Philadelphia, Pennsylvania 19122: Temple University, Dept. of Biology Tel 215-787-8857

Hillman, R. Ph.D., Professor Developmental genetics

Gersh, E.S. Lecturer Chromosome structure and function

Pittsburgh, Pennsylvania 15213: Carnegie-Mellon University, Mellon Institute of Science, Dept. of Biology Tel 412-621-1100

Ellison, J.R. Ph.D. Chromosome structure
Mayfield, J.E. Ph.D. Eucaryotic genome organization

Pittsburgh, Pennsylvania 15213: University of Pittsburgh, Dept. of Biology Tel 412-624-

Applebaum, B. -4688
Corwin, H.O. Ph.D., Associate Professor Chemical mutagenesis -4256
Gottlieb, F.J. Ph.D., Associate Professor Developmental genetics -4257

Portland, Oregon 97203: University of Portland, Dept. of Biology 5000 N. Willamette

Neeley, J.C. Ph.D., Assistant Professor Aneuploidy Tel 503-286-7129

Poughkeepsie, New York 12601: Marist College, Dept. of Biology Tel 914 471-3240

Hooper, G.B. Ph.D. Drosophila ecology, behavior

Princeton, New Jersey 03540: Princeton University, Dept. of Biology Tel 609-692-3850

Cohen, C.H. Ph.D., Assistant Professor DNA sequence organization and evolution -3850
Quinn, W.G. Ph.D., Assistant Professor Behavior genetics and learning -3850
Sanders, T.G. Ph.D., Assistant Professor Developmental and molecular genetics -3852

Providence, Rhode Island 02912: Brown University, Div. of Biology & Medicine Tel 401-863-

Fausto-Sterling, A. Ph.D., Associate Professor Developmental genetics -2109
Kidwell, J.F. Ph.D., Professor Quantitative and population genetics -2808
Kidwell, M.G. Ph.D., Assistant Professor (Research) Population and evolutionary genetics and mutator mechanisms -3923
Zimmering, S. Ph.D., Professor Mutagenesis and cytogenetics -2620

Provo, Utah 84602: Brigham Young University, Dept. of Zoology Tel 801-374-1211

Farmer, J.L. Ph.D., Associate Professor Biochemical genetics Ext 2153
Jeffery, D.B. Ph.D., Assoc. Prof. Developmental & evolutionary genetics Ext 2155

Pullman, Washington 99163: Washington State Univ., Zoology-Genetics Tel 509-335-3553

Iwamoto, R.N. M.S., Research Associate Population genetics 335-3311
Moree, R. Ph.D., Professor Population genetics

Purchase, New York 10577: State Univ. of New York, Division of Natural Sciences

Ehrman, L. Ph.D., Professor Reproductive isolating mechanisms, infectious heredity, frequency dependent selection; in feneral, behavior genetics, paulistorum & pseudoobscura
Inocencio, B. B.A., Curator of Stocks, Teaching Assistant
Gottlieb, J.F. Research collaborator, Symbiants
Raleigh, North Carolina 27607: North Carolina State University, Dept. of Genetics, Tel 919-737- (see below)
Bewley, G.C. Ph.D., Assistant Professor Biochemical-developmental genetics -2285
Pyle, D. Ph.D., Research Associate Population and behavioral genetics -2295
Richmond, R. Ph.D., Associate Professor Population genetics -2295
Schaffer, H.E. Ph.D., Professor Population genetics, mathematical and quantitative genetics -2294

Reading, Pennsylvania 19603: Albright College, Dept. of Biology Tel 215-921-2381
Bell, E.L. Ph.D., Chairman, Curator of Stocks

Research Triangle Park, North Carolina 27709: Population Genetics Section, Environmental Mutagenesis Branch, NIEHS Tel 919-459-8411 Ext 3434, 3435
Langley, C.H. Ph.D. Population genetics and evolution
Voelker, R.A. Ph.D. Cytogenetics, population genetics and evolution
Richmond, Virginia 23220: Virginia Commonwealth University, Dept. of Biology Tel 703-770-7231
Chinnici, J.P. Ph.D., Assistant Professor Recombination, evolution of dominance, sexual isolation in D. melanogaster

Riverside, California 92502: University of California, Dept. of Biology Tel 714-787-5904
Gill, R.W. Assistant Professor Ecology of Drosophila -3609
Parker, D.R. Professor Meiotic interchange -5912
Roanoke, Virginia 24020: Hollins College, Dept. of Biology Tel 703-362-6547
Bell, A.L. Ph.D., Associate Professor Developmental genetics

Rochester, Michigan 48063: Oakland University, Dept. of Biol. Sci. Tel 313-377-3555 or 3550

Butterworth, F.M. Ph.D., Professor, Acting Chairman Developmental genetics, in vitro cultures of larval fat body
Friedman, T.B. Ph.D.

Rochester, New York 14627: University of Rochester, Dept. of Biology Tel 716-275-3847
Krivshenko, J.D. D.Sc., Senior Research Associate Cytogenetics & population genetics
Merritt, R. Ph.D., Postdoctoral Fellow Population genetics
Prakash, S. Ph.D., Assistant Professor Allozyme polymorphism and its significance

Rochester, New York 14627: University of Rochester, Dept. of Biology Tel 716-275-3847
Krivshenko, J.D. D.Sc., Senior Research Associate Cytogenetics & population genetics
Merritt, R. Ph.D., Postdoctoral Fellow Population genetics
Prakash, S. Ph.D., Assistant Professor Allozyme polymorphism and its significance

Rutgers, New Jersey 08854: Rutgers University, Dept. of Biology Tel 201-273-0615
D新西, M.A. Associate Professor Developmental genetics

San Diego, California 92182: San Diego State Univ., Dept. of Biology Tel 714-265-6442
San Francisco, California 94117: U. of San Francisco, Dept. of Biology, Harney Science Center
San Marcos, Texas 78666: Southwest Texas State Univ., Dept. of Biology Tel 512-245-2288
Santa Cruz, California 95064: University of California, Thimann Labs
Seattle, Washington 98195: University of Washington, Dept. of Genetics Tel 206-543-
Goldstein, L. B.A., Graduate Student -1707
Hawley, R.S. B.S., Graduate Student -1707
Lindsley, D.E. B.A., Graduate Student -1707
O'Tousa, J. B.S., Graduate Student -1707
Rosenfeld, A. B.S., Curator of Stocks -1707
Sandler, L. Ph.D., Professor -1622
Sved, J.A. Ph.D., Visiting Investigator -1707
Szauter, P. B.S., Graduate Student -1707
Seattle, Washington 98195: University of Washington, Dept. of Zoology Tel 206-543-
Endow, S.A. Ph.D., Postdoctoral Fellow -6894
Haynie, J. Ph.D., Research Associate -8158
Karpin, G. Research Technician -8158
Laird, C. Ph.D., Associate Professor -6894
Newman, S. Ph.D., Research Associate -8158
Palka, J. Professor -8889
Schubiger, G. Associate Professor -8158
Schubiger, M. Ph.D., Research Associate
Rosenfeld, A. B.S., Curator of Stocks -1707
South Orange, New Jersey 07079: Seton Hall Univ., Dept. of Biology Tel 201-762-9000 Ext 439
Karuse, E. Ph.D. General and population genetics
Stony Brook, New York 11794: State Univ. of New York, Dept. of Anat. Sci. Tel 514-444-2432
Williamson, D.L. Ph.D., Associate Professor Maternally inherited infections
Stony Brook, New York 11794: State Univ. of New York, Dept. of Cellular and Comparative Biology Tel 516-246-
Carlson, E.A. Ph.D., Distinguished Teaching Professor Mutagenesis and mosaicism -7685
Erk, F. Ph.D., Professor Developmental genetics -5045
Storrs, Connecticut 96268: University of Connecticut, Biological Sciences Group, Genetics and Cell Biology Section Tel 203-686-
Akaboshi, E. Ph.D., Postdoctoral Fellow Gene organization, regulation -2842
Chovnick, A. Ph.D., Professor Gene organization, regulation -3810, 3043
Clark, S. Ph.D., Postdoctoral Fellow Gene organization, regulation -2257, 3043
Krider, H. Ph.D., Associate Professor Regulatory mechanisms -4860
McCarron, N. Ph.D., Research Associate Gene organization, regulation -2266
Swarthmore, Pennsylvania 19081: Swarthmore College, Dept. of Biology
Jenkins, J.B. Ph.D., Associate Professor Mutagenesis and population genetics
Syracuse, New York 13210: Syracuse University, Dept. of Biology Tel 315-476-5541
Sullivan, D.T. Ph.D., Assistant Professor Biochemical & developmental genetics Ext 3984
Storrs, Connecticut 96268: University of Connecticut, Biological Sciences Group, Regulatory Biology Section, Box U-42 Tel 203-486-6325
Schwinck, I. Dr.rer nat., Assistant Professor Biochemical and developmental genetics, drosoperins
Syracuse, New York 13210: Syracuse University, Dept. of Biology Tel 315-476-5541
Covach, R. Ph.D., Assistant Professor Developmental genetics Ext 3820
Davis, D.G. Ph.D., Associate Professor Chromosome behavior and developmental genetics -7172
Finley, D.W. Ph.D., Associate Professor Developmental and biochemical genetics -7172
Finley, D.W. Ph.D., Associate Professor Developmental and biochemical genetics -7172
Glanzman, Fe. B.A., Research Assistant, Curator of Drosophila Stocks -7172
Goldstein, E.S. Ph.D., Associate Professor Molecular and developmental genetics, recombinant DNA -7176
Markow, T.A. Ph.D., Assistant Research Professor Behavioral and evolutionary genetics -4376
Treat, L.G. Ph.D., Research Assoc. Devel. genetics and cytoplasmic inheritance -7172
Vincent, W.S.III M.S., Graduate Student Developmental genetics -7176
Weide, C.M. M.S., Graduate Student Developmental genetics -7176
Woolf, C.M. Ph.D., Professor Developmental genetics of Drosophila, human genetics -7279
Toledo, Ohio 43606: University of Toledo, Dept. of Biology Tel 419-531-5711
Bischoff, W.L. Ph.D., Assistant Professor Developmental genetics Ext 2118 & 2549
Davis, D.G. Ph.D., Associate Professor Chromosome behavior and developmental genetics -7172
Sayers, E.R. Ph.D., Associate Professor
Sayers, E.R. Ph.D., Associate Professor
University Park, Pennsylvania 16802: Pennsylvania State University, Dept. of Biophysics, 618 Life Sciences Bldg. Tel 814-865-2538
Tung, P.S.-C. Ph.D. Effect of radioisotope decays of development of Drosophila
Upton, New York 11797: Brookhaven Nat. Laboratory Medical Dept. Tel 516-924-6262 Ext 7220
Gonzalez, F.W. PH.D. Radiation genetics
Urbana, Illinois 61820: University of Illinois, Dept. of Botany (B), Dept. of Zoology (Z)
Tel 217-333-2919 (B); 333-4944 (Z)
Brown, E.H. Ph.D., Assistant Professor (Z) Developmental genetics, oogenesis
Gabay, S.J. Ph.D., Research Associate (B) Recombination
Laughnan, J.R. Ph.D., Professor (B) Cytogenetics, complex loci, developmental genetics
Luč, W.M. Ph.D., Professor Emeritus (Z) Bar series, effects of environmental agents
Steppen, D.J. Ph.D., Professor (B) Ribosomal proteins and transfer RNA

Urbana, Illinois 61820: University of Illinois, Dept. of Genetics and Devel.
Tel 217-333-4836
Gibson, P.K. Graduate Student Relationship of population structure to migration in D.
Steiner, W.W.M. Ph.D., Assistant Professor Adaptive significance of allozyme variation, ecological and population genetics

Utica, New York 13501: Aging Program, Masonic Medical Research Laboratory
Tel 315-735-2217
Baird, M.B. Ph.D., Resident Research Staff
Massie, H.R. Ph.D., Resident Research Staff
Niccolosi, R.J. Ph.D., Research Fellow

Waltham, Massachusetts 02154: Brandeis University, Dept. of Biology
Tel 617-647-2737
Hall, J.C. Ph.D., Assistant Professor Behavior genetics
Steward, D. Ph.D., Assistant Professor Developmental genetics
Wensink, P. Ph.D., Assistant Professor Molecular genetics

Washington, D.C. 20001: Howard University, Dept. of Zoology
Tel 202-636-6958
Pipkin, S.B. Ph.D. Genetic basis of regulation of alcohol and octanol dehydrogenases

Washington, D.C. 20001: Walter Reed Army Institute of Research, Dept. of Entomology
Schneider, I. Ph.D. D. Tissue culture, developmental genetics
Tel 202-576-3049

West Lafayette, Indiana 47907: Purdue University, Dept. of Animal Sciences
Tel 317-494-4890
Bell, A.E. Ph.D., Professor Population genetics

West Lafayette, Indiana 47907: Purdue University, Dept. of Biological Sciences
Hartl, D.L. Ph.D.
Pak, W.L. Ph.D., Associate Professor Physiology of behavior
Williamsburg, Virginia 23185: College of William and Mary, Dept. of Biology
Tel 703-229-3000 Ext 284
Grant, B.S. Ph.D., Associate Professor Population genetics, behavior
Hollis, R.J. M.A., Graduate Student Allozyme variation in natural populations

Wooster, Ohio 44691: College of Wooster, Dept. of Biology
Tel 216-264-1234 Ext 379
Hinton, C.W. Ph.D., Mateer Professor Chromosome behavior

VENEZUELA
Caracas: Univ. Central de Venezuela, Inst. de Zool. Tropical, apart 59058 Tel (02) 761948 Ext.57
Pérez-Salas, S. M.S., Aggregate Professor Enzyme polymorphism, population genetics, willistoni group

YUGOSLAVIA
Belgrade: Institute for Biological Research, Department of Genetics
Marinković, D. Ph.D., Head of Department Population and behavioral genetics
Andjelković, M. Dr. Res. Assoc.
Bajraktarić, I. Dr. Assist.Prof
Jelisavčić, B. Technician
Kečić, V. Dr. Assist.Prof
Savić, S.M. Assist.
Šerban, S.N. Assist.
Šmit, S.Z. Assist.
Tošić, M. Dr. Assist.Prof.

Belgrade: University of Belgrade, Faculty of Science, Department of Zoology
Krunić, M. Ph.D., Assistant Population genetics, cold hardiness
Marinković, D. Ph.D., Docent Population and behavioural genetics
Petanović, R. Assist.
Petrović, D. Technician
Tucić, N. Dr.